請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89926完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 許聿廷 | zh_TW |
| dc.contributor.advisor | Yu-Ting Hsu | en |
| dc.contributor.author | 簡捷 | zh_TW |
| dc.contributor.author | Chieh Chien | en |
| dc.date.accessioned | 2023-09-22T16:42:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-12 | - |
| dc.identifier.citation | 1. 水敬心(2020)。YouBike 2.0於臺灣大學校總區試辦期間營運績效評估與需求分析案
2. 臺灣大學校園規劃小組(2020)。2020年校園規劃報告書。https://cpo.ntu.edu.tw/News_Photo_Content_n_166500_s_206580.html 3. Abrahamsson, T. (1998). Estimation of origin-destination matrices using traffic counts-a literature survey. 4. Akar, G., & Clifton, K. J. (2009). Influence of individual perceptions and bicycle infrastructure on decision to bike. Transportation research record, 2140(1), 165-172. 5. Ashok, K., & Ben-Akiva, M. E. (2002). Estimation and prediction of time-dependent origin-destination flows with a stochastic mapping to path flows and link flows. Transportation science, 36(2), 184-198. 6. Bachand-Marleau, J., Lee, B. H., & El-Geneidy, A. M. (2012). Better understanding of factors influencing likelihood of using shared bicycle systems and frequency of use. Transportation Research Record, 2314(1), 66-71. 7. Bell, M. G. (1991). The estimation of origin-destination matrices by constrained generalised least squares. Transportation Research Part B: Methodological, 25(1), 13-22. 8. Bianco, L., Confessore, G., & Reverberi, P. (2001). A network based model for traffic sensor location with implications on O/D matrix estimates. Transportation Science, 35(1), 50-60. 9. Buehler, R., & Pucher, J. (2012). Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes. Transportation, 39, 409-432. 10. Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data: a generalized least squares estimator. Transportation Research Part B: Methodological, 18(4-5), 289-299. 11. Cascetta, E., & Nguyen, S. (1988). A unified framework for estimating or updating origin/destination matrices from traffic counts. Transportation Research Part B: Methodological, 22(6), 437-455. 12. Chen, L., Zhang, D., Pan, G., Ma, X., Yang, D., Kushlev, K., ... & Li, S. (2015, September). Bike sharing station placement leveraging heterogeneous urban open data. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing (pp. 571-575). 13. Ding, H., Sze, N. N., Li, H., & Guo, Y. (2020). Roles of infrastructure and land use in bicycle crash exposure and frequency: A case study using Greater London bike sharing data. Accident Analysis & Prevention, 144, 105652. 14. Ehlert, A., Bell, M. G., & Grosso, S. (2006). The optimisation of traffic count locations in road networks. Transportation Research Part B: Methodological, 40(6), 460-479.. 15. El-Assi, W., Salah Mahmoud, M., & Nurul Habib, K. (2017). Effects of built environment and weather on bike sharing demand: a station level analysis of commercial bike sharing in Toronto. Transportation, 44, 589-613. 16. Fishman, E., Washington, S., & Haworth, N. (2012). Barriers and facilitators to public bicycle scheme use: A qualitative approach. Transportation research part F: traffic psychology and behaviour, 15(6), 686-698. 17. Fisk, C. S. (1988). On combining maximum entropy trip matrix estimation with user optimal assignment. Transportation Research Part B: Methodological, 22(1), 69-73. 18. Fisk, C. S., & Boyce, D. E. (1983). A note on trip matrix estimation from link traffic count data. Transportation Research Part B: Methodological, 17(3), 245-250. 19. Gan, L., Yang, H., & Wong, S. C. (2005). Traffic counting location and error bound in origin-destination matrix estimation problems. Journal of transportation engineering, 131(7), 524-534. 20. Heinen, E., Maat, K., & Van Wee, B. (2011). The role of attitudes toward characteristics of bicycle commuting on the choice to cycle to work over various distances. Transportation research part D: transport and environment, 16(2), 102-109. 21. Hu, S. R., Peeta, S., & Chu, C. H. (2009). Identification of vehicle sensor locations for link-based network traffic applications. Transportation Research Part B: Methodological, 43(8-9), 873-894. 22. Hua, M., Chen, X., Zheng, S., Cheng, L., & Chen, J. (2020). Estimating the parking demand of free-floating bike sharing: A journey-data-based study of Nanjing, China. Journal of Cleaner Production, 244, 118764. 23. Jäppinen, S., Toivonen, T., & Salonen, M. (2013). Modelling the potential effect of shared bicycles on public transport travel times in Greater Helsinki: An open data approach. Applied geography, 43, 13-24. 24. Jensen, P., Rouquier, J. B., Ovtracht, N., & Robardet, C. (2010). Characterizing the speed and paths of shared bicycle use in Lyon. Transportation research part D: transport and environment, 15(8), 522-524. 25. Keijer, M. J. N., & Rietveld, P. (2000). How do people get to the railway station? The Dutch experience. Transportation planning and technology, 23(3), 215-235. 26. Kutela, B., & Teng, H. (2019). The influence of campus characteristics, temporal factors, and weather events on campuses-related daily bike-share trips. Journal of Transport Geography, 78, 160-169. 27. López-Valpuesta, L., & Sánchez-Braza, A. (2016). Going a long way? On your bike! Comparing the distances for which public bicycle sharing system and private bicycles are used. Applied Geography, 71, 95-105. 28. Maher, M. J. (1983). Inferences on trip matrices from observations on link volumes: a Bayesian statistical approach. Transportation Research Part B: Methodological, 17(6), 435-447. 29. Martens, K. (2004). The bicycle as a feedering mode: experiences from three European countries. Transportation Research Part D: Transport and Environment, 9(4), 281-294. 30. Method of Successive Averages 31. Millward, H., Spinney, J., & Scott, D. (2013). Active-transport walking behavior: destinations, durations, distances. Journal of Transport Geography, 28, 101-110 32. Nihan, N. L., & Davis, G. A. (1989). Application of prediction-error minimization and maximum likelihood to estimate intersection OD matrices from traffic counts. Transportation Science, 23(2), 77-90. 33. Park, C., & Sohn, S. Y. (2017). An optimization approach for the placement of bicycle-sharing stations to reduce short car trips: An application to the city of Seoul. Transportation Research Part A: Policy and Practice, 105, 154-166. 34. Radzimski, A., & Dzięcielski, M. (2021). Exploring the relationship between bike-sharing and public transport in Poznań, Poland. Transportation research part A: policy and practice, 145, 189-202. 35. Reiss, S., & Bogenberger, K. (2017). A Relocation Strategy for Munich's Bike Sharing System: Combining an operator-based and a user-based Scheme. Transportation Research Procedia, 22, 105-114. 36. Rietveld, P. (2000). The accessibility of railway stations: the role of the bicycle in The Netherlands. Transportation Research Part D: Transport and Environment, 5(1), 71-75. 37. Rybarczyk, G., & Gallagher, L. (2014). Measuring the potential for bicycling and walking at a metropolitan commuter university. Journal of Transport Geography, 39, 1-10. 38. Shaheen, S. A., Zhang, H., Martin, E., & Guzman, S. (2011). China's Hangzhou public bicycle: understanding early adoption and behavioral response to bikesharing. Transportation Research Record, 2247(1), 33-41. 39. Spiess, H. (1987). A maximum likelihood model for estimating origin-destination matrices. Transportation Research Part B: Methodological, 21(5), 395-412. 40. Tang, Y., Pan, H., & Fei, Y. (2017). Research on users’ frequency of ride in Shanghai minhang bike-sharing system. Transportation research procedia, 25, 4979-4987. 41. Tran, T. D., Ovtracht, N., & d’Arcier, B. F. (2015). Modeling bike sharing system using built environment factors. Procedia Cirp, 30, 293-298. 42. Van Zuylen, H. J., & Willumsen, L. G. (1980). The most likely trip matrix estimated from traffic counts. Transportation Research Part B: Methodological, 14(3), 281-293. 43. Wang, J., Tsai, C. H., & Lin, P. C. (2016). Applying spatial-temporal analysis and retail location theory to public bikes site selection in Taipei. Transportation Research Part A: Policy and Practice, 94, 45-61. 