Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89890
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor蔡欣穆zh_TW
dc.contributor.advisorHsin-Mu Tsaien
dc.contributor.author林松逸zh_TW
dc.contributor.authorSong-Yi Linen
dc.date.accessioned2023-09-22T16:33:43Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-14-
dc.identifier.citationAhuja, K., Kim, D., Xhakaj, F., Varga, V., Xie, A., Zhang, S., … Agarwal, Y. (2019, Sep.). Edusense: Practical classroom sensing at scale. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(3), 1–26.
Angelo, T. A., & Cross, K. P. (1993). Techniques for assessing course-related knowledge and skills. In Classroom assessment techniques: A handbook for college teachers (2nd ed., pp. 115–254). San Francisco, CA, United States: Jossey-Bass.
Black, P., & Wiliam, D. (1998, Jul.). Assessment and classroom learning. Assessment in Education: principles, policy & practice, 5, 7–74.
Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., & Sheikh, Y. (2021). Openpose: realtime multi-person 2d pose estimation using part affinity fields. IEEE transactions on pattern analysis and machine intelligence, 43(1), 172–186.
Cao, Z., Simon, T., Wei, S.-E., & Sheikh, Y. (2017). Realtime multi-person 2d pose esti mation using part affinity fields. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 7291–7299).
Dhall, A., Kaur, A., Goecke, R., & Gedeon, T. (2018). Emotiw 2018: Audio-video, student engagement and group-level affect prediction. In Proceedings of the 20th acm international conference on multimodal interaction (pp. 653–656).
D'Mello, S., Lehman, B., Pekrun, R., & Graesser, A. (2014). Confusion can be beneficial for learning. Learning and Instruction, 29, 153–170.
Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., & Lin, C.-J. (2008). Liblinear: A library for large linear classification. The Journal of machine Learning research, 9, 1871–1874.
Friesen, W., & Ekman, P. (1978). Facial action coding system: a technique for the measurement of facial movement. Psychologists Press.
Gao, N., Shao, W., Rahaman, M. S., & Salim, F. D. (2020, Sep.). n-gage: Predicting in-class emotional, behavioural and cognitive engagement in the wild. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(3), 1–26.
Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction with lstm. Neural computation, 12(10), 2451–2471.
Glenberg, A. M., Havas, D., Becker, R., & Rinck, M. (2005). Grounding language in bodily states. Grounding cognition: The role of perception and action in memory, language, and thinking, 115–128.
Gupta, A., D’Cunha, A., Awasthi, K., & Balasubramanian, V. (2016). Daisee: Towards user engagement recognition in the wild. arXiv preprint arXiv:1609.01885, 1–22.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735–1780.
Huang, H.-Y., & Lin, C.-J. (2016). Linear and kernel classification: When to use which? In Proceedings of the 2016 siam international conference on data mining (pp. 216–224).
Hyönä, J. (2010). The use of eye movements in the study of multimedia learning. Learning and Instruction, 20(2), 172–176.
Kane, T. J., McCaffrey, D. F., Miller, T., & Staiger, D. O. (2013). Have we identified effective teachers? validating measures of effective teaching using random assign ment. In Research paper. met project. bill & melinda gates foundation (pp. 1–48).
Kar, P., Chattopadhyay, S., & Chakraborty, S. (2020). Gestatten: Estimation of user’s attention in mobile moocs from eye gaze and gaze gesture tracking. Proceedings of the ACM on Human-Computer Interaction, 4(EICS), 1–32.
Kaur, A., Mustafa, A., Mehta, L., & Dhall, A. (2018). Prediction and localization of student engagement in the wild. In 2018 digital image computing: Techniques and applications (dicta) (pp. 1–8). IEEE.
Monkaresi, H., Bosch, N., Calvo, R. A., & D’Mello, S. K. (2016). Automated detection of engagement using video-based estimation of facial expressions and heart rate. IEEE Transactions on Affective Computing, 8(1), 15–28.
Mota, S., & Picard, R. W. (2003). Automated posture analysis for detecting learner’s inter est level. In 2003 conference on computer vision and pattern recognition workshop (Vol. 5, pp. 1–6).
Pascanu, R., Mikolov, T., & Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In International conference on machine learning (pp. 1310–1318).
Pianta, R. C., La Paro, K. M., & Hamre, B. K. (2008). Classroom assessment scoring system™: Manual k-3. Paul H Brookes Publishing.
Ramakrishnan, A., Zylich, B., Ottmar, E., LoCasale-Crouch, J., & Whitehill, J. (2021). Toward automated classroom observation: Multimodal machine learning to esti mate class positive climate and negative climate. IEEE Transactions on Affective Computing, 1–16.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological bulletin, 124(3), 372–422.
Robal, T., Zhao, Y., Lofi, C., & Hauff, C. (2018a). Intellieye: Enhancing mooc learners’ video watching experience through real-time attention tracking. In Proceedings of the 29th on hypertext and social media (pp. 106–114).
Robal, T., Zhao, Y., Lofi, C., & Hauff, C. (2018b). Webcam-based attention tracking in online learning: A feasibility study. In Iui’18: 23rd international conference on intelligent user interfaces (pp. 189–197).
Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye tracking protocols. In Proceedings of the 2000 symposium on eye tracking research & applications (pp. 71–78).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … Polo sukhin, I. (2017). Attention is all you need. Advances in neural information pro cessing systems, 30, 5998–6008.
Wang, K., Peng, X., Yang, J., Meng, D., & Qiao, Y. (2020). Region attention networks for pose and occlusion robust facial expression recognition. IEEE Transactions on Image Processing, 29, 4057–4069.
Wei, H., Moldovan, A.-N., & Muntean, C. (2009). Sensing learner interest through eye tracking. In Ubiquitous and green computing: The challenges facing computing sys tems in presenting ubiquitous computing in an environmentally sustainable manner (pp. 61–68).
Wei, S.-E., Ramakrishna, V., Kanade, T., & Sheikh, Y. (2016). Convolutional pose machines. In Proceedings of the ieee conference on computer vision and pattern recognition (pp. 4724–4732).
Whitehill, J., Serpell, Z., Lin, Y.-C., Foster, A., & Movellan, J. R. (2014). The faces of engagement: Automatic recognition of student engagementfrom facial expressions. IEEE Transactions on Affective Computing, 5(1), 86–98.
Zhao, Y., Lofi, C., & Hauff, C. (2017). Scalable mind-wandering detection for moocs: A webcam-based approach. In Data driven approaches in digital education (pp. 330–344). Springer.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89890-
dc.description.abstract了解學生上課時的理解程度變化有助於提高學習效率。若不想影響課程進行,可使用穿戴式的感測器或相機等設備測量學生的反應、透過機器學習模型來分析資料並估計理解程度。然而和理解程度的變化頻率相比,這類資料集往往包含過少的標註資訊。因此我們提出了能夠處理大量資訊的系統,以有效建立含有充足標註資訊的資料集。此外我們實際利用這個系統收集了一個包含身體姿勢、臉部表情和視線軌跡的資料集,用於訓練機器學習模型及預測理解程度。結果顯示,即便在不使用所有資訊的情況下,測出的理解程度仍有可靠的準確度,充分展現了我們所提出的系統被廣泛採用的可能性。zh_TW
dc.description.abstractMeasuring students’ mental states, such as their understanding during class, helps im prove learning efficiency. Automatic approaches implement this idea without interrupting the class by sensing students’ reactions through devices such as wearable sensors or cam eras, and applying machine learning models to analyze the data. However, most of the previous works lack adequate annotations of understanding based on students’ reactions compared to the number of concepts conveyed during lessons. In this paper, we propose a scalable framework for efficiently constructing and annotating datasets. Additionally, we have collected a dataset consisting of posture, facial expression, and eye movement features, and benchmarked it for measuring understanding. The results show promising accuracy even in cases where not all features are available, demonstrating the potential for widespread adoption of the proposed framework.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:33:43Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:33:43Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsVerification Letter from the Oral Examination Committee i
摘要 iii
Abstract v
Contents vii
List of Figures ix
List of Tables xi
Chapter 1 Introduction 1
Chapter 2 Related Work 5
Chapter 3 System Design 9
3.1 Environments and Settings 10
3.1.1 Video Selections 10
3.1.2 Hardware and Software 11
3.2 Collecting Process 13
3.3 Dataset 15
3.3.1 Eye Tracking Data 16
3.3.2 Webcam Recordings 17
3.3.3 Keyboard Events 17
3.3.4 Annotations 18
3.4 Features Preprocessing 19
3.4.1 Eye Movement 19
3.4.2 Posture 20
3.4.3 Facial Expression 21
3.5 Models 21
3.5.1 Support Vector Machine 22
3.5.2 Long Short-Term Memory 22
3.5.3 Self-Attention 24
Chapter 4 Implementation 25
4.1 Dataset Partitioning 25
4.2 Model Architecture 26
4.2.1 SVM 27
4.2.2 LSTM 28
4.2.3 Self-Attention 29
Chapter 5 Evaluation 31
Chapter 6 Conclusion 41
References 43
-
dc.language.isoen-
dc.subject理解程度zh_TW
dc.subject影音數位學習zh_TW
dc.subject分類zh_TW
dc.subjectVideo-Based Learningen
dc.subjectUnderstandingen
dc.subjectClassificationen
dc.title課程影片理解程度測量zh_TW
dc.titleMeasuring Understanding in Video-Based Learningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee許永真;李明穗;石美倫zh_TW
dc.contributor.oralexamcommitteeYung-Jen Hsu;Ming-Sui Lee;Mei-Lun Shihen
dc.subject.keyword影音數位學習,理解程度,分類,zh_TW
dc.subject.keywordVideo-Based Learning,Understanding,Classification,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202303507-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-14-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
dc.date.embargo-lift2028-08-07-
Appears in Collections:資訊工程學系

Files in This Item:
File SizeFormat 
ntu-111-2.pdf
  Until 2028-08-07
1.72 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved