Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89947
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬zh_TW
dc.contributor.advisorYi-Pin Linen
dc.contributor.author鄭明勳zh_TW
dc.contributor.authorMyeong-Hoon Jeongen
dc.date.accessioned2023-09-22T16:47:30Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citationSpeight, J. G. (2017). Industrial Inorganic Chemistry. In Environmental Inorganic Chemistry for Engineers (pp. 111-169). https://doi.org/10.1016/b978-0-12-849891-0.00003-5
Fewtrell, L. (2004). Drinking-Water Nitrate, Methemoglobinemia, and Global Burden of Disease: A Discussion. Environmental Health Perspectives, 112(14), 1371-1374. https://doi.org/10.1289/ehp.7216
Hornung, M. (1999). The Role of Nitrates in the Eutrophication and Acidification of Surface Waters. Managing Risks of Nitrates to Humans and the Environment, 155-174. https://doi.org/10.1533/9781845693206.155
Atangana Njock, P. G., Zhou, A., Yin, Z., & Shen, S.-L. (2023). Integrated risk assessment approach for eutrophication in coastal waters: Case of Baltic Sea. Journal of Cleaner Production, 387. https://doi.org/10.1016/j.jclepro.2022.135673
International Comparison of Water Quality (2020). Retrieved from https://english.water.gov.taipei/cp.aspx?n=ED0C1E259A61491D&s=C17809EB5BA6F5E7
Taiwan Environmental Protection Administration (2022). Retrieved from https://oaout.epa.gov.tw/law/EngLawContent.aspx?lan=E&id=295&KW=nitrate
Min, B., Gao, Q., Yan, Z., Han, X., Hosmer, K., Campbell, A., & Zhu, H. (2021). Powering the Remediation of the Nitrogen Cycle: Progress and Perspectives of Electrochemical Nitrate Reduction. Industrial & Engineering Chemistry Research, 60(41), 14635-14650. https://doi.org/10.1021/acs.iecr.1c03072
SSINA (SPECIALTY STEEL INDUSTRY OF NORTH AMERICA) (2020). Retrieved from https://www.ssina.com/education/fabrication/passivation/
Hocking, M. B. (2005). Ammonia, Nitric Acid and Their Derivatives. Handbook of Chemical Technology and Pollution Control (Third Edition), 321-364. https://doi.org/10.1016/B978-012088796-5/50014-4
Manisalidis, I., Stavropoulou, E., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and Health Impacts of Air Pollution: A Review. Frontiers in Public Health, 8. https://doi.org/10.3389/fpubh.2020.00014
Moloantoa, K. M., Khetsha, Z. P., van Heerden, E., Castillo, J. C., & Cason, E. D. (2022). Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option. Water, 14(5), 799. https://doi.org/10.3390/w14050799
Kurt, E., Koseoglu-Imer, D. Y., Dizge, N., Chellam, S., & Koyuncu, I. (2012). Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dye wash wastewater. Desalination, 302, 24-32. https://doi.org/10.1016/j.desal.2012.05.019
Shelly, Y., Kuk, M., Menashe, O., Zeira, G., Azerrad, S., & Kurzbaum, E. (2021). Nitrate removal from a nitrate-rich reverse osmosis concentrate: Superior efficiency using the bioaugmentation of an Acinetobacter biofilm. Journal of Water Process Engineering, 44, 102425. https://doi.org/10.1016/j.jwpe.2021.102425
Zhang, J., Fan, C., Zhao, M., Wang, Z., Jiang, S., Jin, Z., Bei, K., Zheng, X., Wu, S., Lin, P., & Miu, H. (2023). A comprehensive review on mixotrophic denitrification processes for biological nitrogen removal. Chemosphere, 313, 137474. https://doi.org/10.1016/j.chemosphere.2022.137474
Giddey, S., Badwal, S. P. S., Munnings, C., & Dolan, M. (2017). Ammonia as a Renewable Energy Transportation Media. ACS Sustainable Chemistry & Engineering, 5(11), 10231-10239. https://doi.org/10.1021/acssuschemeng.7b02219
Jin, H., Guo, C., Liu, X., Liu, J., Vasileff, A., Jiao, Y., Zheng, Y., & Qiao, S. Z. (2018). Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem Rev, 118(13), 6337-6408. https://doi.org/10.1021/acs.chemrev.7b00689
Shih, Y.-J., Wu, Z.-L., Lin, C.-Y., Huang, Y.-H., & Huang, C.-P. (2020). Manipulating the crystalline morphology and facet orientation of copper and copper-palladium nanocatalysts supported on stainless steel mesh with the aid of cationic surfactant to improve the electrochemical reduction of nitrate and N2 selectivity. Applied Catalysis B: Environmental, 273. https://doi.org/10.1016/j.apcatb.2020.119053
Shih, Y.-J., Wu, Z.-L., Huang, Y.-H., & Huang, C.-P. (2020). Electrochemical nitrate reduction as affected by the crystal morphology and facet of copper nanoparticles supported on nickel foam electrodes (Cu/Ni). Chemical Engineering Journal, 383. https://doi.org/10.1016/j.cej.2019.123157
Zhang, X., Wang, Y., Liu, C., Yu, Y., Lu, S., & Zhang, B. (2021). Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 403, 126269. https://doi.org/10.1016/j.cej.2020.126269
Su, J. F., Kuan, W.-F., Chen, C.-L., & Huang, C.-P. (2020). Enhancing electrochemical nitrate reduction toward dinitrogen selectivity on Sn-Pd bimetallic electrodes by surface structure design. Applied Catalysis A: General, 606. https://doi.org/10.1016/j.apcata.2020.117809
Cao, Y., Yuan, S., Meng, L., Wang, Y., Hai, Y., Su, S., Ding, W., Liu, Z., Li, X., & Luo, M. (2023). Recent Advances in Electrocatalytic Nitrate Reduction to Ammonia: Mechanism Insight and Catalyst Design. ACS Sustainable Chemistry & Engineering, 11(21), 7965-7985. https://doi.org/10.1021/acssuschemeng.3c01084
Ai, F., & Wang, J. (2022). Theoretical Evaluation of Electrochemical Nitrate Reduction Reaction on Graphdiyne-Supported Transition Metal Single-Atom Catalysts. ACS Omega, 7(35), 31309-31317. https://doi.org/10.1021/acsomega.2c03588
Teng, M., Ye, J., Wan, C., He, G., & Chen, H. (2022). Research Progress on Cu-Based Catalysts for Electrochemical Nitrate Reduction Reaction to Ammonia. Industrial & Engineering Chemistry Research, 61(40), 14731-14746. https://doi.org/10.1021/acs.iecr.2c02495
Duca, M., Koper, M., (2012). Powering denitrification: the perspectives of electrocatalytic nitrate reduction. Energy Environ. Sci., 2012,5, 9726-9742
https://doi.org/10.1039/C2EE23062C
Lu, X., Song, H., Cai, J., & Lu, S. (2021). Recent development of electrochemical nitrate reduction to ammonia: A mini review. Electrochemistry Communications, 129. https://doi.org/10.1016/j.elecom.2021.107094
Wu, Z.-L., & Shih, Y.-J. (2022). Bimetallic palladium-tin nanoclusters, PdSn(2 0 0) and PdSn(1 0 1), templated with cationic surfactant for electrochemical denitrification toward N2 and NH4+ selectivity. Chemical Engineering Journal, 433. https://doi.org/10.1016/j.cej.2021.133852
Shin, H., Jung, S., Bae, S., Lee, W., & Kim, H. (2014). Nitrite reduction mechanism on a Pd surface. Environ Sci Technol, 48(21), 12768-12774. https://doi.org/10.1021/es503772x
Ebbesen, S. D., Mojet, B. L., & Lefferts, L. (2010). Effect of PH on the Nitrite Hydrogenation Mechanism over Pd/Al2O3 and Pt/Al2O3: Details Obtained with ATR-IR Spectroscopy. J. Phys. Chem. C 2011, 115, 1186–1194. https://doi.org/10.1021/jp106521t
