請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | zh_TW |
| dc.contributor.advisor | Anthony J. T. Lee | en |
| dc.contributor.author | 黃榮豐 | zh_TW |
| dc.contributor.author | Rong-Feng Huang | en |
| dc.date.accessioned | 2023-09-22T16:31:42Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Afonso B, Melo L, Oliveira W, Sousa S, Berton L (2019) Housing prices prediction with a deep learning and random forest ensemble. Proceedings of the 18th Conference on Artificial and Computational Intelligence, 389–400.
Argyriou A, Evgeniou T, Pontil M (2006) Multi-task feature learning. Advances in Neural Information Processing Systems 19. Babyak MA (2004) What you see may not be what you get: A brief, nontechnical introduction to overfitting in regression-type models. Psychosomatic Medicine 66(3):411–421. Breiman L (2001) Random forests. Machine Learning 45(1):5–32. Cervantes J, Li X, Yu W (2007) SVM classification for large data sets by considering models of classes distribution. Proceedings of the Sixth Mexican International Conference on Artificial Intelligence, Special Session. 51–60. Chen T, Guestrin C (2016) XGBoost: A scalable tree boosting system. Proceedings of the 22nd International Conference on Knowledge Discovery and Data Mining 785–794. Fang Y, Li T, Zhao H (2022) Random forest model for the house price forecasting. Proceedings of the International Conference on Computer Research and Development, 140–143. Fonti V, Belitser E (2017) Feature selection using lasso. VU Amsterdam Research Paper in Business Analytics 30:1–25. Friedman JH (2001) Greedy function approximation: A gradient boosting machine. Annals of Statistics:1189–1232. Gómez DO, Manrique MAC, Sierra OB, Laniado H, Carrión RM, Millan DAR (2020) Housing-price prediction in Colombia using machine learning. Proceedings of the 11th International Conference on Computing and Informatics in Northern Chile: 63-72. Goyal P, Chhetri SR, Canedo A (2020) dyngraph2vec: Capturing network dynamics using dynamic graph representation learning. Knowledge-Based Systems 187:104816. Goyal P, Kamra N, He X, Liu Y (2018) DynGEM: Deep embedding method for dynamic graphs. Proceedings of the International Workshop on Representation Learning for Graphs 72. Hajiramezanali E, Hasanzadeh A, Narayanan K, Duffield N, Zhou M, Qian X (2019) Variational graph recurrent neural networks. Advances in Neural Information Processing Systems 32. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 770–778. Hong T, Gui M, Baran ME, Willis HL (2010) Modeling and forecasting hourly electric load by multiple linear regression with interactions. Proceedings of the PES General Meeting, 1–8. Jain AK, Mao J, Mohiuddin KM (1996) Artificial neural networks: A tutorial. Computer 29(3):31–44. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu TY (2017) LightGBM : A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems 30. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. Law S, Paige B, Russell C (2019) Take a look around: Using street view and satellite images to estimate house prices. ACM Transactions on Intelligent Systems and Technology 10(5):1–19. MacQueen J (1967) Classification and analysis of multivariate observations. Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. 281–297. Madhuri CR, Anuradha G, Pujitha MV (2019) House price prediction using regression techniques: A comparative study. Proceedings of the International Conference on Smart Structures and Systems, 1–5. Meisel WS, Michalopoulos DA (1973) A partitioning algorithm with application in pattern classification and the optimization of decision trees. IEEE Transactions on Computers 100(1):93–103. Milunovich G (2020) Forecasting Australia’s real house price index: A comparison of time series and machine learning methods. Journal of Forecasting 39(7):1098–1118. Peng H, Li J, Wang Z, Yang R, Liu M, Zhang M, Yu P, He L (2021) Lifelong property price prediction: A case study for the Toronto real estate market. IEEE Transactions on Knowledge and Data Engineering 1-14. Peng Z, Huang Q, Han Y (2019) Model research on forecast of second-hand house price in Chengdu based on XGboost algorithm. Proceedings of the 11th International Conference on Advanced Infocomm Technology, 168–172. Phan TD (2018) Housing price prediction using machine learning algorithms: The case of Melbourne city, Australia. Proceedings of the International Conference on Machine Learning and Data Engineering, 35–42. Rumelhart DE, Hinton GE, Williams RJ (1985) Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science. Sankar A, Wu Y, Gou L, Zhang W, Yang H (2020) Dysat: Deep neural representation learning on dynamic graphs via self-attention networks. Proceedings of the 13th International Conference on Web Search and Data Mining. 519–527. Sarkar P, Moore AW (2005) Dynamic social network analysis using latent space models. ACM SIFKDD Explorations Newsletter 7(2):31–40. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45(11):2673–2681. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Statistics and Computing 14:199–222. Solomatine DP, Shrestha DL (2004) AdaBoost. RT: A boosting algorithm for regression problems. Proceedings of the International Joint Conference on Neural Networks, 1163–1168. Sutton CD (2005) Classification and regression trees, bagging, and boosting. Handbook of Statistics 24:303–329. Szeg G (1939) Orthogonal Polynomials. American Mathematical Society, Rhode Island, USA. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) Attention is all you need. Advances in Neural Information Processing Systems 30. Wang PY, Chen CT, Su JW, Wang TY, Huang SH (2021) Deep learning model for house price prediction using heterogeneous data analysis along with joint self-attention mechanism. IEEE Access 9:55244–55259. You Q, Pang R, Cao L, Luo J (2017) Image-based appraisal of real estate properties. IEEE Transactions on Multimedia 19(12):2751–2759. Zhou L, Yang Y, Ren X, Wu F, Zhuang Y (2018) Dynamic network embedding by modeling triadic closure process. Proceedings of the AAAI Conference on Artificial Intelligence, 571-578. Zhu L, Guo D, Yin J, Ver Steeg G, Galstyan A (2016) Scalable temporal latent space inference for link prediction in dynamic social networks. IEEE Transactions on Knowledge and Data Engineering 28(10):2765–2777. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89882 | - |
| dc.description.abstract | 過往預測房屋價格的相關研究大都未考慮到房屋交易間的時間與空間相關性,因此,本研究提出利用房屋交易的時間與空間相關性預測房屋價格的架構。我們所提出的架構包含六個階段,我們首先萃取每個房屋的特徵包括實價登錄資訊、公共設施位置以及衛星雲圖;接下來的四個階段,依序建構距離、K-近鄰、集群以及公共設施四個注意力機制,聚合影響房屋價格的相關資訊;最後,使用這四個注意力機制聚合的相關資訊預測房屋價格。實驗結果顯示,我們的研究架構在均方根誤差、平均絕對誤差百分比以及決定係數方面均優於最先進的方法。我們的研究架構可以協助有購買房屋意願的買家事先評估相關物件的價格與買賣時機,也可幫助不動產廠商進行房屋價格鑑定以及給客戶有益且合適的建議,亦可幫助決策者更了解不動產的市場結構與動態。 | zh_TW |
| dc.description.abstract | Most previous studies of house price prediction overlook the temporal and spatial dependencies among house transactions. In this study, we propose a framework to predict house prices by considering the temporal and spatial dependencies. The proposed framework contains six phases. First, we derive a feature vector for each house, including the information of house attributes and public facilities, and features extracted from satellite maps. Second, we employ the distance attention mechanism to aggregate the information of neighboring houses. Third, we exploit the k-nearest neighbors (KNN) attention mechanism to integrate the information of the k-nearest houses with the same building type and close house ages. Fourth, we apply the cluster attention mechanism to capture the correlations between the house and neighboring clusters grouped by the k-means clustering algorithm. Fifth, we utilize the public facility attention mechanism to include information of public facilities. Finally, we develop a model to predict house prices based on the information consolidated from the previous attention mechanisms. The experimental results show that our proposed framework outperforms several state-of-the-art models in terms of root mean square error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination (R-squared). Our proposed framework may offer an effective tool for potential homebuyers to make informed decisions about when and where to buy houses, for real estate agents to better appraise the real estate and provide helpful suggestions for their clients, and for policymakers to better understand the structures and dynamics of the real estate market. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:31:42Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:31:42Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Table of Contents i
List of Figures ii List of Tables iii Chapter 1 Introduction 1 Chapter 2 Related Work 4 2.1 House Price Prediction 4 2.2 Dynamic Graph Networks 5 Chapter 3 The Proposed Framework 6 3.1 Deriving Feature Vectors 8 3.2 Distance Attention Mechanism 9 3.3 KNN Attention Mechanism 10 3.4 Cluster Attention Mechanism 11 3.5 Public Facility Attention Mechanism 11 3.6 House Price Prediction Model 12 Chapter 4 Experimental Results 13 4.1 Dataset and Experimental Setup 13 4.2 Performance Evaluation 17 4.3 Effects of EachAttention Mechanism 19 4.4 Ability to Capture Price Fluctuation over Time 23 Chapter 5 Conclusions and Future Work 25 References 27 | - |
| dc.language.iso | en | - |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | 時間與空間相關性 | zh_TW |
| dc.subject | 圖卷積網路 | zh_TW |
| dc.subject | 房屋價格預測 | zh_TW |
| dc.subject | attention mechanism | en |
| dc.subject | temporal and spatial dependencies | en |
| dc.subject | graph convolutional network | en |
| dc.subject | house price prediction | en |
| dc.title | 應用圖卷積網路預測房屋價格 | zh_TW |
| dc.title | House Price Prediction Using Graph Convolutional Networks | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭麗珍;戴敏育 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Jhen Jheng;Min-Yuh Day | en |
| dc.subject.keyword | 房屋價格預測,圖卷積網路,注意力機制,時間與空間相關性, | zh_TW |
| dc.subject.keyword | house price prediction,graph convolutional network,attention mechanism,temporal and spatial dependencies, | en |
| dc.relation.page | 29 | - |
| dc.identifier.doi | 10.6342/NTU202303729 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 1.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
