Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周承復zh_TW
dc.contributor.advisorCheng-Fu Chouen
dc.contributor.author楊晨郁zh_TW
dc.contributor.authorChen-Yu Yangen
dc.date.accessioned2023-09-22T16:43:53Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-10-
dc.identifier.citation[1] Chadha S, Kamenov K, Cieza A. The world report on hearing, 2021. Bull World Health Organ. 2021 Apr 1;99(4):242-242A. doi: 10.2471/BLT.21.285643. PMID: 33953438; PMCID: PMC8085630.
[2] Michels TC, Duffy MT, Rogers DJ. Hearing Loss in Adults: Differential Diagnosis and Treatment. Am Fam Physician. 2019 Jul 15;100(2):98-108. PMID: 31305044.
[3] Walker JJ, Cleveland LM, Davis JL, Seales JS. Audiometry screening and interpretation. Am Fam Physician. 2013 Jan 1;87(1):41-7. PMID: 23317024.
[4] Margolis RH, Saly GL. Toward a standard description of hearing loss. Int J Audiol. 2007 Dec;46(12):746-58. doi: 10.1080/14992020701572652. PMID: 18049964.
[5] Bisgaard N, Vlaming MS, Dahlquist M. Standard audiograms for the IEC 60118-15 measurement procedure. Trends Amplif. 2010 Jun;14(2):113-20. doi: 10.1177/1084713810379609. PMID: 20724358; PMCID: PMC4111352.
[6] Lee CY, Hwang JH, Hou SJ, Liu TC. Using cluster analysis to classify audiogram shapes. Int J Audiol. 2010 Sep;49(9):628-33. doi: 10.3109/14992021003796887. PMID: 20553102.
[7] Crowson, M.G., Lee, J.W., Hamour, A. et al. AutoAudio: Deep Learning for Automatic Audiogram Interpretation. J Med Syst 44, 163 (2020). https://doi.org/10.1007/s10916-020-01627-1
[8] Ankit Rohatgi. Webplotdigitizer: Version 4.4, 2020 [Online]. Available: https://apps.automeris.io/wpd/
[9] Cliche, M., Rosenberg, D., Madeka, D., Yee, C. (2017). Scatteract: Automated Extraction of Data from Scatter Plots. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2017. Lecture Notes in Computer Science(), vol 10534. Springer, Cham. https://doi.org/10.1007/978-3-319-71249-9_9
[10] S. Li, C. Lu, L. Li, J. Duan, X. Fu, and H. Zhou, ‘‘Interpreting audiograms with multi-stage neural networks,’’ Dec. 2021, arXiv:2112.09357.
[11] F. Charih and J. R. Green, "Audiogram Digitization Tool for Audiological Reports," in IEEE Access, vol. 10, pp. 110761-110769, 2022, doi: 10.1109/ACCESS.2022.3215972.
[12] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, K. Michael, J. Fang, C. Wong, Z. Yifu, A. V, D. Montes, Z. Wang, C. Fati, J. Nadar, P. Skalski, A. Hogan, M. Strobel, M. Jain, and L. Mammana. (Aug. 2022). Ultralytics/YOLOv5: V6.2—YOLOv5 Classification Models, Apple M1, Reproducibility, ClearML and Deci.AI Integrations. [Online]. Available: https://doi.org/10.5281/zenodo.7002879
[13] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dollár, ‘‘Microsoft COCO: Common objects in context,’’ 2014, arXiv:1405.0312.
[14] R. O. Duda and R. E. Hart, ‘‘Use of the Hough transformation to detect lines and curves in pictures,’’ Commun. ACM, vol. 15, no. 1, pp. 11–15, Jan. 1972.
[15] Google. (Nov. 2020). Tesseract-OCR/Tesseract. [Online]. Available: https://github.com/tesseract-ocr/tesseract
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89932-
dc.description.abstract  根據世界衛生組織統計,在2050年,世界將有1/4的人口經歷聽力損失問題。無論造成聽力損失的原因為何,我們都需要進行聽力測試以記錄聽力損失程度、追蹤是否惡化,並給予適當的治療。
  聽力圖的記錄格式對人類來說是方便閱讀的,但隨著機器學習、深度學習成為流行且有力的研究方法,若我們想要以機器來研究聽力問題,我們就需要將聽力圖由人類可讀的圖表形式,轉換為機器可讀的數字化形式。
  此外,聽力圖數位化也能輔佐臨床工作者。在進行聽力檢查時,有許多不同的參數需要考慮,包括嚴重程度、對稱性、圖形形狀、聽損種類等。這些參數有著多種不同的定義,並且可能隨時進行調整。聽力圖數位化在臨床上有著幾個優勢,包括具有可核對的特性,能夠依據地區情況進行因地制宜的分析,並且相較圖片形式更能夠節省儲存空間。聽力圖數位化有助於協助臨床工作者維持其現有的作業流程,同時也能夠贏得他們的信任。然而,需要明確指出的是,這種方法並非旨在取代臨床工作者的判讀工作,而是成為其最佳的輔助角色,協助他們更準確地進行診斷工作。
  本論文提出一個多階段的模型,結合YOLOv5與光學字元辨識,達到迅速且準確率達88%的端到端聽力圖數位化結果,希冀能成為日後聽力學相能研究的助力。
zh_TW
dc.description.abstractAccording to the World Health Organization statistics, by 2050, one in four people worldwide will experience hearing loss. Regardless of the cause of hearing loss, it is important to conduct hearing tests to assess the degree of hearing loss, monitor any deterioration, and provide appropriate treatment.
While the recording format of audiograms is convenient for human readability, with machine learning and deep learning becoming popular and beneficial research approaches, if we want to study hearing issues using machines, we need to transform audiograms from human-readable chart formats into machine-readable digital formats.
Furthermore, audiogram digitization can provide valuable assistance to clinical practitioners. When conducting auditory assessments, numerous parameters must be considered, including severity, symmetry, graphical shape, types of hearing loss, and more. These parameters come with various definitions that may be subject to adjustments over time. Audiogram digitization offers several advantages within the clinical realm. It possesses an auditability feature, allowing tailored analyses based on regional conditions, and notably, it is more space-efficient compared to image formats. This digitization process contributes to aiding clinical professionals in maintaining their existing workflow while also earning their trust.
However, it is important to emphasize that this approach is not intended to replace the interpretative tasks of clinical professionals. Instead, it is designed to serve as an optimal supplementary role, assisting them in conducting diagnoses with enhanced accuracy.
In this paper, we propose a multi-stage model that combines YOLOv5 and optical character recognition(OCR) to achieve rapid and accurate end-to-end digitization of audiograms, with an accuracy rate of 88%. We hope that this model can serve as a valuable tool for future research in audiology.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:43:53Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:43:53Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committ i
Acknowledgements ii
摘要 iii
Abstract iv
Contents vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
Chapter 2 Related Work 5
2.1 Audiogram classification 5
2.2 Audiogram digitization 8
Chapter 3 Method 11
3.1 Audiogram detection 13
3.2 Color separation 16
3.3 Symbol detection 21
3.4 Axis Label Recognition 23
3.5 Mapping Symbols from Pixel Domain to Value Domain 28
Chapter 4 Results 31
4.1 Performance of audiogram detection and symbol detection 31
4.2 Performance of matching symbol to frequency 36
4.3 End-to-end performance 38
4.4 Execution efficiency 41
4.5 Future work 42
Chapter 5 Conclusion 44
Reference 46
-
dc.language.isoen-
dc.title基於機器學習的純音聽力測試聽力圖解譯zh_TW
dc.titlePTA Audiogram Interpretation for Audiological Report Based On Machine Learning Approachen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee吳振吉;蔡子傑;葉士青;吳曉光zh_TW
dc.contributor.oralexamcommitteeChen-Chi Wu;Tzu-Chieh Tsai;Shih-Ching Yeh;Hsiao-Kuang Wuen
dc.subject.keyword機器學習,YOLOv5,光學字元識別,純音聽力測試,聲場測試,聽力圖,zh_TW
dc.subject.keywordMachine learning,YOLOv5,Optical character recognition(OCR),Pure-tone audiometry(PTA),Sound field testing,Audiograms,en
dc.relation.page48-
dc.identifier.doi10.6342/NTU202303589-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
3.6 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved