請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89923完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周中哲 | zh_TW |
| dc.contributor.advisor | Chung-Che Chou | en |
| dc.contributor.author | 陳建明 | zh_TW |
| dc.contributor.author | Jian-Ming Chen | en |
| dc.date.accessioned | 2023-09-22T16:41:41Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-10 | - |
| dc.identifier.citation | 1. Chou C-C and Chen Y-C. (2012). “Development and seismic performance of steel dual-core self-centering braces.” The 15th World Conference on Earthquake Engineering, Lisbon, Portugal. (Paper No. 1648)
2. Chou C-C and Chen Y-C. (2012). “Development of steel dual-core self-centering braces with E-Glass FRP composite tendons: cyclic tests and finite element analyses.” The International Workshop on Advances in Seismic Experiments and Computations, Nagoya, Japan. 3. Chou C-C and Chen Y-C. (2013). “Development of steel dual-core self-centering braces: quasi-static cyclic tests and finite element analyses.” Earthquake Spectra. (Available online September 6, 2013). 4. Chou C-C, Sun P-F, and Chen Y-C. (2014). “Structural Testing of Dual-Core Self-Centering Braces with FRP Bars and FRP Wide-Flange Beams.” Proceedings of American Society for Composites 29th Technical Conference, 16th US-Japan Conference on Composite Materials and ASTM D30 meeting, San Diego, CA, USA. 5. Chou C-C, Chung P-T, and Cheng Y-T. (2014). “Seismic tests of large-scale energy dissipating braces: dual-core self-centering brace and sandwiched buckling-restrained brace.” The 5th Asia Conference on Earthquake Earthquake Engineering, October 16-18, Taipei, Taiwan. 6. Chou C-C and Chung P-T. (2014). “Development of cross-anchored dual-core self-centering braces for seismic resistance.” J. Constructional Steel Research, 101, 19-32. 7. Chou C-C, Chung P-T, Cheng Y-T. (2016). “Experimental Evaluation of Large-Scale Dual-Core Self-Centering Braces and Sandwiched Buckling-Restrained Braces.” Engineering Structures, 111, 435-450. 8. Chou C-C, Wu T-H, Beato Ovall R.A., Chung P-T, and Chen Y-C. (2016). “Seismic Design and Tests of a Full-Scale One-Story One-Bay Steel Frame with a Dual-Core Self-Centering Brace,” Engineering Structures, 111,435-450. 9. Chou C-C, Hsiao C-H, Chen Z-B, Chung P-T, Pham D-H. (2019). “Seismic Loading Tests of Full-scale Two-story Steel Building Frames with Self-centering Braces and Buckling-restrained Braces.” Thin-Walled Structures, 140, 168-181. 10. Soda S. (2004). “Origin-restoring dampers for seismic response control of building structures.” Proc., 10th JSSI Symp. on Performance of Response Controlled Buildings, Yokohama, Japan, Paper No. 56. 11. Xu L-H, Fan X-W, Li Z-X. (2016). “Cyclic behavior and failure mechanism of self-centering energy dissipation braces with pre-pressed combination disc springs.” Earthquake Eng Struct Dyn, 2016;46(7):1065–80. 12. Xu L-H, Fan X-W, Li Z-X. (2016). “Development and experimental verification of a pre-pressed spring self-centering energy dissipation brace.” Engineering Structures, 127 49-61. 13. Almen JO, Laszlo A. (1936). “The uniform-section disk spring.” Transactions of ASME. 58(4):305–314. 14. Schnorr Corporation., Handbook for Disc Springs, 2003. 15. DIN 2093 (2013), Tellerfedern, Qualitätsanforderungen, Maße, Beuth Verlag GmbH, Berlin 2013-02 16. Ozaki, Shingo & Tsuda, K. & Tominaga, J.. (2012). “Analyses of static and dynamic behavior of coned disk springs: Effects of friction boundaries.” Thin-Walled Structures, 59. 132-143. 10.1016/j.tws.2012.06.001. 17. Zhang, Z., Fleischman, R. B., Restrepo, J. I., Guerrini, G., Nema, A., Zhang, D., Ulina, S., Tsampras, G., Sause, R., (2018). “Shake‐table test performance of an inertial force‐limiting floor anchorage system.” Earthquake Eng Struct Dyn, 47(10), 1987-2011. 18. Chou, C. C., Hwang, L. Y. (2023) “Development of Stiffness Adjustable Self-Centering Brace with Tendons and Disc Springs.” Thin-Walled Structures (Under review) 19. 周中哲、陳映全(2012)「鋼造雙核心自復位斜撐發展與耐震實驗:應用複合纖維材料棒為預力構件」,土木工程學報,第45卷第2期,第202-206頁。 20. 周中哲、陳映全(2012)「預力雙核心自復位斜撐發展與耐震實驗」,結構工程,第27卷第3期,第108-126頁。 21. 周中哲、鍾秉庭(2014)「交錨型雙核心自復位斜撐發展驗證:耐震試驗及有限元素分析」,結構工程,第29卷第2期,第80-103頁。 22. 周中哲、鍾秉庭(2014)「新型鋼造雙核心自復位斜撐發展及耐震試驗」,鋼結構工程,第53期,第73-91頁。 23. 周中哲、吳宗翰、Alexis Rafael Ovalle Beato、鍾秉庭、陳澤邦、陳映全(2015)「創新鋼造雙核心自復位斜撐抗震構架於臺灣的發展:由斜撐至實尺寸構架實驗驗證」,鋼結構工程,第55期,第54-76頁。 24. 周中哲、蕭佳宏、陳澤邦、 鍾秉庭、Pham Dinh-Hai (2017)「全尺寸二層樓雙核心自復位斜撐構架與夾型挫屈束制斜撐構架之耐震試驗與非線性動力歷時分析」,結構工程,第32卷第2期,第35-64頁。 25. 陳映全(2011)「雙核心自復位消能斜撐之發展與驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 26. 鍾秉庭(2012)「交錨型雙核心自復位斜撐及核心更換型挫屈束制斜撐之耐震行為」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 27. 吳宗翰(2014)「新型鋼造雙核心自復位斜撐構架設計與耐震試驗行為」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 28. 歐陽烈(2014)「新型鋼造一層樓雙核心自復位斜撐構架實驗與分析:含梁柱構架及斜撐軸向效應影響之接合板設計」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 29. 陳澤邦(2015)「鋼造實尺寸二層樓雙核心自復位斜撐構架耐震試驗與有限元素分析」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 30. 蕭佳宏(2015)「雙核心自復位斜撐與夾型挫屈束制斜撐對構架影響:耐震實驗與動力分析」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 31. 萬家汶(2018)「含消能鋼筋之自復位斜撐發展及試驗驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 32. 洪經富(2019)「應用於鋼筋混凝土建築物之純壓雙核心自復位斜撐發展與驗證」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 33. 覃文康(2022)「實尺寸兩層樓夾型挫屈束制斜撐鋼構架在變軸力下之中等韌性構件箱型鋼柱耐震實驗」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 34. 林皇佐(2023)「實尺寸三層樓鋼構架二元系統於2022池上地震下之振動台試驗:中等韌性箱型鋼柱、全鋼型夾型挫屈束制斜撐及滑動樓版之耐震性能」,碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89923 | - |
| dc.description.abstract | 根據以往的研究顯示自復位斜撐構架擁有較低的殘餘變形,遠小於挫屈束制斜撐構架,然而自復位斜撐構架具有較高的初始彈性勁度,導致輸入的地震力增加。為了解決此問題,本研究的重點之一是設計可變初始彈性勁度並增加軸向變形能力的自復位斜撐,其中使用碟型彈簧以降低自復位斜撐的初始彈性勁度。第二個研究重點是基於林皇佐(2023)的三層樓鋼造結構振動台實驗的子構架試驗,該試驗中使用了滑動樓板系統,其中使用水平夾型挫屈束制支撐將樓板與構架連接,以減低結構物受地震力之下的樓板慣性力。本研究將探討此滑動樓板系統於子構架中的行為,並運用試驗結果於三層樓振動台試驗中。
本研究有兩個試驗項目,第一個項目是含碟型彈簧與消能鋼筋的自復位斜撐一層樓構架試驗,該試驗探討了可變勁度之自復位斜撐構架的耐震行為,並比較自復位斜撐構架和夾型挫屈束制斜撐構架的反應。第二個項目是三層樓振動台中的一層樓滑動樓板子構架試驗,用於驗證新型結構系統的可行性,測試新的消能機制於鋼構架系統中的性能,並優化消能裝置及其接合方式之設計。 實驗結果顯示可變勁度之自復位斜撐構架在標準載重試驗下具有良好的自復位能力和對稱的遲滯消能行為,並且斜撐行為與預測模型相符,顯示使用碟型彈簧可以有效降低其初始彈性勁度。而於滑動樓板試驗結果顯示,水平夾型挫屈束制支撐顯示良好的消能能力,並且於試驗後水平消能構件接頭及構架皆維持彈性,並運用此設計於三層樓振動台試驗中。 | zh_TW |
| dc.description.abstract | Based on previous research, self-centering braces (SCB) have shown lower residual deformation compared to buckling-restrained braces (BRB). However, SCB has higher initial elastic stiffness, leading to increased seismic forces. To address this, the study aims to design a SCB with adjustable initial elastic stiffness and increased axial deformation capacity using disc springs. The second research focus is the substructure testing based on the three-story steel frame shaking table experiment conducted by Chou and Lin (2023). This experiment utilizes a sliding slab system, connecting the slab and the frame using a horizontal BRB to reduce the inertia force of the slab under seismic forces. The study aims to investigate the behavior of this sliding slab system in the substructure and apply the test results to the three-story shaking table experiment.
There are two test projects in this study. The first project is a one-story frame test with SCB incorporating disc springs and energy dissipating rebars, comparing the seismic response of SCB with disc springs to BRB. The second project is a one-story sliding slab substructure in a three-story frame, aiming to verify the feasibility of the new structural system, test the performance of the new energy dissipation mechanism, and optimize the design of the energy dissipation devices and their connections. The experimental results show that the one-story SCB frame exhibits good self-centering ability and symmetric hysteretic energy dissipation behavior under standard loading tests, aligning with predicted models and confirming the effective reduction of initial elastic stiffness using disc springs. The sliding slab test demonstrates the good energy dissipation capacity of horizontal BRBs, with elastic connections between the horizontal energy dissipation device and the frame. This design concept has been applied to the three-story shaking table test. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:41:41Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:41:41Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 摘要 iii ABSTRACT iv 目錄 v 表目錄 viii 圖目錄 x 照片目錄 xiv 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究動機 5 1.4 研究目的 5 1.5 研究內容 6 第二章 構架試體之分析與設計 7 2.1 自復位斜撐之力學行為 7 2.2 自復位斜撐之行為預測方法 10 2.2.1 消能鋼筋行為 10 2.2.2 碟型彈簧行為 11 2.2.3 可變勁度含消能鋼筋自復位斜撐行為 12 2.2.4 斜撐整體行為預測 16 2.3 實驗規劃 25 2.4 試體設計 26 2.4.1 梁柱構架設計 26 2.4.2 水平夾型挫屈束制支撐設計 26 2.4.3 雙核心自復位斜撐設計 28 2.5 試體製造與安裝 32 2.6 試驗構架裝置與載重歷時 34 2.7 量測規劃 35 2.8 試體內力計算 36 2.9 材料性質 37 第三章 實驗結果分析與比較 39 3.1 PT-SCBF試驗 40 3.1.1 PT-SCBF試驗現象 40 3.1.2 PT-SCBF結果分析 42 3.2 PT-SCB構件反應分析 43 3.2.1 斜撐整體反應 43 3.2.2 鋼絞線反應 44 3.2.3 碟型彈簧組反應 44 3.2.4 消能鋼筋反應 44 3.3 SBRBF試驗 45 3.3.1 SBRBF試驗現象 46 3.3.2 SBRBF結果分析 47 3.4 PT-SCBF及SBRBF構架試驗比較 47 3.4.1 試體構件內力分布比較 47 3.4.2 整體反應比較 48 3.4.3 斜撐構架勁度與側力比較 49 3.4.4 斜撐構架能量與等效阻尼比 50 3.5 滑動樓板試驗 51 3.5.1 滑動樓板試驗現象 51 3.5.2 滑動樓板試驗結果分析 53 3.5.3 滑動樓板摩擦力試驗 53 3.5.4 HBRB結果分析 54 3.5.5 第二階段與第三階段比較 54 3.6 樓板位移比較 55 第四章 夾型挫屈束制支撐性能試驗 57 4.1 夾型挫屈束制支撐軸向靜態反覆加載試驗 57 4.1.1 試驗配置 57 4.1.2 試驗現象 60 4.1.3 試驗分析 62 4.2 夾型挫屈束制支撐振動台試驗 64 4.2.1 試驗配置 64 4.2.2 試驗現象 65 4.2.3 試驗分析 67 第五章 結論 69 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 滑動樓板 | zh_TW |
| dc.subject | 碟型彈簧 | zh_TW |
| dc.subject | 雙核心自復位斜撐構架 | zh_TW |
| dc.subject | 夾型挫屈束制斜撐構架 | zh_TW |
| dc.subject | Sandwiched Buckling-Restrained Brace Frame | en |
| dc.subject | Dual-Core Self-Centering Brace Frame | en |
| dc.subject | Disc Spring | en |
| dc.subject | Sliding Slab | en |
| dc.title | 可變勁度之雙核心自復位斜撐與夾型挫屈束制斜撐於一層樓子構架耐震試驗 | zh_TW |
| dc.title | One-Story Steel Frame Tests Using a Stiffness Adjustable Self-Centering Brace and Sandwiched Buckling-Restrained Brace | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 許協隆;林保均 | zh_TW |
| dc.contributor.oralexamcommittee | Hsieh-Lung Hsu;Pao-Chun Lin | en |
| dc.subject.keyword | 雙核心自復位斜撐構架,夾型挫屈束制斜撐構架,碟型彈簧,滑動樓板, | zh_TW |
| dc.subject.keyword | Dual-Core Self-Centering Brace Frame,Sandwiched Buckling-Restrained Brace Frame,Disc Spring,Sliding Slab, | en |
| dc.relation.page | 186 | - |
| dc.identifier.doi | 10.6342/NTU202304012 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 25.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
