請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89952完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 連豊力 | zh_TW |
| dc.contributor.advisor | Feng-Li Lian | en |
| dc.contributor.author | 高逵 | zh_TW |
| dc.contributor.author | Kuei Kao | en |
| dc.date.accessioned | 2023-09-22T16:48:41Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | J. Daleo, “A2z drone delivery rolls out new cargo drone and shipment system,” FreightWaves, Aug. 8, 2022. [Online]. Available: https://www.freightwaves. com/news/a2z-drone-delivery-rolls-out-new-cargo-drone-and-shipment-system.
J. Trevithick, “The navy just sent a drone to deliver cargo to one of its ballistic missile submarines,” The Drive, Oct. 21, 2020. [Online]. Available: https:// www.thedrive.com/the-war-zone/37195/the-navy-just-sent-a-drone-to-deliver-cargo-to-one-of-its-ballistic-missile-submarines. O. Johnson, “Logging masters: On a heli-logging job with vih helicopters,” Ver- tical Magazine, Aug. 30, 2021. [Online]. Available: https:// verticalmag.com/features/logging-masters-on-a-heli-logging-job-with-vih-helicopters/. O. Johnson, “Powering up,” Vertical Magazine, Sep. 30, 2015. [Online]. Available: https://verticalmag.com/features/poweringup/. Embention, “Forest transformation mission with fb3 cargo drone in bavaria,” Em- bention, Jul. 2, 2021. [Online]. Available: https://www.embention.com/news/ flyingbaskets-project-in-southern-bavaria. J. Gilchris, “Rhinos: Scientists are hanging them upside-down from helicopters – here's why,” The Conversation, Sep. 14, 2021. [Online]. Available: https:// theconversation.com/rhinos-scientists-are-hanging-them-upside- down-from-helicopters-heres-why-167832. N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation with aerial robots,” in Proceedings of Robotics: Science and Systems, Seattle, USA, Jun. 2009. DOI: 10.15607/RSS.2009.V.001. T. Lee, “Geometric Control of Quadrotor UAVs Transporting a Cable-Suspended Rigid Body,” IEEE Transactions on Control Systems Technology, vol. 26, no. 1, pp. 255–264, Jan. 2018, Conference Name: IEEE Transactions on Control Systems Technology, ISSN: 1558-0865. DOI: 10.1109/TCST.2017.2656060. H. G. d. Marina and E. Smeur, “Flexible collaborative transportation by a team of rotorcraft,” in 2019 International Conference on Robotics and Automation (ICRA), ISSN: 2577-087X, May 2019, pp. 1074–1080. DOI: 10.1109/ICRA.2019.8794316. K. Sreenath and V. Kumar, “Dynamics, control and planning for cooperative ma- nipulation of payloads suspended by cables from multiple quadrotor robots,” rn, vol. 1, no. r2, r3, 2013. G. Li, R. Ge, and G. Loianno, “Cooperative Transportation of Cable Suspended Payloads With MAVs Using Monocular Vision and Inertial Sensing,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5316–5323, Jul. 2021, Conference Name: IEEE Robotics and Automation Letters, ISSN: 2377-3766. DOI: 10 . 1109 / LRA . 2021.3065286. M. Gassner, T. Cieslewski, and D. Scaramuzza, “Dynamic collaboration without communication: Vision-based cable-suspended load transport with two quadrotors,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 5196–5202. A. Tagliabue et al., “Collaborative transportation using MAVs via passive force control,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), May 2017, pp. 5766–5773. DOI: 10.1109/ICRA.2017.7989678. G. Loianno et al., “Estimation, Control, and Planning for Aggressive Flight With a Small Quadrotor With a Single Camera and IMU,” IEEE Robotics and Automation Letters, vol. 2, no. 2, pp. 404–411, Apr. 2017, Conference Name: IEEE Robotics and Automation Letters, ISSN: 2377-3766. DOI: 10.1109/LRA.2016.2633290. R. Tron et al., “A Distributed Optimization Framework for Localization and Forma- tion Control: Applications to Vision-Based Measurements,” IEEE Control Systems Magazine, vol. 36, no. 4, pp. 22–44, Aug. 2016, Conference Name: IEEE Control Systems Magazine, ISSN: 1941-000X. DOI: 10.1109/MCS.2016.2558401. Q. Van Tran et al., “Finite-time bearing-only formation control via distributed global orientation estimation,” IEEE Transactions on Control of Network Systems, vol. 6, no. 2, pp. 702–712, 2018. S. Zhao et al., “Finite-time stabilisation of cyclic formations using bearing-only measurements,” International Journal of Control, vol. 87, no. 4, pp. 715–727, 2014. R. Tello, Ryze tello. [Online]. Available: https://www.ryzerobotics. com/zh-tw/tello?from=store-product-page T. Lee, K. Sreenath, and V. Kumar, “Geometric control of cooperating multiple quadrotor UAVs with a suspended payload,” in 52nd IEEE Conference on Decision and Control, 2013, pp. 5510–5515. DOI: 10.1109/CDC.2013.6760757. D. Sanalitro et al., “Full-Pose Manipulation Control of a Cable-Suspended Load With Multiple UAVs Under Uncertainties,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2185–2191, Apr. 2020, Conference Name: IEEE Robotics and Automation Letters, ISSN: 2377-3766. DOI: 10.1109/LRA.2020.2969930. Z. Li et al., “Design and control of a variable aerial cable towed system,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 636–643, 2020. K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation con- trol,” en, Automatica, vol. 53, pp. 424–440, Mar. 2015, ISSN: 0005-1098. DOI: 10. 1016 / j . automatica . 2014 . 10 . 022. [Online]. Available: https : / / www . sciencedirect . com / science / article / pii / S0005109814004038 W. Dong and J. A. Farrell, “Consensus of multiple nonholonomic systems,” in 2008 47th IEEE Conference on Decision and Control, IEEE, 2008, pp. 2270–2275. R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,” IEEE Transactions on automatic con- trol, vol. 49, no. 9, pp. 1520–1533, 2004. W. Ren, R. W. Beard, and T. W. McLain, “Coordination variables and consensus building in multiple vehicle systems,” in Cooperative Control: A Post-Workshop Volume 2003 Block Island Workshop on Cooperative Control, Springer, 2005, pp. 171– 188. B. D. Anderson and C. Yu, “Range-only sensing for formation shape control and easy sensor network localization,” in 2011 Chinese Control and Decision Confer- ence (CCDC), IEEE, 2011, pp. 3310–3315. M. Basiri, A. N. Bishop, and P. Jensfelt, “Distributed control of triangular for- mations with angle-only constraints,” Systems & Control Letters, vol. 59, no. 2, pp. 147–154, 2010. F. Schiano et al., “A rigidity-based decentralized bearing formation controller for groups of quadrotor uavs,” in 2016 IEEE/RSJ International Conference on Intelli- gent Robots and Systems (IROS), IEEE, 2016, pp. 5099–5106. K. Dantu, P. Goyal, and G. S. Sukhatme, “Relative bearing estimation from com- modity radios,” in 2009 IEEE international conference on Robotics and Automa- tion, IEEE, 2009, pp. 3871–3877. S. Scherer et al., “Flying fast and low among obstacles: Methodology and exper- iments,” The International Journal of Robotics Research, vol. 27, no. 5, pp. 549– 574, 2008. J. Saunders et al., “Static and dynamic obstacle avoidance in miniature air vehicles,” in Infotech Aerospace, 2005, p. 6950. M. Basiri et al., “On-board relative bearing estimation for teams of drones using sound,” IEEE Robotics and Automation letters, vol. 1, no. 2, pp. 820–827, 2016. N. Jadhav et al., “Toolbox release: A wifi-based relative bearing sensor for robotics,” arXiv preprint arXiv:2109.12205, 2021. L. Wang and A. Cavallaro, “Acoustic sensing from a multi-rotor drone,” IEEE Sen- sors Journal, vol. 18, no. 11, pp. 4570–4582, 2018. D. Floreano and R. J. Wood, “Science, technology and the future of small au- tonomous drones,” nature, vol. 521, no. 7553, pp. 460–466, 2015. P. Jensfelt et al., “A framework for vision based bearing only 3d slam,” in Pro- ceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE, 2006, pp. 1944–1950. Wiki, Second partial derivative test, en, Page Version ID: 1149168141, Apr. 2023. [Online]. Available: https://en.wikipedia.org/w/index.php? title=Second_partial_derivative_test&oldid=1149168141 Wiki, Lagrange multiplier, en, Page Version ID: 1163559819, Jul. 2023. [Online]. Available: https : / / en . wikipedia . org / w / index . php ? title = Lagrange_multiplier&oldid=1163559819 J. Thomas et al., “Autonomous Flight for Detection, Localization, and Tracking of Moving Targets With a Small Quadrotor,” IEEE Robotics and Automation Let- ters, vol. 2, no. 3, pp. 1762–1769, Jul. 2017, Conference Name: IEEE Robotics and Automation Letters, ISSN: 2377-3766. DOI: 10.1109/LRA.2017.2702198. Wiki, HSL and HSV , en, Page Version ID: 1156207810, May 2023. [Online]. Available: https://en.wikipedia.org/w/index.php?title=HSL_ and_HSV&oldid=1156207810 S. Suzuki et al., “Topological structural analysis of digitized binary images by bor- der following,” Computer vision, graphics, and image processing, vol. 30, no. 1, pp. 32–46, 1985. LG, Lg, zh. [Online]. Available: https://www.lg.com/tw/laptop Opencv, OpenCV: Camera Calibration. [Online]. Available: https:// docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html TOTOLINK, N160USM 150M 迷你 USB 無線網卡| TOTOLINK 台灣, zh-Hant-TW. [Online]. Available: https://www.totolink.tw/products_ view/N160USM D-Link, DWA-171 (C) AC600 MU-MIMO 雙頻無線網卡 | D-Link. [On- line]. Available: https://www.dlinktw.com.tw/home/product?id=1032& hid=18 appie-17, Tello driver. [Online]. Available: http://wiki.ros.org/ tello_driver Stanford Artificial Intelligence Laboratory et al., Robotic operating system, version ROS Melodic Morenia, May 23, 2018. [Online]. Available: https://www.ros.org | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89952 | - |
| dc.description.abstract | 在許多產業中,飛行載具利用繩索來搬運重物已經行之有年。近年來,由多無人飛行載具與多繩索所構成的空中繩索拖曳系統也被提出來共同搬運重物。因為空中繩索拖曳系統具有高承載量與更好的系統擴展性,這樣的系統也吸引了越來越多的研究。
本文特別專注在研究如何只藉由機載感測器來平衡整個空中繩索拖曳系統。與其他的研究比較起來,本文致力於展示空中繩索拖曳系統也可以在不依賴於外部動作捕捉系統就可以進行平衡。 為此,本論文採用了一套藉由機載單目相機來量測純角度訊息的編隊控制方法。挑選基於純角度訊息的方法而不是基於純距離的方法是因為相對角度是可以被簡單的感測器諸如單目相機來量測,而單目相機已經被證實是可以安裝在小型的無人飛行載具上。 更具體的來說,首先,本文會先探討載物平衡問題與編隊控制問題之間的關 係,然後載物平衡問題會被轉化成一個隊形維持問題。接著,在本文中總共有三 套基於純角度訊息的編隊控制方法會被應用來協調多台無人飛行載具的運動以維 持這個理想的隊形。然而這個編隊控制方法會需要這個隊形中的無人機相對姿態 訊息才能運作。因此,論文採用了一套現有的基於單目相機的視覺相對姿態估測 方法來估測此隊形中的相對姿態。另外,另一套自行設計的視野控制器會被應用來確保此視覺相對姿態估測方法的順利運作。 最後,整個方法的可行性與有效性會被大量的實際飛行實驗來做驗證。 | zh_TW |
| dc.description.abstract | For many years, the aerial vehicles have been used to transport payload via cable in many industries. In the recent years, the aerial cable towed system, which is composed of multiple unmanned aerial vehicles and multiple cables, have also been proposed to transport a payload cooperatively. Since the aerial cable towed system possesses the ad- vantages such as higher load capacity and better system scalability, the aerial cable towed system is attracting more and more researches.
In particular, this thesis is focusing on how to stabilize the aerial cable towed system with only onboard sensor. Compared with other researches, this thesis is devoted to show that the aerial cable towed system can be stabilized without relying on external motion capture system. To this extent, a bearing-based formation control method via onboard monocular camera is applied. The reason for choosing the bearing-based method instead of distance- based method lies in the fact that the relative bearing can be measured with simpler sensor such as monocular camera, which is proved to be able to installed onboard the unmanned aerial vehicles. To be more concrete, the relation between the payload stabilization and the formation control is firstly discussed, and the payload stabilization problem is transformed into a formation maintaining problem. After that, in total three different kinds of bearing-based formation controller method are applied to coordinate the motion of multiple drones to maintain the desired formation. It is worth noted that for the bearing-based formation controller to work, the information of the relative pose between drones is needed. In this thesis, an existing relative pose state estimation algorithm based on only monocular camera is applied to estimate such information. In addition, another self designed field of view controller is applied to ensure the feasibility of the vision-based estimation algorithm. Finally, considerable real flight experiments are executed to show the feasibility and effectiveness of the method to stabilize an aerial cable towed system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:48:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:48:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 iii ABSTRACT v CONTENTS vii LIST OF FIGURES xi LIST OF TABLES xix Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Problem Formulation 2 1.3 Contributions 4 1.4 Organization of the Thesis 5 Chapter 2 Background and Literature Survey 6 2.1 Works considering Aerial Cable Towed System 6 2.2 Formation Control Methods 9 2.3 Bearing Estimation Methods 11 Chapter 3 Related Algorithm 13 3.1 Hessian Matrix and Second Partial Derivative Test 13 3.2 Lagrange multiplier 14 3.3 Pinhole Camera Model 15 Chapter 4 System and Method Overview 19 4.1 ACTS Illustration and Variables Definitions 19 4.2 Problem Definition and Method Overview 21 4.3 Relation between Drone Formation and Payload Configuration 24 Chapter 5 Vision-based Relative Pose Estimation 27 5.1 Marker Boundary Detection 27 5.1.1 Color Thresholding 28 5.1.2 Marker Boundary Finding 28 5.1.3 Circular Fitting 30 5.2 Relative Pose Estimation 32 Chapter 6 Field of View and Height Controller 35 6.1 FOV Controller 35 6.2 Height Controller 36 Chapter 7 Bearing based Formation Controller 39 7.1 Pure Bearing Based (PB) 39 7.2 Bearing and Limited Distance Based (BD) 43 7.2.1 Leaderless BD Formation Control 45 7.2.2 Leader BD Formation Control 47 Chapter 8 Experimental Results and Analysis 48 8.1 Experiments Overview 48 8.1.1 Hardware Platform 48 8.1.2 Software Platform 52 8.2 Vision-based Relative Pose Estimation Results 53 8.2.1 Experiment Results 54 8.2.2 Analysis and Summary 60 8.3 FOV and Height controller Results 66 8.3.1 Experiment Setting 67 8.3.2 Experiment Results 69 8.3.3 Analysis and Summary 75 8.4 Bearing based Formation Controller Results 79 8.4.1 Experiment Configurations and Flow 80 8.4.2 Results and Analysis of PB Method 81 8.4.3 Results and Analysis of Leaderless BD Method 89 8.4.4 Results and Analysis of Leader BD Method 98 8.4.5 Leader BD Method for Payload Transport 107 Chapter 9 Conclusion and Future Works 115 9.1 Conclusions 115 9.2 Future Works 116 References 119 Appendix A Proof for Formation Control Stability 126 A.1 Proof for PB Formation Control 126 A.2 Proof for BD Formation Control 128 Appendix B Flight Test Estimation and Controller Results 130 | - |
| dc.language.iso | en | - |
| dc.subject | 基於視覺量測 | zh_TW |
| dc.subject | 無人飛行載具 | zh_TW |
| dc.subject | 編隊控制 | zh_TW |
| dc.subject | 附載 | zh_TW |
| dc.subject | 繩索機構 | zh_TW |
| dc.subject | 四旋翼無人機 | zh_TW |
| dc.subject | 多機器人系統 | zh_TW |
| dc.subject | Quadrotors | en |
| dc.subject | Unmanned Aerial Systems | en |
| dc.subject | Wire Mechanism | en |
| dc.subject | Payloads | en |
| dc.subject | Formation control | en |
| dc.subject | Vision-based measurement | en |
| dc.subject | Multi-Robot Systems | en |
| dc.title | 通過機載單目相機與基於純角度信息編隊控制方法實現空中繩索拖曳系統的平衡 | zh_TW |
| dc.title | Bearing-based Formation Control for Aerial Cable Towed System Stabilization via Onboard Monocular Camera | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李後燦;黃正民;簡忠漢 | zh_TW |
| dc.contributor.oralexamcommittee | Hou-Tsan Lee;Cheng-Ming Huang;Jong-Hann Jean | en |
| dc.subject.keyword | 無人飛行載具,多機器人系統,四旋翼無人機,繩索機構,附載,編隊控制,基於視覺量測, | zh_TW |
| dc.subject.keyword | Unmanned Aerial Systems,Multi-Robot Systems,Quadrotors,Wire Mechanism,Payloads,Formation control,Vision-based measurement, | en |
| dc.relation.page | 159 | - |
| dc.identifier.doi | 10.6342/NTU202302505 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 61.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
