Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89875
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張斐章zh_TW
dc.contributor.advisorFi-John Changen
dc.contributor.author張佑文zh_TW
dc.contributor.authorYu-Wen Changen
dc.date.accessioned2023-09-22T16:29:51Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-11-
dc.identifier.citationAli, A. S. A., Ebrahimi, S., Ashiq, M. M., Alasta, M. S., & Azari, B. (2022). CNN-Bi LSTM neural network for simulating groundwater level. Environ. Eng, 8, 1-7.
Boulesteix, A. L., Janitza, S., Kruppa, J., & König, I. R. (2012). Overview of random forest methodology and practical guidance with emphasis on computational biology and bioinformatics. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2(6), 493-507
Breiman, L. (2001). Random forests. Machine learning, 45, 5-32.
Chang, F. J., & Chen, Y. C. (2001). A counterpropagation fuzzy-neural network modeling approach to real time streamflow prediction. Journal of hydrology, 245(1-4), 153-164.
Chang, F. J., & Chang, Y. T. (2006). Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in water resources, 29(1), 1-10.
Chang, F. J., Chen, P. A., Lu, Y. R., Huang, E., & Chang, K. Y. (2014). Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control. Journal of Hydrology, 517, 836-846.
Chang, F.-J., Chang, L.-C., Huang, C.-W., & Kao, I.-F. (2016). Prediction of monthly regional groundwater levels through hybrid soft-computing techniques. Journal of Hydrology, 541, 965-976.
Chang, F. J., Huang, C. W., Cheng, S. T., & Chang, L. C. (2017). Conservation of groundwater from over-exploitation—Scientific analyses for groundwater resources management. Science of The Total Environment, 598, 828-838.
Chang, L. C., Shen, H. Y., & Chang, F. J. (2014). Regional flood inundation nowcast using hybrid SOM and dynamic neural networks. Journal of Hydrology, 519, 476-489
Chandwani, V., Vyas, S. K., Agrawal, V., & Sharma, G. (2015). Soft computing approach for rainfall-runoff modelling: a review. Aquatic Procedia, 4, 1054-1061.
Chen, C., He, W., Zhou, H., Xue, Y., & Zhu, M. (2020). A comparative study among machine learning and numerical models for simulating groundwater dynamics in the Heihe River Basin, northwestern China. Scientific reports, 10(1), 1-13.
Chua, L. O., & Roska, T. (1993). The CNN paradigm. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(3), 147-156.
Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and ANFIS models for reconstructing missing flow data. Environmental Monitoring and Assessment, 166, 421-434.
Goethals, P. L., Dedecker, A. P., Gabriels, W., Lek, S., & De Pauw, N. (2007). Applications of artificial neural networks predicting macroinvertebrates in freshwaters. Aquatic Ecology, 41, 491-508.
Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543.
Huang, Z., Xu, W., & Yu, K. (2015). Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991.
Kao, I. F., Zhou, Y., Chang, L. C., & Chang, F. J. (2020). Exploring a Long Short-Term Memory based Encoder-Decoder framework for multi-step-ahead flood forecasting. Journal of Hydrology, 583, 124631.
Kao, I. F., Liou, J. Y., Lee, M. H., & Chang, F. J. (2021). Fusing stacked autoencoder and long short-term memory for regional multistep-ahead flood inundation forecasts. Journal of Hydrology, 598, 126371.
Khadri, S., & Pande, C. (2016). Ground water flow modeling for calibrating steady state using MODFLOW software: a case study of Mahesh River basin, India. Modeling Earth Systems and Environment, 2, 1-17.
Kow, P. Y., Chang, L. C., Lin, C. Y., Chou, C. C. K., & Chang, F. J. (2022). Deep neural networks for spatiotemporal PM2. 5 forecasts based on atmospheric chemical transport model output and monitoring data. Environmental Pollution, 306, 119348.
LeCun, Y., & Bengio, Y. (1995). Convolutional networks for images, speech, and time series. The handbook of brain theory and neural networks, 3361(10), 1995.
Nourani, V., Baghanam, A. H., Adamowski, J., & Kisi, O. (2014). Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. Journal of Hydrology, 514, 358-377.
Nourani, V. (2017). An emotional ANN (EANN) approach to modeling rainfall-runoff process. Journal of Hydrology, 544, 267-277.
Panagopoulos, G. (2012). Application of MODFLOW for simulating groundwater flow in the Trifilia karst aquifer, Greece. Environmental Earth Sciences, 67(7), 1877-1889.
R. Allen Freeze & John A. Cherry(1979). Groundwater. Prentice-Hall.
Roska, T., & Chua, L. O. (1993). The CNN universal machine: an analogic array computer. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 40(3), 163-173.
Shafaei, M., Adamowski, J., Fakheri-Fard, A., Dinpashoh, Y., & Adamowski, K. (2016). A wavelet-SARIMA-ANN hybrid model for precipitation forecasting. Journal of Water and Land Development, 28(1), 27.
Shenify, M., Danesh, A. S., Gocić, M., Taher, R. S., Abdul Wahab, A. W., Gani, A., ... & Petković, D. (2016). Precipitation estimation using support vector machine with discrete wavelet transform. Water resources management, 30, 641-652.
Sherstinsky, A. (2020). Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Physica D: Nonlinear Phenomena, 404, 132306.
Shreyak. (2020). Becoming Human: Artificial Intelligence Magazine.
Shu, X., Ding, W., Peng, Y., Wang, Z., Wu, J., & Li, M. (2021). Monthly streamflow forecasting using convolutional neural network. Water Resources Management, 35, 5089-5104.
Su, Y.-S., Ni, C.-F., Li, W.-C., Lee, I.-H., & Lin, C.-P. (2020). Applying deep learning algorithms to enhance simulations of large-scale groundwater flow in IoTs. Applied Soft Computing, 92, 106298.
Vadiati, M., Yami, Z. R., Eskandari, E., Nakhaei, M., & Kisi, O. (2022). Application of artificial intelligence models for prediction of groundwater level fluctuations: case study (Tehran-Karaj alluvial aquifer). Environmental Monitoring and Assessment, 194(9).
Valipour, M. (2016). Optimization of neural networks for precipitation analysis in a humid region to detect drought and wet year alarms. Meteorological Applications, 23(1), 91-100.
Weatherl, R. K., Salgado, M. J. H., Ramgraber, M., Moeck, C., & Schirmer, M. (2021). Estimating surface runoff and groundwater recharge in an urban catchment using a water balance approach. Hydrogeology Journal, 29(7), 2411-2428.
Werth, S., & Güntner, A. (2010). Calibration analysis for water storage variability of the global hydrological model WGHM. Hydrology and Earth System Sciences, 14(1), 59-78.
Wunsch, A., Liesch, T., & Broda, S. (2021). Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX). Hydrology and Earth System Sciences, 25(3), 1671-1687. https://doi.org/10.5194/hess-25-1671-2021
Zhang, E., Hou, L., Shen, C., Shi, Y., & Zhang, Y. (2015). Sound quality prediction of vehicle interior noise and mathematical modeling using a back propagation neural network (BPNN) based on particle swarm optimization (PSO). Measurement Science and Technology, 27(1), 015801.
張斐章、張麗秋(2015)。類神經網路原理與應用。臺北市:滄海書局。
中華民國經濟部。(2013)。地下水補注地質敏感區劃定計畫書G0001 濁水溪沖積扇。臺北市:作者。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89875-
dc.description.abstract由於台灣彰雲地區長期超抽地下水,造成嚴重的地層下陷。也因為氣候變化引起的降水變化加劇和極端天氣事件增多,可能導致乾旱和洪水持續時間延長,從而直接影響地下水的可用性和對地下水的依賴。在長期乾旱的情況下,含水層枯竭的風險更高,特別是在小型和淺層含水層的情況下。由於地下水的緩衝能力,缺水地區的人們將越來越依賴地下水。,使地下水成為更受重視的水資源。本研究使用深度學習的CNN-BP區域地下水位預測模式來預測台灣濁水溪流域的地下水狀況,此模式結合卷基神經網路(CNN)、倒傳遞神經網路(BPNN),以地下水位、降雨量和流量,同時預測未來第一天到第三天( T+1~T+3 )濁水溪沖積扇多個測站的地下水位。本研究使用2000/01/01~2019/12/3 25個地下水位測站、20個降雨量測站和3個流量測站以日為單位的資料,經過隨機森林(Random Forest)篩選因子後作為預測模式的輸入資料。總共將7291筆資料,切分為訓練(5844, 80%)、驗證(723, 10%)及測試(724, 10%)等三階段。
研究結果發現,本研究提出之CNN-BP模式,相較於傳統的倒傳遞神經網路(BPNN)模式,因為其能夠擷取資料時間維度特徵的特點,在預測多測站未來地下水位有更好的表現,本模式預測精準度良好,結果之R2在0.98~0.94 之間;RMSE在0.156m~0.264m之間。本研究亦發現CNN-BP模式的預測誤差與濁水溪的平均岩性有關聯,平均岩石粒徑大的地方容易低估,反之則容易高估。透過海棠颱風的案例分析,驗證本研究的CNN-BP模式可以有效預測暴雨事件下濁水溪沖積扇的潛在地下水補注,得以做為日後土地利用、分區規劃,地下水資源管理等研究之參考。
zh_TW
dc.description.abstractDue to the long-term over-extraction of groundwater in the Chang-Yun region of Taiwan, serious subsidence has occurred, exacerbated by extreme weather events. As a result, groundwater has become a more important water resource, leading to an increased research focus on the groundwater in the Jhuoshuei River Basin in Taiwan. This study employs a deep-learning CNN-BP model for regional groundwater level prediction. The model combines Convolutional Neural Networks (CNN) and Backpropagation Neural Networks (BPNN) to predict the groundwater levels at multiple monitoring stations in the Jhuoshuei River alluvial fan for the next one to three days (T+1 to T+3). The input data for the prediction model include groundwater levels, rainfall, and streamflow, collected from 25 groundwater level monitoring stations, 20 rainfall monitoring stations, and 3 streamflow monitoring stations, respectively, from January 1, 2000, to December 3, 2019, daily. After feature selection using Random Forest, a total of 7,291 data points were available, which were divided into training (5,844, 80%), validation (723, 10%), and testing (724, 10%) sets. The research findings reveal that the proposed CNN-BP model outperforms the traditional BPNN model by capturing temporal features of the data. It exhibits better prediction performance for future groundwater levels at multiple monitoring stations, achieving good prediction accuracy with R2 values ranging from 0.98 to 0.94 and RMSE values ranging from 0.156 m to 0.264 m. The study also found a certain correlation between the prediction errors of the CNN-BP model and the average lithology of the Jhuoshuei River, with underestimation in areas with larger average rock particle sizes and overestimation in areas with smaller particle sizes. Through verification using the Haitang typhoon data, the CNN-BP model effectively predicts the potential groundwater recharge in the Jhuoshuei River alluvial fan during heavy rainfall events. It can serve as a reference for future land use, zoning planning, and regional groundwater resource management.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:29:51Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:29:51Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 IV
Abstract V
圖目錄 IX
表目錄 XI
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究流程 3
第二章 文獻回顧 4
2.1 類神經網路 4
2.2 類神經網路應用於地下水 5
第三章 研究案例 6
3.1 研究區域 6
3.2 資料蒐集 6
第四章 理論概述 12
4.1 類神經網路(Artificial Neural Networks, ANNs) 12
4.2 倒傳遞神經網路(Backpropagation Neural Network, BPNN) 13
4.3 卷積神經網路(Convolution Neural Network, CNN) 16
4.4 隨機森林(Random Forest) 18
4.5 距離反比加權法(Inverse Distance Weighting, IDW) 19
4.6 CNN-BP 地下水位預測模式 20
4.7 模式評估指標 23
第五章 結果與討論 25
5.1 資料前處理 25
5.2 決定預測模式輸入資料 26
5.3 決定區域地下水位預測模式之架構 30
5.4 模式預測區域地下水位 32
5.5 區域地下水位預測誤差分析 43
5.6 濁水溪沖積扇岩性分布與區域地下水位預測綜合分析 47
5.7 CNN-BP模式預測在暴雨事件下的地下水潛在補注 52
第六章 結論 56
第七章 參考文獻 58
附錄一 CNN-BP模式不同輸入延時長度之預測表現 64
附錄二 模式預測T+2時刻地下水位序列圖 66
附錄三 模式預測T+3時刻地下水位序列圖 69
附錄四 BPNN預測結果 73
附錄五 地質鑽井測站基本資料 74
附錄六 颱風事件蒐集 76
-
dc.language.isozh_TW-
dc.title應用卷積神經網路預測區域地下水位之研究-以濁水溪沖積扇為例zh_TW
dc.titleUtilizing convolutional neural networks to forecast regional groundwater levels – a case study in the Jhuoshuei River basin of Taiwanen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張麗秋;黃文政;黃誌川zh_TW
dc.contributor.oralexamcommitteeLi-Chiu Chang;Wen-Cheng Huang;Jr-Chuan Huangen
dc.subject.keyword地下水預測,類神經網路,深度學習,卷積神經網路,倒傳遞神經網路,隨機森林,台灣,zh_TW
dc.subject.keywordGroundwater prediction,Artificial Neural Network (ANN),Deep learning,Convolutional Neural Networks,Backpropagation Neural Networks,Random Forest,Taiwan,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202303324-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-11-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物環境系統工程學系-
dc.date.embargo-lift2028-08-08-
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
8.32 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved