請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89887完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃美嬌 | zh_TW |
| dc.contributor.advisor | Mei-Jiau Huang | en |
| dc.contributor.author | 黃士昕 | zh_TW |
| dc.contributor.author | Shih-Sin Huang | en |
| dc.date.accessioned | 2023-09-22T16:32:58Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | [1] Ramee, C., Speirs, A., Payan, A.P., and Mavris, D. Analysis of Weather-Related Helicopter Accidents and Incidents in the United States. in AIAA AVIATION 2021 FORUM. 2021.
[2] Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Liu, Z., Berner, J., Wang, W., Powers, J.G., Duda, M.G., and Barker, D.M., A description of the advanced research WRF model version 4. National Center for Atmospheric Research: Boulder, CO, USA, 2019. [3] Regmi, R.P., Kitada, T., Dudhia, J., and Maharjan, S., Large-scale gravity current over the middle hills of the Nepal Himalaya: Implications for aircraft accidents. Journal of Applied Meteorology and Climatology, 2017. 56(2): p. 371-390. [4] 王尹懋, 林博雄, 戴志輝, 張國治, and 張智昇, 利用數值天氣模式模擬初步分析台灣東部個案: 2017 年 6 月 10 日凌天航空事故. 航空安全及管理季刊, 2018. 5(2): p. 91-100. [5] Richards, P. and Hoxey, R., Appropriate boundary conditions for computational wind engineering models using the k-ϵ turbulence model. Journal of wind engineering and industrial aerodynamics, 1993. 46: p. 145-153. [6] Rasheed, A. and Sørli, K., Cfd Analysis of Terrain Induced Turbulence at Kristiansand Airport, Kjevik. Aviation, 2013. 17(3): p. 104-112. [7] Rasheed, A. and Mushtaq, A., Numerical analysis of flight conditions at the Alta airport, Norway. Aviation, 2014. 18(3): p. 109-119. [8] Jeong, S., You, K., and Seok, D., Hazardous flight region prediction for a small UAV operated in an urban area using a deep neural network. Aerospace Science and Technology, 2021. 118: p. 107060. [9] 陳舫儀, 松山機場附近建築物尾流對飛機降落安全之影響. 2022. [10] Shao, J., Liu, J., and Zhao, J., Evaluation of various non-linear k–ɛ models for predicting wind flow around an isolated high-rise building within the surface boundary layer. Building and Environment, 2012. 57: p. 145-155. [11] KATO, K. The modeling of turbulent flow around stationary and vibrating square cylinders. in Proc. of 9th Symp. Turbulent Shear Flows. 1993. [12] Ehrhard, J. and Moussiopoulos, N., On a new nonlinear turbulence model for simulating flows around building-shaped structures. Journal of Wind Engineering and Industrial Aerodynamics, 2000. 88(1): p. 91-99. [13] Shih, T.-H., A realizable Reynolds stress algebraic equation model. Vol. 105993. 1993: National Aeronautics and Space Administration. [14] Craft, T., Launder, B., and Suga, K., Development and application of a cubic eddy-viscosity model of turbulence. International Journal of Heat and Fluid Flow, 1996. 17(2): p. 108-115. [15] Sucevic, N. and Djurisic, Z., Influence of atmospheric stability variation on uncertainties of wind farm production estimation. European wind energy association (EWEA 2012), 2012. [16] Monin, A. and Obukhov, A., Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic laws of turbulent mixing in the atmosphere near the ground). Trudy geofiz. inst. AN SSSR, 1954. 24(151): p. 163-187. [17] Pieterse, J.E. and Harms, T.M., CFD investigation of the atmospheric boundary layer under different thermal stability conditions. Journal of Wind Engineering and Industrial Aerodynamics, 2013. 121: p. 82-97. [18] Alinot, C. and Masson, C., k‐ϵ model for the atmospheric boundary layer under various thermal stratifications. 2005. [19] Koblitz, T., CFD Modeling of non-neutral atmospheric boundary layer conditions. 2013: DTU Wind Energy. [20] Apsley, D.D. and Castro, I.P., A limited-length-scale k-ε model for the neutral and stably-stratified atmospheric boundary layer. Boundary-layer meteorology, 1997. 83: p. 75-98. [21] Narjisse, A. and Abdellatif, K., Assessment of RANS turbulence closure models for predicting airflow in neutral ABL over hilly terrain. International Review of Applied Sciences and Engineering, 2021. 12(3): p. 238-256. [22] Saleh, A., Lakkis, I., and Moukalled, F., A modified k-ω turbulence model for improved predictions of neutral atmospheric boundary layer flows. Building and Environment, 2022. 223: p. 109495. [23] Tian, L., Zhao, N., Wang, T., Zhu, W., and Shen, W., Assessment of inflow boundary conditions for RANS simulations of neutral ABL and wind turbine wake flow. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 179: p. 215-228. [24] Parente, A., Gorlé, C., van Beeck, J., and Benocci, C., Improved k–ε model and wall function formulation for the RANS simulation of ABL flows. Journal of Wind Engineering and Industrial Aerodynamics, 2011. 99(4): p. 267-278. [25] Breedt, H.J., Craig, K.J., and Jothiprakasam, V.D., Monin-Obukhov similarity theory and its application to wind flow modelling over complex terrain. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 182: p. 308-321. [26] Alinot, C. and Masson, C. Aerodynamic simulations of wind turbines operating in atmospheric boundary layer with various thermal stratifications. in Wind Energy Symposium. 2002. [27] van der Laan, M.P., Kelly, M.C., and Sørensen, N.N., A new k‐epsilon model consistent with Monin–Obukhov similarity theory. Wind Energy, 2017. 20(3): p. 479-489. [28] Blocken, B., Stathopoulos, T., and Carmeliet, J., CFD simulation of the atmospheric boundary layer: wall function problems. Atmospheric Environment, 2007. 41(2): p. 238-252. [29] Feng, C., Gu, M., and Zheng, D., Numerical simulation of wind effects on super high-rise buildings considering wind veering with height based on CFD. Journal of Fluids and Structures, 2019. 91. [30] Van der Laan, M., Hansen, K.S., Sørensen, N.N., and Réthoré, P.-E. Predicting wind farm wake interaction with RANS: an investigation of the Coriolis force. in Journal of Physics: Conference Series. 2015. IOP Publishing. [31] Li, C., Zhou, S., Xiao, Y., Huang, Q., Li, L., and Chan, P. Effects of inflow conditions on mountainous/urban wind environment simulation. in Building Simulation. 2017. Springer. [32] Durán, P., Meißner, C., Rutledge, K., Fonseca, R., Martin-Torres, J., and Adaramola, Muyiwa S., Meso-microscale coupling for wind resource assessment using averaged atmospheric stability conditions. Meteorologische Zeitschrift, 2019. 28(4): p. 273-291. [33] Durán, P., Meiβner, C., and Casso, P., A new meso-microscale coupled modelling framework for wind resource assessment: A validation study. Renewable Energy, 2020. 160: p. 538-554. [34] Zhou, H., Song, W., and Xiao, K., Simulating Flow and Hazardous Gas Dispersion by Using WRF–CFD Coupled Model under Different Atmospheric Stability Conditions. Atmosphere, 2022. 13(7): p. 1072. [35] Huang, C., Yao, J., Fu, B., Calautit, J.K., Zhao, C., Huang, J., and Ban, Q., Three-Layer Nested Wrf-Cfd-Based Downscaling Method for Accurately Modeling Pedestrian Wind in an Urban Context. Available at SSRN 4053648. [36] 张嘉荣 and 程雪玲, 基于 CFD 降尺度的复杂地形风场数值模拟研究. 高原气象, 2020. 1. [37] Barcons, J., Avila, M., and Folch, A., Diurnal cycle RANS simulations applied to wind resource assessment. Wind Energy, 2019. 22(2): p. 269-282. [38] Liu, Y.S., Miao, S.G., Zhang, C.L., Cui, G.X., and Zhang, Z.S., Study on micro-atmospheric environment by coupling large eddy simulation with mesoscale model. Journal of Wind Engineering and Industrial Aerodynamics, 2012. 107-108: p. 106-117. [39] Zhao, Z., Li, C., Xiao, Y., Wang, J., Hu, G., and Xiao, K., Multiscale modelling of planetary boundary layer flow over complex terrain: implementation under near-neutral conditions. Environmental Fluid Mechanics, 2021. 21(4): p. 759-790. [40] Arya, P.S., Introduction to micrometeorology. 2001: Elsevier. [41] Han, Y., Shen, L., Xu, G., Cai, C.S., Hu, P., and Zhang, J., Multiscale simulation of wind field on a long-span bridge site in mountainous area. Journal of Wind Engineering and Industrial Aerodynamics, 2018. 177: p. 260-274. [42] Chen, F., Peng, H., Chan, P.-w., Huang, Y., and Hon, K.-K., Identification and analysis of terrain-induced low-level windshear at Hong Kong International Airport based on WRF–LES combining method. Meteorology and Atmospheric Physics, 2022. 134(4): p. 60. [43] 李承祐, 應用 WRF 耦合 CFD 對於因氣流流過蘭嶼地形產生之大氣紊流模擬分析. 2020. [44] Li, S., Sun, X., Zhang, S., Zhao, S., and Zhang, R., A Study on Microscale Wind Simulations with a Coupled WRF–CFD Model in the Chongli Mountain Region of Hebei Province, China. Atmosphere, 2019. 10(12). [45] Li, S., Sun, X., Zhang, R., and Zhang, C., A Feasibility Study of Simulating the Micro-Scale Wind Field for Wind Energy Applications by NWP/CFD Model with Improved Coupling Method and Data Assimilation. Energies, 2019. 12(13): p. 2549. [46] Chrit, M. and Majdi, M., Improving Wind Speed Forecasting for Urban Air Mobility Using Coupled Simulations. Advances in Meteorology, 2022. 2022. [47] Wang, Q., Luo, K., Yuan, R., Wang, S., Fan, J., and Cen, K., A multiscale numerical framework coupled with control strategies for simulating a wind farm in complex terrain. Energy, 2020. 203: p. 117913. [48] Nakayama, H., Takemi, T., and Nagai, H., Large-eddy simulation of turbulent winds during the Fukushima Daiichi Nuclear Power Plant accident by coupling with a meso-scale meteorological simulation model. Advances in Science and Research, 2015. 12(1): p. 127-133. [49] Nakayama, H., Takemi, T., and Nagai, H., Large-eddy simulation of urban boundary-layer flows by generating turbulent inflows from mesoscale meteorological simulations. Atmospheric Science Letters, 2012. 13(3): p. 180-186. [50] Luo, X. and Cao, Y., Simulation of the wind fields over complex terrain with coupling of CFD and WRF. Journal of Computational Methods in Sciences and Engineering, 2021. 21(5): p. 1155-1166. [51] Rodrigues, C.V., Palma, J.M.L.M., and Rodrigues, Á.H., Atmospheric Flow over a Mountainous Region by a One-Way Coupled Approach Based on Reynolds-Averaged Turbulence Modelling. Boundary-Layer Meteorology, 2015. 159(2): p. 407-437. [52] Temel, O. and van Beeck, J., Adaptation of mesoscale turbulence parameterisation schemes as RANS closures for ABL simulations. Journal of Turbulence, 2016. 17(10): p. 966-997. [53] Temel, O., Porchetta, S., Bricteux, L., and van Beeck, J., RANS closures for non-neutral microscale CFD simulations sustained with inflow conditions acquired from mesoscale simulations. Applied Mathematical Modelling, 2018. 53: p. 635-652. [54] Sprague, M.A. and Satkauskas, I., Nesting an incompressible-flow code within a compressible-flow code: a two-dimensional study. Computers & Fluids, 2015. 115: p. 75-85. [55] Shen, L., Han, Y., Cai, C., Dong, G., Zhang, J., and Hu, P., LES of wind environments in urban residential areas based on an inflow turbulence generating approach. Wind & structures, 2017. 24(1): p. 1-24. [56] Kataoka, H. and Mizuno, M., Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind and Structures, 2002. 5(2_3_4): p. 379-392. [57] Muñoz-Esparza, D., Kosović, B., Mirocha, J., and van Beeck, J., Bridging the Transition from Mesoscale to Microscale Turbulence in Numerical Weather Prediction Models. Boundary-Layer Meteorology, 2014. 153(3): p. 409-440. [58] Lee, G.-J., Muñoz-Esparza, D., Yi, C., and Choe, H.J., Application of the Cell Perturbation Method to Large-Eddy Simulations of a Real Urban Area. Journal of Applied Meteorology and Climatology, 2019. 58(5): p. 1125-1139. [59] 國家運輸安全委員會, 空中勤務總隊NA-706飛航事故. 2018. [60] Wilcox, D.C., Reassessment of the scale-determining equation for advanced turbulence models. AIAA journal, 1988. 26(11): p. 1299-1310. [61] Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA journal, 1994. 32(8): p. 1598-1605. [62] Launder, B.E. and Spalding, D.B., The numerical computation of turbulent flows, in Numerical prediction of flow, heat transfer, turbulence and combustion. 1983, Elsevier. p. 96-116. [63] Ansys, I., ANSYS Fluent-Theory Guide-Release 2020R1. 2020, ANSYS Inc. [64] Cebeci, T. and Bradshaw, P., Momentum transfer in boundary layers. Washington, 1977. [65] Crasto, G., Numerical simulations of the atmospheric boundary layer. Universita degli Studi di Cagliari: Cagliari, Italy, 2007. [66] Jenkins, N., Burton, T.L., Bossanyi, E., Sharpe, D., and Graham, M., Wind energy handbook. 2021: John Wiley & Sons. [67] Manwell, J.F., McGowan, J.G., and Rogers, A.L., Wind energy explained: theory, design and application. 2010: John Wiley & Sons. [68] Wieringa, J., Updating the Davenport roughness classification. Journal of Wind Engineering and Industrial Aerodynamics, 1992. 41(1-3): p. 357-368. [69] Geernaert, G., Surface layer. Encyclopedia of atmospheric sciences, 2003: p. 305-311. [70] Stull, R.B., An introduction to boundary layer meteorology. Vol. 13. 1988: Springer Science & Business Media. [71] Kwon, D.K. and Kareem, A., Comparative study of major international wind codes and standards for wind effects on tall buildings. Engineering Structures, 2013. 51: p. 23-35. [72] Zhang, X., CFD simulation of neutral ABL flows. 2009: Risø DTU-National Laboratory for Sustainable Energy. [73] Mentzoni, F. and Ertesvåg, I.S., On turbulence criteria and model requirements for numerical simulation of turbulent flows above offshore helidecks. Journal of Wind Engineering and Industrial Aerodynamics, 2015. 142: p. 164-172. [74] Norway, S., Norsok Standard C-004: Helicopter deck on offshore installations. 2nd ed. 2013. [75] Wilson, D. and Riley, D. Cooper-harper pilot rating variability. in 16th Atmospheric Flight Mechanics Conference. 1989. [76] International Civil Aviation Organization (ICAO) Manual on Low-level Wind Shear. 2005. [77] Stergiou, I., Tagaris, E., and Sotiropoulou, R.-E.P., Sensitivity assessment of WRF parameterizations over Europe. Multidisciplinary digital publishing institute proceedings, 2017. 1(5): p. 119. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89887 | - |
| dc.description.abstract | 2018年2月5日,一架編號為NA-706的UH-60M型直升機,於台北時間23:48:36自蘭嶼機場起飛後約81秒後,墜落於蘭嶼島西南側外海3.5公里處,機上6人全數罹難。本研究企圖利用多尺度耦合的模擬方式重建NA-706事故現場的風場,透過詳細的流場資訊,判斷直升機飛行過程中是否曾遭受到極端的氣流影響而可能造成此次的意外。
多尺度耦合模擬的方法是將中尺度模擬結果作為小尺度模擬的邊界條件,再進行小尺度的模擬以得到更細微的流場資訊;本研究中尺度模擬是利用數值天氣預報模型 (Weather Research and Forecasting, WRF) 所得之模擬結果,由台大林博雄教授研究團隊所提供,小尺度則採用計算流體力學 (Computational Fluid Dynamics, CFD) 來進行模擬。本研究乃透過Monin-Obukhov相似理論 (Monin-Obukhov similarity theory, MOST) 和梯度法(gradient method) 來補足中尺度在近地表區域因解析度不足而缺失的風場資訊,並使用距離的倒數為權重 (inverse distance weighting, IDW) 的插值法將中尺度的模擬結果內插至小尺度邊界上,再透過質量校正解決小尺度計算域邊界質量不守恆的情形。最後再使用SST k-ω紊流模型進行RANS (Reynolds-Averaged Navier-Stokes equation)模擬。 觀察中尺度的模擬結果可發現,風向在高度超過3,000公尺是穩定的西風,在3,000公尺到1,500公尺左右有回流區產生,在其之下是吹東風,到地表前逐漸轉向變成北北東風,因此蘭嶼機場當時是處於背風側。為了找出合適的CFD模擬設置,研究中比較不同計算域高度(3,000、4,000公尺)及頂部邊界條件(速度入口、對稱型邊界條件)的模擬結果,發現太低的計算域高度會導致低空產生不合理的加速現象,尤其在山地的上空,應該避免使用。將事故機的飛行軌跡放入CFD模擬結果比較,發現事故機在飛行過程中確實受到大氣流經蘭嶼島產生的尾流影響。但由飛行軌跡周遭的流線圖可觀察到,除了在起飛位置附近有因地形造成的小漩渦外,在中後段的飛行過程並沒有產生明顯的紊流結構,沿著飛行軌跡的紊流動能分布也未看出有出現超過顯著紊流等級的情況。 | zh_TW |
| dc.description.abstract | On February 5, 2018, a UH-60M helicopter numbered NA-706 crashed 3.5 km southwest of Lantau Island about 81 seconds after taking off from Lantau Airport at 23:48:36 Taipei time; all six people on board perished in the accident. This study attempts to reconstruct the wind field at the accident site of NA-706 by using a multi-scale simulation to judge whether the helicopter was affected by extreme air currents during the flight that may have caused the accident.
The multi-scale simulation involves using the results of a mesoscale simulation as the boundary conditions for a microscale simulation to obtain more detailed flow field information. In this study, the results of the mesoscale simulation were obtained by using the numerical weather research and forecasting (WRF) model, which was provided by Prof. Bo-Hsiung Lin's research team at NTU, and the microscale simulations were conducted using computational fluid dynamics (CFD). The Monin-Obukhov similarity theory (MOST) and the gradient method are used to supplement the wind field information in the near-surface region which is absent in the mesoscale simulation. The inverse distance weighting (IDW) interpolation method is used to interpolate the mesoscale simulation results to the microscale boundaries, followed by a correction of mass flow rate in order to preserve the mass conservation. Finally, a RANS (Reynolds-Averaged Navier-Stokes equation) simulation with the SST k-ω turbulent flow model is performed. As seen from the mesoscale simulation result, the wind direction is steady westward at altitudes above 3,000 meters, and there are circulation zones between 3,000 meters and 1,500 meters, below which the easterly wind blows and gradually changes to north-northeast wind before reaching the surface. It implies Lanyu Airport was on the leeward side. The microscale simulation suggests a simulation domain at least 4,000m high is necessary in order not to cause unreasonable acceleration phenomenon in the lower atmosphere, especially in the vicinity of mountains. The CFD simulation results show that the accident helicopter was affected by the wake generated by the air flow over Lantau Island. However, only the small vortices caused by the terrain are observed near the takeoff position and no significant turbulence is found in the middle and rear part of the flight trajectory. Besides, the turbulent kinetic energy along the flight trajectory did not exceed the noticeable turbulence level. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:32:58Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:32:58Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 中文摘要 III Abstract V 目錄 VII 表目錄 IX 圖目錄 X 符號說明 XV 第一章 緒論 1 1-1 文獻回顧 1 1-2 研究動機及目的 9 1-3 論文架構 10 第二章 理論與模擬方法 11 2-1 WRF模型 11 2-1-1 統御方程式 12 2-2 計算流體力學 14 2-2-1 RANS 統御方程式 14 2-2-2 SST k-ω紊流模型 15 2-2-3 地面粗糙度 18 2-3 耦合方法 21 2-3-1 Monin-Obukhov 相似理論 21 2-3-2 梯度法(gradient method) 24 2-3-3 距離反比插值法(Inverse Distance Weighting, IDW) 26 2-3-4 質量守恆校正 26 2-3-5 紊流邊界條件 28 第三章 蘭嶼數值模型 29 3-1 蘭嶼地理位置與NA-706事故簡述 29 3-2 氣象量測資訊 29 3-2-1 地面測量站 30 3-2-2 直升機飛行紀錄器 30 3-3 CFD模擬區域建立 31 3-4 網格設置與測試 34 3-5 科氏力的影響 35 第四章 模擬結果 37 4-1 穩態模擬 37 4-1-1 邊界條件與模擬設定 37 4-1-2 穩態流場 39 4-1-3 模擬結果對直升機飛行影響 43 4-2 暫態模擬 45 4-2-1 邊界條件與模擬設定 45 4-2-2 暫態流場 46 4-2-3 模擬結果對直升機飛行影響 48 第五章 結論與未來展望 50 5-1 結論 50 5-1-1 穩態模擬 51 5-1-2 暫態模擬 52 5-2 未來展望 53 參考文獻 54 圖表 60 附錄 122 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 多尺度耦合模擬 | zh_TW |
| dc.subject | 數值天氣預報模型 | zh_TW |
| dc.subject | Monin-Obukhov相似理論 | zh_TW |
| dc.subject | multi-scale coupled simulation | en |
| dc.subject | numerical weather research and forecasting model (WRF) | en |
| dc.subject | computational fluid dynamics model (CFD) | en |
| dc.subject | Monin-Obukhov similarity theory(MOST) | en |
| dc.title | 以 WRF-CFD 耦合方式重建 NA-706 飛航事故風場 | zh_TW |
| dc.title | Reconstructing the Wind Field of NA-706 Aviation Accident using WRF-CFD Coupling Simulation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳立杰;郭嘉偉;阮于軒;盧南佑 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Jie Chen;Jia-Wei Guo;Yu-Xuan Ruan;Nan-You Lu | en |
| dc.subject.keyword | 多尺度耦合模擬,數值天氣預報模型,計算流體力學,Monin-Obukhov相似理論, | zh_TW |
| dc.subject.keyword | multi-scale coupled simulation,numerical weather research and forecasting model (WRF),computational fluid dynamics model (CFD),Monin-Obukhov similarity theory(MOST), | en |
| dc.relation.page | 126 | - |
| dc.identifier.doi | 10.6342/NTU202303677 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 30.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