44. Wang, X., Lindsey, G., Schoner, J. E., & Harrison, A. (2016). Modeling bike share station activity: Effects of nearby businesses and jobs on trips to and from stations. Journal of Urban Planning and Development, 142(1), 04015001. 45. Yang, H., & Zhou, J. (1998). Optimal traffic counting locations for origin–destination matrix estimation. Transportation Research Part B: Methodological, 32(2), 109-126. 46. Yang, M., Li, D., Wang, W., Zhao, J., & Chen, X. (2013). Modeling gender-based differences in mode choice considering time-use pattern: analysis of bicycle, public transit, and car use in suzhou, China. Advances in Mechanical Engineering, 5, 706918. 47. Ye, M., Chen, Y., Yang, G., Wang, B., & Hu, Q. (2020). Mixed logit models for travelers’ mode shifting considering bike-sharing. Sustainability, 12(5), 2081. 48. Yim, P. K., & Lam, W. H. (1998). Evaluation of count location selection methods for estimation of OD matrices. Journal of transportation engineering, 124(4), 376-383. 49. Zhang, D., Xu, X., & Yang, X. (2015). User satisfaction and its impacts on the use of a public bicycle system: Empirical studies from Hangzhou, China. Transportation research record, 2512(1), 56-65. 50. Zhang, Y., Li, Y., Yang, X., Liu, Q., & Li, C. (2013). Built environment and household electric bike ownership: insights from Zhongshan metropolitan area, China. Transportation research record, 2387(1), 102-111. 51. Zhou, X., & Mahmassani, H. S. (2007). A structural state space model for real-time traffic origin–destination demand estimation and prediction in a day-to-day learning framework. Transportation Research Part B: Methodological, 41(8), 823-840. 52. Zhou, Y., Tang, S., Zhao, M., Lam, W. H., Sze, T. N., & Chen, Y. (2018, November). Modeling the Travel Mode Choice for Outpatient Trips Before and After Bike-Sharing in Beijing. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 242-247). IEEE. 53. Zhu, R., Zhang, X., Kondor, D., Santi, P., & Ratti, C. (2020). Understanding spatio-temporal heterogeneity of bike-sharing and scooter-sharing mobility. Computers, Environment and Urban Systems, 81, 101483. 54. Zou, Z. Y., Lei, L., Chen, Q. Y., Wang, Y. Q., Cai, C., Li, W. Q., ... & Wang, Y. (2019). Prevalence and dissemination risk of antimicrobial-resistant Enterobacteriaceae from shared bikes in Beijing, China. Environment international, 132, 105119.. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89926 | - |
| dc.description.abstract | 近年來,國立臺灣大學校園內私有單車的數量持續增加,引發了許多問題,例如處處可見的停車亂象、學生離校後棄置的單車,以及尖峰時段的車流堵塞。學校采取了一些措施,例如引進YouBike 2.0為教職員和學生提供另一種選擇,只是過多的私有單車數依舊是造成問題的根本原因,不只造成教職員生困擾,也增加拖吊處理的金錢成本與衍生的碳排放。若要能使臺大校園的交通環境永續發展,則減少私有單車數必定是不可避免。但在探討臺大校園中合理的單車數量是多少前,現今校園內以私有單車為代步工具有多少占比?又有多少人會選擇共享單車?此外,他們的起訖矩陣,旅次特性又是如何?這些都是需要先釐清的重要先備知識。
本研究透過建立校園路網模型,以及交通量指派後的比例矩陣結合起訖矩陣,再以實際觀測流量反推實際的起訖矩陣流量分布,藉以根據旅次特性分析校園內的行人、私有單車以及共享單車的占比,以及隨著旅次長度變化,各運具的占比變化,進而推估共享單車可能的替代率。 | zh_TW |
| dc.description.abstract | In recent years, the increasing number of private bikes on the campus of National Taiwan University (NTU) has raised various issues, such as chaotic parking situations, abandoned bikes by students after leaving the campus, and traffic congestion during peak hours. The university has taken some measures, such as introducing YouBike 2.0 as an alternative for faculty and students. However, the excessive number of private bikes remains the fundamental cause of these problems, causing inconvenience to faculty and students, increasing the financial cost of towing, and resulting in carbon emissions. To achieve sustainable development in the transportation environment on the NTU campus, reducing the number of private bikes is inevitable. However, before discussing the reasonable number of bikes on the NTU campus, it is crucial to understand the current proportion of private bikes used as means of transportation, as well as the usage of bike-sharing systems. Additionally, their origin-destination matrix and trip characteristics need to be clarified, as these are important preliminary knowledge.
This research establishes a campus road network model and combines the proportion matrix resulting from traffic assignment with the origin-destination matrix to infer the actual flow distribution based on observed traffic flows. By analyzing trip characteristics, the proportion of pedestrians, private bikes, and bike sharing system on the campus can be determined. Moreover, the variations in the proportion of each mode of transportation with changes in trip lengths can be evaluated, leading to an estimation of the potential substitution rate for bike sharing system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:42:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:42:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
致謝 I 中文摘要 II 目錄 IV 圖目錄 V 表目錄 VI 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目標 7 1.3 研究範圍以及資料來源 7 1.4 論文架構 7 第二章 文獻回顧 9 2.1單車旅次特性與旅次長度相關研究 9 2.2校園環境中的單車系統研究 10 2.3基礎鏈結演算法以及起訖矩陣推估相關研究 11 第三章 研究方法 14 3.1 研究問題陳述 14 3.2 研究流程 14 3.3 模型建構及驗證 16 3.4 起訖矩陣推估 21 3.5 起訖矩陣迭代求解 23 第四章 案例研究與分析 25 4.1 研究案例概況 25 4.2 案例研究模型建立 32 4.3起訖矩陣推估 36 4.4推估結果分析 37 4.5案例研究小結與討論 51 第五章 結論與建議 54 5.1 研究結論 54 5.2 未來建議 55 參考文獻 56 圖目錄 圖1. 1平日臺大校園內普通教學樓旁過於飽和的單車停車區 2 圖1. 2平日臺大校園內鄰近捷運公館站出口旁停放雜亂的單車停車區 3 圖1. 3被大量停放於水源單車拖吊場的廢棄單車 3 圖1. 4臺大彩虹專案分區示意圖 4 圖1. 5臺大彩虹專案於大一女舍旁單車停車區實際實行 4 圖1. 6臺大校總區周遭YOUBIKE 2.0 站點分布地圖 5 圖1. 7臺大校總區內YOUBIKE 2.0 小福樓站點 5 圖1. 8論文架構圖 8 圖3. 1 研究流程圖 16 圖3. 2範例路網模型 18 圖4. 1臺灣大學校總區地圖 27 圖4. 2臺灣大學周邊土地使用現況 28 圖4. 3臺大校總區土地使用分區圖。 29 圖4. 4校總區共同教學使用空間位置圖 29 圖4. 5校總區學生宿舍分布圖 30 圖4. 6臺大校總區出入口與進出車輛動線示意圖 31 圖4. 7臺大校總區地下及周邊汽車停車空間圖 32 圖4. 8臺大校總區機車停車空間圖 32 圖4. 9臺大校總區單車停車空間圖 33 圖4. 10臺大校總區路網模型圖 35 圖4. 11臺大校園路網模型各旅次長度區間與總體運具占比關係圖 49 表目錄 表3. 1範例路網之路徑-鏈結關聯矩陣 20 表3. 2列簡梯形式矩陣化後的範例路網之路徑-鏈結關聯矩陣 21 表4. 1臺大校園路網模型各起訖點屬性組成 35 表4. 2臺大校園路網模型總體起訖矩陣產生/吸引分布旅次數 37 表4. 3臺大校園路網模型總體起訖矩陣產生/吸引分布旅占比 38 表4. 4臺大校園路網模型早上時段起訖矩陣產生/吸引分布旅次數 39 表4. 5臺大校園路網模型早上時段起訖矩陣產生/吸引分布占比 40 表4. 6臺大校園路網模型早上時段起訖矩陣產生/吸引各運具占比 40 表4. 7臺大校園路網模型中午時段起訖矩陣產生/吸引分布旅次數 42 表4. 8臺大校園路網模型中午時段起訖矩陣產生/吸引分布占比 42 表4. 9臺大校園路網模型中午時段起訖矩陣產生/吸引各運具占比 43 表4. 10臺大校園路網模型傍晚時段起訖矩陣產生/吸引分布旅次數 44 表4. 11臺大校園路網模型傍晚時段起訖矩陣產生/吸引分布占比 45 表4. 12臺大校園路網模型傍晚時段起訖矩陣產生/吸引各運具占比 45 表4. 13臺大校園路網模型旅次長度區間與總體運具旅次數關係 47 表4. 14臺大校園路網模型各旅次長度區間與總體運具占比關係 47 表4. 15臺大校園路網模型各運具與旅次長度區間占比關係 47 表4. 16臺大校園路網模型旅次長度區間與各時段運具旅次數關係 48 表4. 17臺大校園路網模型各時段運具占比與旅次長度區間關係 49 表4. 18臺大校園路網模型各時段旅次長度區間與運具占比關係 49 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 校園運輸規劃 | zh_TW |
| dc.subject | 起訖矩陣推估 | zh_TW |
| dc.subject | 交通量指派 | zh_TW |
| dc.subject | 共享單車替代率 | zh_TW |
| dc.subject | Origin-Destination Matrix Estimation | en |
| dc.subject | Bike Sharing System Substitution Rate | en |
| dc.subject | Campus Transportation Planning | en |
| dc.subject | Traffic Assignment | en |
| dc.title | 單車起訖矩陣推估與旅次特性分析:以臺大校園為例 | zh_TW |
| dc.title | Bicycle Origin-Destination Matrix Estimation and Travel Characteristics Analysis: The Case of NTU Campus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 謝依芸;水敬心 | zh_TW |
| dc.contributor.oralexamcommittee | I-Yun Hsieh;Chin-Sum Shui | en |
| dc.subject.keyword | 起訖矩陣推估,交通量指派,校園運輸規劃,共享單車替代率, | zh_TW |
| dc.subject.keyword | Origin-Destination Matrix Estimation,Traffic Assignment,Campus Transportation Planning,Bike Sharing System Substitution Rate, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU202304075 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.37 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
