Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89883
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙鍵哲zh_TW
dc.contributor.advisorJen-Jer Jawen
dc.contributor.author簡竹吟zh_TW
dc.contributor.authorChu-Yin Chienen
dc.date.accessioned2023-09-22T16:31:57Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationAzimi, S. M., Fischer, P., Körner, M., & Reinartz, P., 2018. Aerial LaneNet: Lane-marking semantic segmentation in aerial imagery using wavelet-enhanced cost-sensitive symmetric fully convolutional neural networks, IEEE Transactions on Geoscience and Remote Sensing, 57(5), 2920-2938.
Banerjee. A., 2022. YOLOv5 vs YOLOv6 vs YOLOv7 , URL: https://www.learnwitharobot.com/p/yolov5-vs-yolov6-vs-yolov7/. (last date accessed: 23 Mar 2023)
Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M., 2020. Yolov4: Optimal speed and accuracy of object detection, arXiv preprint arXiv:2004.10934.
Buslaev, A., Iglovikov, V. I., Khvedchenya, E., Parinov, A., Druzhinin, M., & Kalinin, A. A., 2020. Albumentations: fast and flexible image augmentations, Information, 11(2), 125.
Canny, J., 1986. A computational approach to edge detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(6), Berkeley, California, pp. 679-698.
Charette, S., 2022. How much memory does it take? URL: https://www.ccoderun.ca/programming/darknet_faq/#memory_consumption. (last date accessed: 9 Apr 2023)
Chen, S., Zhang, Z., Zhong, R., Zhang, L., Ma, H., & Liu, L., 2020. A dense feature pyramid network-based deep learning model for road marking instance segmentation using MLS point clouds, IEEE Transactions on Geoscience and Remote Sensing, 59(1), 784-800.
Dewi, C., Chen, R. C., Zhuang, Y. C., Jiang, X., & Yu, H., 2017. Modification of YOLOv4 for Road Marking Sign Recognition Based on Deep Learning, Available at SSRN 4240443.
He, K., Zhang, X., Ren, S., & Sun, J., 2016. Deep residual learning for image recognition, Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770-778.
Hiroto H., 2019. Reproducing training performance of YOLOv3 in PyTorch (Part1), URL: https://medium.com/@hirotoschwert/reproducing-training-performance-of-yolov3-in-pytorch-part1-620140ad71d3(last date accessed: 11 Oct 2021)
Kang, K., Chen, D., Peng, C., Koo, D., Kang, T., & Kim, J., 2020. Development of an automated visibility analysis framework for pavement markings based on the deep learning approach, Remote Sensing, 12(22), 3837.
Levashov, A., & Yurin, D., 2013. Ridge and tree feature detection on images, Pattern Recognition and Image Analysis: New Information Technologies, PRIA 2013, Vol. 1, Samara, Russia, pp. 240-243.
Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li. Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., & Wei, X., 2022. YOLOv6: A single-stage object detection framework for industrial applications, arXiv preprint arXiv:2209.02976.
Lin, M., Chen, Q., & Yan, S., 2013. Network in network, arXiv preprint arXiv:1312.4400.
Misra, D., 2019. Mish: A self regularized non-monotonic activation function, arXiv preprint arXiv:1908.08681.
Nelson, J., Solawetz, J., 2020. Responding to the Controversy about YOLOv5, URL: https://blog.roboflow.com/yolov4-versus-yolov5/. (last date accessed: 23 Mar 2023)
Padilla, R., Passos, W. L., Dias, T. L., Netto, S. L., & Da Silva, E. A., 2021. A comparative analysis of object detection metrics with a companion open-source toolkit, Electronics, 10(3), 279.
Rath, S., Gupta,V., 2022. Performance Comparison of YOLO Object Detection Models – An Intensive Study, URL: https://learnopencv.com/performance-comparison-of-yolo-models/#Performance-Comparison-of-YOLO-Models-on-NVIDIA-Tesla-P100,-V100,-GTX-1080-Ti,-and-RTX-4090. (last date accessed: 23 Mar 2023)
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A., 2016. You only look once: Unified, real-time object detection, Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 779-788.
Redmon, J., & Farhadi, A., 2017. YOLO9000: better, faster, stronger, Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 7263-7271.
Redmon, J., & Farhadi, A., 2018. Yolov3: An incremental improvement, arXiv preprint arXiv:1804.02767.
Senthilk, N., & Rajesh, R., 2009. Edge detection techniques for image segmentation-A survey of soft computing approaches, International Journal of Recent Trends Engineering and Technology, 1(2), 250-254.
Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M., 2014. Striving for simplicity: The all convolutional net, arXiv preprint arXiv:1412.6806.
Stacey Ronaghan. 2018. Deep Learning: Which Loss and Activation Functions should I use? URL: https://towardsdatascience.com/deep-learning-which-loss-and-activation-functions-should-i-use-ac02f1c56aa8 (last date accessed: 11 Feb 2023)
Steger, C., 1998. An unbiased detector of curvilinear structures, IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(2), pp.113–125.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A., 2015. Going deeper with convolutions, Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1-9.
Ophoff, T., Puttemans, S., Kalogirou, V., Robin, J. P., & Goedemé, T., 2020. Vehicle and Vessel Detection on Satellite Imagery: A Comparative Study on Single-Shot Detectors, Remote Sensing, 12(7).
Tzutalin, L.,2015. LabelImg. Git code (2015), URL: https://github.com/tzutalin/labelImg (last date accessed: 9 Apr 2023)
Virginia, N., Daniel, H., 2018. Scalable Feature Extraction with Aerial and Satellite Imagery, 17th Python in Science Conference, SciPy 2018, Austin, Texas, pp. 145-151.
Wang, C. Y., Liao, H. Y. M., Wu, Y. H., Chen, P. Y., Hsieh, J. W., & Yeh, I. H., 2020. CSPNet: A new backbone that can enhance learning capability of CNN, Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 390-391.
Wang, W., Berholm, F., Hu, K., Zhao, L., Feng, S., Tu, A., & Fan, E., 2021. Lane Line Extraction in Raining Weather Images by Ridge Edge Detection with Improved MSR and Hessian Matrix, Information Technology and Control, 50(4), 722-735.
Wenren, D., Zhao, T., & Qu, K., 2013. Lane Markings From Satellite, Thesis, Stanford University, Computer Science Department, Stanford, California.
Zang, A., Xu, R., Li, Z., & Doria, D., 2020. Lane Boundary Geometry Extraction from Satellite Imagery, Proceedings of the 1st ACM SIGSPATIAL Workshop on High-Precision Maps and Intelligent Applications for Autonomous Vehicles, ACM ,Article No. 1, Los Angeles, California, pp.1-8.
Zhang, H., Liang, J., Jiang, H., Cai, Y., & Xu, X., 2020. Lane line recognition based on improved 2D-gamma function and variable threshold Canny algorithm under complex environment, Measurement and Control, 53(9-10), 1694-1708.
Zhang, X., Yang, W., Tang, X., & Liu, J., 2018. A fast learning method for accurate and robust lane detection using two-stage feature extraction with YOLOv3, Sensors, 18(12), 4308.
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., & Ren, D. 2020. Distance-IoU loss: Faster and better learning for bounding box regression, Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 07, pp. 12993-13000).
尹孝元、梁隆鑫、陳錕山、黃珮琦,2010。衛星影像於國土變異監測之應用,航測及遙測學刊,15(1): 65-78。
呂明倫,2015。物件式影像分析技術應用於土地覆蓋分類之研究,台灣生物多樣性研究,17(4): 307-320。
李瑞陽、莊佳文,2006。運用影像分塊方法於高解析衛星影像土地利用判釋精度之研究,航測及遙測學刊,11(4): 403-415。
連以諾,2013。以道路知識進行車載光達點雲之道路點雲與道路標記萃取,國立交通大學土木工程學系,碩士論文,臺灣。
陳朋弟、黃亮、夏炎、余曉娜、高霞霞,2020。基於 Mask R-CNN 的無人機影像路面交通標誌檢測與識別,國土資源遙感,32(4)。
陳皇圳,2014。航空正射影像道路萃取與寬度估算之研究,南投縣竹山地政事務所,南投縣政府103年度研究報告。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89883-
dc.description.abstract道路是地理資訊系統中經常使用的資料項目之一,過去已有需多研究著重於從航遙測影像中萃取出道路的空間位置,然而許多與道路相關的屬性資料,如道路寬度、車道數量、行車方向等,大多仍需由人工進行判釋,再添加至道路圖層的屬性欄位中,難以快速建置數量龐大的道路圖資。為了因應快速變遷的空間資訊,保持道路圖資的完整性及時效性為一相當重要的課題。因此,本研究將針對高解析度衛星影像,建立一個自動萃取道路標線資料的流程,以快速建置完整的道路資訊。
研究流程包含影像前置處理程序及針對不同道路標線類別資料之標記方法,首先以人工標記方式,從遙測影像中建立不同道路標線類別之訓練資料集,訓練類別包含車道線、行車分向線、機車停等區、枕木紋行人穿越道、以及五種方向之指向線等。再以YOLOv4深度學習演算法訓練各類別的物件偵測模型參數,接著對各類別偵測結果進行準確度分析,最後特別針對線型道路標線進行線段偵測及萃取流程以獲得向量格式之成果。研究成果顯示,以深度學習偵測線型及非線型道路標線時,F1-score分別可達96%及92%,呈現不錯的分類精確率;而在道路標線向量化的部分,透過邊緣偵測及細化等影像處理程序可成功萃取出車道線及行車分向線,F1-score可達92%,精度評估部分平面均方根誤差可達20公分以內。
zh_TW
dc.description.abstractRoad information is frequently used data in Geographic Information System. In the past, much research has focused on extracting the spatial location of roads from remote sencing images. However, many attribute data related to roads, such as road width, number of lanes, and traffic directions, etc. still require manual interpretation and addition to the attribute fields of road layers. This makes it difficult to rapidly build large-scale road map data. In order to cope with the rapidly changing spatial information and maintain the completeness and timeliness of road map data, this study aims to develop an automated process for extracting road markings from high-resolution satellite images to quickly build comprehensive road information.
The research process involved image preprocessing procedures and marking methods for different road marking categories. First, a training dataset for different road marking categories was established using manual annotation from remote sensing images. The training categories include lane lines, traffic divergence lines, scooter waiting areas, pedestrian crossing, and direction lines in five directions. Then, the YOLOv4 deep learning algorithm was used to train object detection models for both non-linear and linear road markings, along with the analysis of the accuracy of the detection results for each category. Finally, a specific process for line detection and extraction was developed for linear road markings to obtain results in vector format. The research results showed good classification accuracy, with F1-scores of 96% and 92% for the detection of linear and non-linear road markings, respectively. Furthermore, through image processing procedures such as edge detection and thinning, the road lane markings and directional markings were successfully extracted and vectorized. The F1-score achieved a rate of 92% and planar root mean square error are within 20 centimeters.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:31:57Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:31:57Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目錄
中文摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 前言 1
1.1 研究動機 1
1.2 研究背景 1
1.3 研究目的 2
1.4 論文架構 3
第二章 文獻回顧 4
2.1 影像處理技術 4
2.1.1 邊緣偵測 4
2.1.2 標線判釋 6
2.1.3 線段處理 9
2.2 深度學習演算法 12
2.2.1 深度學習簡介 12
2.2.2 深度學習應用 12
第三章 研究方法 15
3.1 目標區域萃取 16
3.1.1 資料前處理 16
3.1.2 卷積神經網路 22
3.1.3 深度學習框架:YOLO物件偵測 31
3.2 效能評估指標 52
3.3 道路標線向量化 54
3.4 道路標線結果精度評估 57
第四章 實驗及成果分析 59
4.1 實驗資料 59
4.2 資料擴增 60
4.3 實驗一:線型道路標線偵測 61
4.3.1 一般標記方式訓練 61
4.3.2 小邊界框標記 63
4.3.3 調整尺寸之邊界框 66
4.4 實驗二:非線型道路標線偵測 69
4.5 實驗三:道路標線向量化 74
4.6 小結 77
4.6.1 實驗一:線型道路標線偵測成果 77
4.6.2 實驗二:非線型道路標線偵測成果 80
4.6.3 實驗三:道路標線向量化萃取成果 81
第五章 結論及建議 84
第六章 參考文獻 86
-
dc.language.isozh_TW-
dc.subject物件偵測zh_TW
dc.subject衛星影像zh_TW
dc.subject道路標線萃取zh_TW
dc.subjectRoad Marking Extractionen
dc.subjectObject Detectionen
dc.subjectSatellite Imageryen
dc.title應用深度學習於衛星影像道路標線萃取之研究zh_TW
dc.titleThe application of deep learning in the extraction of road markings from satellite imagesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.coadvisor徐百輝zh_TW
dc.contributor.coadvisorPai-Hui Hsuen
dc.contributor.oralexamcommittee邱式鴻;張智安zh_TW
dc.contributor.oralexamcommitteeShih-Hong Chio;Tee-Ann Teoen
dc.subject.keyword物件偵測,衛星影像,道路標線萃取,zh_TW
dc.subject.keywordObject Detection,Satellite Imagery,Road Marking Extraction,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202303771-
dc.rights.note未授權-
dc.date.accepted2023-08-11-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
6.38 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved