請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89878完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏志平 | zh_TW |
| dc.contributor.advisor | Chih-Ping Wei | en |
| dc.contributor.author | 王佩琳 | zh_TW |
| dc.contributor.author | Pei-Lin Wang | en |
| dc.date.accessioned | 2023-09-22T16:30:38Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | Arafath, M. Y., Saifuzzaman, M., Ahmed, S., & Hossain, S. A. (2018). Predicting career using data mining. In Proceedings of 2018 International Conference on Computing, Power and Communication Technologies (GUCON), pp. 889-894.
Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. (2014). Learning phrase representations using RNN encoder- decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. Deshpande, S., Gupta, P., Singh, N., & Kadam, D. (2021). Prediction of Suitable Career for Students using Machine Learning. International Research Journal of Engineering and Technology, 8(02), pp. 2043-2046. Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. Dusane, P. D., Bhosale, N. V., Avhad, V. A., & Naikwade, P. K. (2020). Recommendation system for career path using data mining approaches. International Journal of Scientific Research & Engineering Trends, 6(2), pp. 587- 589. Graves, A., & Graves, A. (2012). Long short-term memory. Supervised Sequence Labelling with Recurrent Neural Networks, pp. 37-45. He, M., Zhan, X., Shen, D., Zhu, Y., Zhao, H., & He, R. (2021). What about your next job? Predicting professional career trajectory using neural networks. In Proceedings of the 2021 4th International Conference on Machine Learning and Machine Intelligence, pp. 184-189. Lee, Y., Lee, Y.-C., Hong, J., & Kim, S.-W. (2017). Exploiting job transition patterns for effective job recommendation. In Proceedings of 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2414-2419. Li, L., Jing, H., Tong, H., Yang, J., He, Q., & Chen, B. C. (2017). NEMO: Next career move prediction with contextual embedding. In Proceedings of the 26th International Conference on World Wide Web Companion, pp. 505-513. Liu, J., Ng, Y. C., Wood, K. L., & Lim, K. H. (2020). IPOD: a large-scale industrial and professional occupation dataset. In Proceedings of Conference Companion Publication of the 2020 on Computer Supported Cooperative Work and Social Computing, pp. 323-328. Liu, K., Shi, X., Kumar, A., Zhu, L., & Natarajan, P. (2016). Temporal learning and sequence modeling for a job recommender system. In Proceedings of the Recommender Systems Challenge, pp. 1-4. McCarney, B. (2014). Job hopping new normal for Millennials: Retention-millennials. HR Future, 2014(10), pp. 32. Meng, Q., Zhu, H., Xiao, K., Zhang, L., & Xiong, H. (2019). A hierarchical career-path- aware neural network for job mobility prediction. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 14-24. Ng, T. W., Sorensen, K. L., Eby, L. T., & Feldman, D. C. (2007). Determinants of job mobility: A theoretical integration and extension. Journal of Occupational and Organizational Psychology, 80(3), pp. 363-386. Qin, C., Zhu, H., Xu, T., Zhu, C., Ma, C., Chen, E., & Xiong, H. (2020). An enhanced neural network approach to person-job fit in talent recruitment. ACM Transactions on Information Systems (TOIS), 38(2), pp. 1-33. Xu, H., Yu, Z., Xiong, H., Guo, B., & Zhu, H. (2015). Learning career mobility and human activity patterns for job change analysis. In Proceedings of 2015 IEEE International Conference on Data Mining, pp. 1057-1062. Yamashita, M., Li, Y., Tran, T., Zhang, Y., & Lee, D. (2022). Looking further into the future: Career pathway prediction. In Proceedings of the First International Workshop on Computational Jobs Marketplace. Zhang, D., Liu, J., Zhu, H., Liu, Y., Wang, L., Wang, P., & Xiong, H. (2019). Job2Vec: Job title benchmarking with collective multi-view representation learning. In Proceedings of the 28th ACM International Conference on Information and Knowledge Management, pp. 2763-2771. Zhang, L., Zhou, D., Zhu, H., Xu, T., Zha, R., Chen, E., & Xiong, H. (2021). Attentive heterogeneous graph embedding for job mobility prediction. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2192-2201. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89878 | - |
| dc.description.abstract | 人才流動預測在人力資源管理領域中具有重要意義,對企業而言,預測候選 人的下一份工作可作為人才招募決策的依據;對獵頭而言,預測潛在目標人才可 提高招募效率;對員工而言,收集其他合適的公司或職位信息可簡化尋找工作的 過程。然而,現有的模型忽略了人員、公司和職位隨著時間變化的事實,包括職 員技能、公司大小、公司服務或是職位實際內容等的動態變化。這些變化可能導 致對於每個人在同一工作於不同時間下的經驗其實具有不同的意義,使用固定的 公司與職位嵌入反而可能會影響個人在預測下一份工作的預測效能。
因此,我們擴展了目前預測下一份工作任務中最先進的模型,引入時間維度 的概念,通過考慮時間序列嵌入,加權過往的嵌入去更好地捕捉當前時間窗口下 公司和職位的特徵,了解到個人的職位軌跡中每份工作於不同時間可能代表的意 義,從而提高下一份工作預測的準確性。除了評估下一份工作預測的準確性的同 時,我們也探索了不同的時間窗口大小以及調整向過往時間加權的滯後數量,觀 察不同的時間設置對預測準確性的影響。實驗結果表明,我們提出的方法能夠有 效地捕捉在不同時間上公司和職位的表示向量(嵌入),進而提升預測下一份工作 的模型性能,整體上優於當前表現最佳的方法。 | zh_TW |
| dc.description.abstract | Predicting job mobility is of great significance in the field of human resources management. For businesses, forecasting a candidate’s next job can serve as a basis for talent recruitment decisions. For recruiters, predicting potential candidates enhances their recruitment efficiency. Employees also can benefit from job mobility prediction by pointing the employees to predicted companies and positions to move, streamlining the employees’ job search process. However, existing models overlook the temporal changes in individuals, companies, and positions, such as skills, company size, services, and job content. These changes may lead to different meaning for individuals staying in the same job at different times. The previous models use fixed company and job embeddings may degrade the effectiveness of predicting the individual’s next job.
To address this, we extend the state-of-the-art model for predicting the next job by expanding the time dimension. By considering time-series embeddings and weighting previous representations, we better capture the characteristics of companies and positions at each time window. This enables us to understand the varying meanings of each job in an individual’s career trajectory at a specific time window, thereby improving the effectiveness of predicting the next job. Additionally, we explore different time window sizes and adjust the number of lags for weighting to observe their impact on prediction effectiveness. Experimental results demonstrate the ability of our proposed approach in capturing representations of companies and positions at different time windows, leading to enhanced effectiveness of next job prediction, outperforming that of the existing state- of-the-art methods. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:30:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:30:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 I
摘要 II ABSTRACT III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 Background 1 1.2 Motivation and Research Objectives 3 CHAPTER 2 LITERATURE REVIEW 6 2.1 Job Mobility Prediction 6 2.2 General Architecture of Job Mobility Prediction Models 6 2.2.1 Nemo (Li et al., 2017) 7 2.2.2 HCPNN (Meng et al., 2019) 8 2.2.3 Ahead (Zhang et al., 2021) 9 2.2.4 Yamashita et al. (2022) 11 2.3 Summary 12 CHAPTER 3 OUR PROPOSED METHOD: NJTE (PREDICTING THE NEXT JOB USING TIME-SERIES EMBEDDINGS) 15 3.1 Problem Formulation 15 3.2 Overview of Our Proposed Architecture 16 3.3 External Aggregator 17 3.4 Internal Aggregator 19 3.5 Representation Fusion 21 3.6 Time-series Integration 22 3.7 Next Job Prediction Module 23 CHAPTER 4 EMPIRICAL EVALUATION 26 4.1 Dataset 26 4.1.1 Dataset Collection and Curation 26 4.1.2 Company Filtering 27 4.1.3 Position Preprocessing and Grouping 27 4.1.4 Position Filtering 29 4.1.5 Dataset Statistics 30 4.2 Evaluation Procedure and Metrics 31 4.3 Experimental Setup 32 4.3.1 Implementation Details 32 4.3.2 Benchmark Methods 33 4.4 Evaluation Results 35 4.5 Additional Evaluation Experiments 41 4.5.1 Same Window Size 41 4.5.2 Same Number of Lags 44 CHAPTER 5 CONCLUSION 45 5.1 Summary 45 5.2 Future Works 45 REFERENCE 47 | - |
| dc.language.iso | en | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 時間序列嵌入 | zh_TW |
| dc.subject | 工作流動性預測 | zh_TW |
| dc.subject | 圖嵌入 | zh_TW |
| dc.subject | 序列建模 | zh_TW |
| dc.subject | Job Mobility Prediction | en |
| dc.subject | Time-series Embeddings | en |
| dc.subject | Graph Embedding | en |
| dc.subject | Deep learning | en |
| dc.subject | Sequential Modeling | en |
| dc.title | 基於時間感知神經網絡預測工作轉換 | zh_TW |
| dc.title | What’s Next After Quitting? Predicting the Next Job Using Time-series Embeddings | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳建錦;楊錦生 | zh_TW |
| dc.contributor.oralexamcommittee | Chien-Chin Chen;Chin-Sheng Yang | en |
| dc.subject.keyword | 深度學習,工作流動性預測,時間序列嵌入,圖嵌入,序列建模, | zh_TW |
| dc.subject.keyword | Deep learning,Job Mobility Prediction,Time-series Embeddings,Graph Embedding,Sequential Modeling, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202304110 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-13 | - |
| dc.contributor.author-college | 管理學院 | - |
| dc.contributor.author-dept | 資訊管理學系 | - |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