Cerrón-Calle, G. A., Fajardo, A. S., Sánchez-Sánchez, C. M., & Garcia-Segura, S. (2022). Highly reactive Cu-Pt bimetallic 3D-electrocatalyst for selective nitrate reduction to ammonia. Applied Catalysis B: Environmental, 302. https://doi.org/10.1016/j.apcatb.2021.120844
Li, L., Yun, Y., Zhang, Y., Huang, Y., & Xu, Z. (2018). Electrolytic reduction of nitrate on copper and its binary composite electrodes. Journal of Alloys and Compounds, 766, 157-160. https://doi.org/10.1016/j.jallcom.2018.07.004
Shen, Z., Liu, D., Peng, G., Ma, Y., Li, J., Shi, J., Peng, J., & Ding, L. (2020). Electrocatalytic reduction of nitrate in water using Cu/Pd modified Ni foam cathode: High nitrate removal efficiency and N2-selectivity. Separation and Purification Technology, 241. https://doi.org/10.1016/j.seppur.2020.116743
Zhang, Y., Zhao, Y., Chen, Z., Wang, L., Wu, P., & Wang, F. (2018). Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N2 selectivity. Electrochimica Acta, 291, 151-160. https://doi.org/10.1016/j.electacta.2018.08.154
Favarini Beltrame, T., Gomes, M. C., Marder, L., Marchesini, F. A., Ulla, M. A., & Moura Bernardes, A. (2020). Use of copper plate electrode and Pd catalyst to the nitrate reduction in an electrochemical dual-chamber cell. Journal of Water Process Engineering, 35, 101189. https://doi.org/10.1016/j.jwpe.2020.101189
Li, J., Gao, J., Feng, T., Zhang, H., Liu, D., Zhang, C., Huang, S., Wang, C., Du, F., Li, C., & Guo, C. (2021). Effect of supporting matrixes on performance of copper catalysts in electrochemical nitrate reduction to ammonia. Journal of Power Sources, 511. https://doi.org/10.1016/j.jpowsour.2021.230463
Wang, S., Lu, A., & Zhong, C. J. (2021). Hydrogen production from water electrolysis: role of catalysts. Nano Converg, 8(1), 4. https://doi.org/10.1186/s40580-021-00254-x
Garcia-Segura, S., Lanzarini-Lopes, M., Hristovski, K., & Westerhoff, P. (2018). Electrocatalytic reduction of nitrate: Fundamentals to full-scale water treatment applications. Applied Catalysis B: Environmental, 236, 546-568. https://doi.org/10.1016/j.apcatb.2018.05.041
Tan, X., Wang, X., Zhou, T., Chen, T., Liu, Y., Ma, C., Guo, H., & Li, B. (2022). Preparation of three dimensional bimetallic Cu-Ni/NiF electrodes for efficient electrochemical removal of nitrate nitrogen. Chemosphere, 295, 133929. https://doi.org/10.1016/j.chemosphere.2022.133929
Liu, G., Yu, J. C., Lu, G. Q., & Cheng, H. M. (2011). Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun (Camb), 47(24), 6763-6783. https://doi.org/10.1039/c1cc10665a
Lee, J. M., Jung, K. K., & Ko, J. S. (2016). Growth Mechanism and Application of Nanostructures Fabricated by a Copper Sulfate Solution Containing Boric Acid. Journal of The Electrochemical Society, 163(8), D407-D413. https://doi.org/10.1149/2.0691608jes
Islam, M. N., & Channon, R. B. (2020). Electrochemical sensors. In Bioengineering Innovative Solutions for Cancer (pp. 47-71). https://doi.org/10.1016/b978-0-12-813886-1.00004-8
Sun, D., Monaghan, P., Brantley, W. A., & Johnston, W. M. (2002). Electrochemical impedance spectroscopy study of high-palladium dental alloys. Part I: behavior at open-circuit potential. J Mater Sci Mater Med, 13(5), 435-442. https://doi.org/10.1023/a:1014719513624
Du, C., Shang, M., Mao, J., & Song, W. (2017). Hierarchical MoP/Ni2P heterostructures on nickel foam for efficient water splitting. Journal of Materials Chemistry A, 5(30), 15940-15949. https://doi.org/10.1039/c7ta03669h
Wei, C., Sun, S., Mandler, D., Wang, X., Qiao, S. Z., & Xu, Z. J. (2019). Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev, 48(9), 2518-2534. https://doi.org/10.1039/c8cs00848e
Connor, P., Schuch, J., Kaiser, B., & Jaegermann, W. (2020). The Determination of Electrochemical Active Surface Area and Specific Capacity Revisited for the System MnOx as an Oxygen Evolution Catalyst. Zeitschrift für Physikalische Chemie, 234(5), 979-994. https://doi.org/10.1515/zpch-2019-1514
Masa, J., Andronescu, C., & Schuhmann, W. (2020). Electrocatalysis as the Nexus for Sustainable Renewable Energy: The Gordian Knot of Activity, Stability, and Selectivity. Angew Chem Int Ed Engl, 59(36), 15298-15312. https://doi.org/10.1002/anie.202007672
Elgrishi, N., Rountree, K. J., McCarthy, B. D., Rountree, E. S., Eisenhart, T. T., & Dempsey, J. L. (2017). A Practical Beginner’s Guide to Cyclic Voltammetry. Journal of Chemical Education, 95(2), 197-206. https://doi.org/10.1021/acs.jchemed.7b00361
Wada, K., Hirata, T., Hosokawa, S., Iwamoto, S., & Inoue, M. (2012). Effect of supports on Pd–Cu bimetallic catalysts for nitrate and nitrite reduction in water. Catalysis Today, 185(1), 81-87. https://doi.org/10.1016/j.cattod.2011.07.021
Iwamoto, M., Akiyama, M., Aihara, K., & Deguchi, T. (2017). Ammonia Synthesis on Wool-Like Au, Pt, Pd, Ag, or Cu Electrode Catalysts in Nonthermal Atmospheric-Pressure Plasma of N2 and H2. ACS Catalysis, 7(10), 6924-6929. https://doi.org/10.1021/acscatal.7b01624
Dima, G. E., de Vooys, A. C. A., & Koper, M. T. M. (2003). Electrocatalytic reduction of nitrate at low concentration on coinage and transition-metal electrodes in acid solutions. Journal of Electroanalytical Chemistry, 554-555, 15-23. https://doi.org/10.1016/s0022-0728(02)01443-2
Duncan, H., & Lasia, A. (2008). Separation of hydrogen adsorption and absorption on Pd thin films. Electrochimica Acta, 53(23), 6845-6850. https://doi.org/10.1016/j.electacta.2007.12.012
Sun, W., Li, Q., Gao, S., & Shang, J. K. (2012). Monometallic Pd/Fe3O4 catalyst for denitrification of water. Applied Catalysis B: Environmental, 125, 1-9. https://doi.org/10.1016/j.apcatb.2012.05.014
Gombas, D., Luo, Y., Brennan, J., Shergill, G., Petran, R., Walsh, R., Hau, H., Khurana, K., Zomorodi, B., Rosen, J., Varley, R., & Deng, K. (2017). Guidelines To Validate Control of Cross-Contamination during Washing of Fresh-Cut Leafy Vegetables. J Food Prot, 80(2), 312-330. https://doi.org/10.4315/0362-028X.JFP-16-258
Mostafa, E., Reinsberg, P., Garcia-Segura, S., & Baltruschat, H. (2018). Chlorine species evolution during electrochlorination on boron-doped diamond anodes: In-situ electrogeneration of Cl2, Cl2O and ClO2. Electrochimica Acta, 281, 831-840. https://doi.org/10.1016/j.electacta.2018.05.099
Ordeig, O., Mas, R., Gonzalo, J., Del Campo, F. J., Muñoz, F. J., & de Haro, C. (2005). Continuous Detection of Hypochlorous Acid/Hypochlorite for Water Quality Monitoring and Control. Electroanalysis, 17(18), 1641-1648. https://doi.org/10.1002/elan.200403194
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89947-
dc.description.abstractnonezh_TW
dc.description.abstractThis study investigated Cu monometallic and PdCu bimetallic electrodes prepared on Ni foam with varying plating times for the reduction of nitrate. SEM images revealed the morphology evolution, with Cu/Ni electrodes exhibiting agglomerated granules transforming into rhombus structures as plating time increased. Increasing plating time led to a higher Cu proportion, an increased Cu(200)/Cu(111) ratio, and larger crystallite sizes for Cu(111) and Cu(200). PdCu/Ni showed a grape-cluster-like surface with accumulated palladium particles on the surface of copper. Electrochemical impedance spectroscopy indicated the improved electron transfer for the Cu/Ni electrodes and the additional plating of Pd showed an even better electron transfer. The double-layer capacitance (Cdl) revealed that the surface area activity increased with extended plating time for Cu from 2.6 to 5.5mF/cm^2. Nitrate reduction experiments on Cu monometallic electrode demonstrated high removal efficiency and achieving 100% nitrate removal at 210 minutes, with NH_4^+ as the main product. Bimetallic electrode; PdCu10min/Ni exhibited enhanced activity than Cu monometallic electrode. Under constant potential, NO_3^- was fully converted to NH_4^+ without N_2 generation in acidic condition. PdCu bimetallic electrode showed consistent performance over multiple cycles but no N_2 was generated. Electrochlorination with the addition of Cl^- enhanced nitrogen gas evolution and resulted in a low ammonia residual.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:47:30Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:47:30Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
Acknowledgments II
ABSTRACT IV
Table of Content VI
List of Figures VIII
List of Tables XI
Chapter 1 Introduction 1
1.1. Background 1
1.2. Research objective 2
Chapter 2 Literature review 3
2.1. The presence of nitrate and nitrite in the environments 3
2.2. Traditional nitrate, nitrite treatments 4
2.3. Electrochemical Nitrate Reduction 4
2.4. Mechanism of Nitrate reduction on Metallic catalyst 7
Chapter 3. Material and methods 10
3.1 Research framework 10
3.2 Materials and chemicals 11
3.3 Electrode preparation 12
3.4 Electrochemical nitrate reduction experiments 15
3.5 Analytical methods 15
Chapter 4 Results and Discussion 19
4.1 Characterization of electrodes 19
4.2 Nitrate reduction performance of different electrodes 31
4.2.1 Nitrate reduction performance under a constant current density 31
4.2.2 Nitrate reduction performance under constant potential 36
4.3 Reusability of Cu electrode 41
4.4 Enhancement of Nitrogen gas evolution using electrochlorination 43
Chapter 5 Conclusions and Recommendations 46
5.1 Conclusions 46
5.2 Recommendations 47
Reference 49
-
dc.language.isoen-
dc.title以鈀銅奈米團簇配合電化學方法選擇性還原生成氨氮與氮氣之研究zh_TW
dc.titleElectrochemical nitrate reduction using palladium-copper nanoclusters toward N2 and NH3 selectivityen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee席行正;潘述元zh_TW
dc.contributor.oralexamcommitteeHsing-Cheng Hsi;Shu-Yuan Panen
dc.subject.keywordnone,zh_TW
dc.subject.keywordElectrochemical nitrate reduction,Copper,Palladium,Electrochlorination,en
dc.relation.page57-
dc.identifier.doi10.6342/NTU202303029-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.41 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved