Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89864
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor游文岳zh_TW
dc.contributor.advisorWen-Yueh Yuen
dc.contributor.author林夢蝶zh_TW
dc.contributor.authorMonica Mengdie Linen
dc.date.accessioned2023-09-22T16:27:02Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-04-
dc.identifier.citation[1] Global distribution of plastic consumption 2019, by application. (accessed) https://www.statista.com/statistics/1002055/plastic-consumption-share-worldwide-by-application/
[2] J.R. Jambeck, R. Geyer, C. Wilcox, T.R. Siegler, M. Perryman, A. Andrady, R. Narayan, K.L. Law, Plastic waste inputs from land into the ocean, Science, 347 (2015) 768-771. https://doi.org/10.1126/science.1260352
[3] U.S.E.P. Agency, Plastics: material-specific data. (accessed) https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data
[4] K. Ragaert, L. Delva, K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste management, 69 (2017) 24-58. https://doi.org/10.1016/j.wasman.2017.07.044
[5] P. Benyathiar, P. Kumar, G. Carpenter, J. Brace, D.K. Mishra, Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review, Polymers, 14 (2022) 2366. https://doi.org/10.3390/polym14122366
[6] Frounchi, Masoud, Studies on degradation of PET in mechanical recycling, Macromolecular Symposia, 144 (1999) 465-469. https://doi.org/10.1002/masy.19991440142
[7] L.D. Ellis, N.A. Rorrer, K.P. Sullivan, M. Otto, J.E. McGeehan, Y. Román-Leshkov, N. Wierckx, G.T. Beckham, Chemical and biological catalysis for plastics recycling and upcycling, Nature Catalysis, 4 (2021) 539-556. https://doi.org/10.1038/s41929-021-00648-4
[8] J. Payne, M.D. Jones, The chemical recycling of polyesters for a circular plastics economy: Challenges and emerging opportunities, ChemSusChem, 14 (2021) 4041-4070. https://doi.org/10.1002/cssc.202100400
[9] E. Barnard, J.J.R. Arias, W. Thielemans, Chemolytic depolymerisation of PET: a review, Green Chemistry, 23 (2021) 3765-3789. https://doi.org/10.1039/D1GC00887K
[10] S.D.A. Sharuddin, F. Abnisa, W.M.A.W. Daud, M.K. Aroua, A review on pyrolysis of plastic wastes, Energy conversion and management, 115 (2016) 308-326. https://doi.org/10.1016/j.enconman.2016.02.037
[11] H.T. Kim, M. Hee Ryu, Y.J. Jung, S. Lim, H.M. Song, J. Park, S.Y. Hwang, H.S. Lee, Y.J. Yeon, B.H. Sung, Chemo‐Biological Upcycling of Poly (ethylene terephthalate) to Multifunctional Coating Materials, ChemSusChem, 14 (2021) 4251-4259. https://doi.org/10.1002/cssc.202100909
[12] A.V. Pinto, P. Ferreira, R.P. Neves, P.A. Fernandes, M.J. Ramos, A.L. Magalhaes, Reaction mechanism of MHETase, a PET degrading enzyme, ACS Catalysis, 11 (2021) 10416-10428. https://doi.org/10.1021/acscatal.1c02444
[13] N. George, T. Kurian, Recent developments in the chemical recycling of postconsumer poly (ethylene terephthalate) waste, Industrial & Engineering Chemistry Research, 53 (2014) 14185-14198. https://doi.org/10.1021/ie501995m
[14] Coca, Cola, Company, The Coca‑Cola Company Announces Industry-Leading Target for Reusable Packaging. (accessed) https://www.coca-colacompany.com/media-center/coca-cola-announces-industry-leading-target-for-reusable-packaging
[15] T.W.G. Solomons, C.B. Fryhle, S.A. Snyder, Solomons' Organic Chemistry, 12th ed, Hoboken, NJ, WILEY, (2017).
[16] M. Genta, T. Iwaya, M. Sasaki, M. Goto, T. Hirose, Depolymerization mechanism of poly (ethylene terephthalate) in supercritical methanol, Industrial & engineering chemistry research, 44 (2005) 3894-3900. https://doi.org/10.1021/ie0488187
[17] S.C. Kosloski-Oh, Z.A. Wood, Y. Manjarrez, J.P. de Los Rios, M.E. Fieser, Catalytic methods for chemical recycling or upcycling of commercial polymers, Materials Horizons, 8 (2021) 1084-1129. https://doi.org/10.1039/D0MH01286F
[18] L. Cosimbescu, D.R. Merkel, J. Darsell, G. Petrossian, Simple but tricky: investigations of terephthalic acid purity obtained from mixed PET waste, Industrial & Engineering Chemistry Research, 60 (2021) 12792-12797. https://doi.org/10.1021/acs.iecr.1c02604
[19] R. Nisticò, Polyethylene terephthalate (PET) in the packaging industry, Polymer Testing, 90 (2020) 106707. https://doi.org/10.1016/j.polymertesting.2020.106707
[20] V. Sinha, M.R. Patel, J.V. Patel, PET waste management by chemical recycling: a review, Journal of Polymers and the Environment, 18 (2010) 8-25. https://doi.org/10.1007/s10924-008-0106-7
[21] M. Genta, T. Iwaya, M. Sasaki, M. Goto, Supercritical methanol for polyethylene terephthalate depolymerization: Observation using simulator, Waste Management, 27 (2007) 1167-1177. https://doi.org/10.1016/j.wasman.2006.06.005
[22] H. McLaughlin, A.A. Littlefield, M. Menefee, A. Kinzer, T. Hull, B.K. Sovacool, M.D. Bazilian, J. Kim, S. Griffiths, Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world, Renewable and Sustainable Energy Reviews, 177 (2023) 113215. https://doi.org/10.1016/j.rser.2023.113215
[23] Z.-J. Gong, Y.-R. Li, H.-L. Wu, S.D. Lin, W.-Y. Yu, Direct copolymerization of carbon dioxide and 1,4-butanediol enhanced by ceria nanorod catalyst, Applied Catalysis B: Environmental, 265 (2020) 118524. https://doi.org/10.1016/j.apcatb.2019.118524
[24] P. Styring, D. Jansen, H.d.C.H. Reith, K. Armstrong, Carbon Capture and Utilisation in the Green Economy, The Centre for Low Carbon Futures and CO2Chem Publishing, (2011).
[25] M. Bailera, P. Lisbona, L.M. Romeo, S. Espatolero, Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2, Renewable and Sustainable Energy Reviews, 69 (2017) 292-312. https://doi.org/10.1016/j.rser.2016.11.130
[26] W.-F. Kuan, W.-Y. Yu, F.-Y. Tu, C.-H. Chung, Y.-C. Chang, M.M. Lin, T.-H. Yu, L.-J. Chen, Facile reflux preparation of defective mesoporous ceria nanorod with superior catalytic activity for direct carbon dioxide conversion into dimethyl carbonate, Chemical Engineering Journal, 430 (2022) 132941. https://doi.org/10.1016/j.cej.2021.132941
[27] K. Tomishige, M. Tamura, Y. Nakagawa, CO2 Conversion with Alcohols and Amines into Carbonates, Ureas, and Carbamates over CeO2 Catalyst in the Presence and Absence of 2‐Cyanopyridine, The Chemical Record, 19 (2019) 1354-1379. https://doi.org/10.1002/tcr.201800117
[28] L. Li, S. Clifford, G. Puxty, M. Maeder, R. Burns, H. Yu, W. Conway, Kinetic and equilibrium reactions of a new heterocyclic aqueous 4-aminomethyltetrahydropyran (4-AMTHP) absorbent for post combustion carbon dioxide (CO2) capture processes, ACS Sustainable Chemistry & Engineering, 5 (2017) 9200-9206. https://doi.org/10.1021/acssuschemeng.7b02149
[29] M. Hulla, P.J. Dyson, Pivotal Role of the Basic Character of Organic and Salt Catalysts in C-N Bond Forming Reactions of Amines with CO2, Angewandte Chemie, 132 (2020) 1014-1029. https://doi.org/10.1002/anie.201906942
[30] D.J. Darensbourg, R.M. Mackiewicz, A.L. Phelps, D.R. Billodeaux, Copolymerization of CO2 and epoxides catalyzed by metal salen complexes, Accounts of chemical research, 37 (2004) 836-844. https://doi.org/10.1021/ar030240u
[31] G.W. Coates, D.R. Moore, Discrete metal‐based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism, Angewandte Chemie International Edition, 43 (2004) 6618-6639. https://doi.org/10.1002/anie.200460442
[32] G.A. Olah, Beyond oil and gas: the methanol economy, Angewandte Chemie International Edition, 44 (2005) 2636-2639. https://doi.org/10.1002/anie.200462121
[33] J. Zhong, X. Yang, Z. Wu, B. Liang, Y. Huang, T. Zhang, State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol, Chemical Society Reviews, 49 (2020) 1385-1413. https://doi.org/10.1039/C9CS00614A
[34] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chemical Society Reviews, 40 (2011) 3703-3727. https://doi.org/10.1039/C1CS15008A
[35] X. Jiang, X. Nie, X. Guo, C. Song, J.G. Chen, Recent advances in carbon dioxide hydrogenation to methanol via heterogeneous catalysis, Chemical reviews, 120 (2020) 7984-8034. https://doi.org/10.1021/acs.chemrev.9b00723
[36] A.A. Kiss, J. Pragt, H. Vos, G. Bargeman, M. De Groot, Novel efficient process for methanol synthesis by CO2 hydrogenation, Chemical engineering journal, 284 (2016) 260-269. https://doi.org/10.1016/j.cej.2015.08.101
[37] Y. Deng, Z. Li, T. Chen, Z. Bian, K. Lim, N. Dewangan, K.G. Haw, Z. Wang, S. Kawi, Low-cost and facile fabrication of defect-free water permeable membrane for CO2 hydrogenation to methanol, Chemical Engineering Journal, 435 (2022) 133554. https://doi.org/10.1016/j.cej.2021.133554
[38] Y. Li, M. Wang, X. Liu, C. Hu, D. Xiao, D. Ma, Catalytic Transformation of PET and CO2 into High‐Value Chemicals, Angewandte Chemie, 134 (2022) e202117205. https://doi.org/10.1002/anie.202117205
[39] T.-C. Tsai, S.-B. Liu, I. Wang, Disproportionation and transalkylation of alkylbenzenes over zeolite catalysts, Applied Catalysis A: General, 181 (1999) 355-398. https://doi.org/10.1016/S0926-860X(98)00396-2
[40] S. Mishra, A.S. Goje, Kinetic and thermodynamic study of methanolysis of poly (ethylene terephthalate) waste powder, Polymer international, 52 (2003) 337-342. https://doi.org/10.1002/pi.1147
[41] X. Fang, Y. Men, F. Wu, Q. Zhao, R. Singh, P. Xiao, T. Du, P.A. Webley, Promoting CO2 hydrogenation to methanol by incorporating adsorbents into catalysts: Effects of hydrotalcite, Chemical Engineering Journal, 378 (2019) 122052. https://doi.org/10.1016/j.cej.2019.122052
[42] Q. Tan, Z. Shi, D. Wu, CO2 hydrogenation to methanol over a highly active Cu-Ni/CeO2-nanotube catalyst, Industrial & Engineering Chemistry Research, 57 (2018) 10148-10158. https://doi.org/10.1021/acs.iecr.8b01246
[43] M.K. Koh, M. Khavarian, S.P. Chai, A.R. Mohamed, The morphological impact of siliceous porous carriers on copper-catalysts for selective direct CO2 hydrogenation to methanol, international journal of hydrogen energy, 43 (2018) 9334-9342. https://doi.org/10.1016/j.ijhydene.2018.03.202
[44] T. Fujitani, M. Saito, Y. Kanai, T. Watanabe, J. Nakamura, T. Uchijima, Development of an active Ga2O3 supported palladium catalyst for the synthesis of methanol from carbon dioxide and hydrogen, Applied Catalysis A: General, 125 (1995) L199-L202. https://doi.org/10.1016/0926-860X(95)00049-6
[45] S. Bai, Q. Shao, Y. Feng, L. Bu, X. Huang, Highly efficient carbon dioxide hydrogenation to methanol catalyzed by zigzag platinum-cobalt nanowires, Small, 13 (2017) 1604311. https://doi.org/10.1002/smll.201604311
[46] H. Kurokawa, M.-a. Ohshima, K. Sugiyama, H. Miura, Methanolysis of polyethylene terephthalate (PET) in the presence of aluminium tiisopropoxide catalyst to form dimethyl terephthalate and ethylene glycol, Polymer Degradation and Stability, 79 (2003) 529-533. https://doi.org/10.1016/S0141-3910(02)00370-1
[47] Y. Yang, Y. Lu, H. Xiang, Y. Xu, Y. Li, Study on methanolytic depolymerization of PET with supercritical methanol for chemical recycling, Polymer degradation and stability, 75 (2002) 185-191. https://doi.org/10.1016/S0141-3910(01)00217-8
[48] Q. Liu, R. Li, T. Fang, Investigating and modeling PET methanolysis under supercritical conditions by response surface methodology approach, Chemical Engineering Journal, 270 (2015) 535-541. https://doi.org/10.1016/j.cej.2015.02.039
[49] Y. Huang, Y. Ma, Y. Cheng, L. Wang, X. Li, Dimethyl terephthalate hydrogenation to dimethyl cyclohexanedicarboxylates over bimetallic catalysts on carbon nanotubes, Industrial & Engineering Chemistry Research, 53 (2014) 4604-4613. https://doi.org/10.1021/ie500015m
[50] W. Yu, S. Bhattacharjee, W.-Y. Lu, C.-S. Tan, Synthesis of Al-modified SBA-15-supported Ru catalysts by chemical fluid deposition for hydrogenation of dimethyl terephthalate in water, ACS Sustainable Chemistry & Engineering, 8 (2020) 4058-4068. https://doi.org/10.1021/acssuschemeng.9b05634
[51] H. Jia, Z. Yang, X. Yun, X. Lei, X. Kong, F. Zhang, Confined NiRu bimetallic catalysts for the hydrogenation of dimethyl terephthalate to dimethyl cyclohexane-1,4-dicarboxylate, Industrial & Engineering Chemistry Research, 58 (2019) 22702-22708. https://doi.org/10.1021/acs.iecr.9b03315
[52] F. Dalena, A. Senatore, A. Marino, A. Gordano, M. Basile, A. Basile, Methanol production and applications: an overview, Methanol, (2018) 3-28. https://doi.org/10.1016/B978-0-444-63903-5.00001-7
[53] L. Grabow, M. Mavrikakis, Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation, Acs Catalysis, 1 (2011) 365-384. https://doi.org/10.1021/cs200055d
[54] J.F. Edwards, G. Schrader, In situ Fourier transform infrared study of methanol synthesis on mixed metal oxide catalysts, Journal of catalysis, 94 (1985) 175-186. https://doi.org/10.1016/0021-9517(85)90093-4
[55] N. Tsubaki, M. Ito, K. Fujimoto, A new method of low-temperature methanol synthesis, Journal of Catalysis, 197 (2001) 224-227. https://doi.org/10.1016/j.fuel.2007.06.020
[56] R. Yang, Y. Fu, Y. Zhang, N. Tsubaki, In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter, Journal of Catalysis, 228 (2004) 23-35. https://doi.org/10.1016/j.jcat.2004.08.017
[57] I.A. Fisher, A.T. Bell, In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2, Journal of Catalysis, 172 (1997) 222-237. https://doi.org/10.1006/jcat.1997.1870
[58] S. Chakraborty, H. Dai, P. Bhattacharya, N.T. Fairweather, M.S. Gibson, J.A. Krause, H. Guan, Iron-based catalysts for the hydrogenation of esters to alcohols, Journal of the American Chemical Society, 136 (2014) 7869-7872. https://doi.org/10.1021/ja504034q
[59] V.M. Palekar, H. Jung, J.W. Tiemey, I. Wender, Slurry phase synthesis of methanol with a potassium methoxide/copper chromite catalytic system, Applied Catalysis A: General, 102 (1993) 13-34. https://doi.org/10.1016/0926-860X(93)85152-F
[60] J. Evans, N. Cant, D. Trimm, M. Wainwright, Hydrogenolysis of ethyl formate over copper-based catalysts, Applied Catalysis, 6 (1983) 355-362. https://doi.org/10.1016/0166-9834(83)80108-0
[61] P. Reubroycharoen, T. Vitidsant, Y. Yoneyama, N. Tsubaki, Development of a new low-temperature methanol synthesis process, Catalysis today, 89 (2004) 447-454. https://doi.org/10.1016/j.cattod.2004.01.006
[62] S. Likhittaphon, R. Panyadee, W. Fakyam, S. Charojrochkul, T. Sornchamni, N. Laosiripojana, S. Assabumrungrat, P. Kim-Lohsoontorn, Effect of CuO/ZnO catalyst preparation condition on alcohol-assisted methanol synthesis from carbon dioxide and hydrogen, International Journal of Hydrogen Energy, 44 (2019) 20782-20791. https://doi.org/10.1016/j.ijhydene.2018.07.021
[63] B. Hu, Y. Yamaguchi, K. Fujimoto, Low temperature methanol synthesis in alcohol solvent over copper-based catalyst, Catalysis Communications, 10 (2009) 1620-1624. https://doi.org/10.1016/j.catcom.2009.02.016
[64] Y. Jeong, I. Kim, J.Y. Kang, H. Jeong, J.K. Park, J.H. Park, J.C. Jung, Alcohol-assisted low temperature methanol synthesis from syngas over Cu/ZnO catalysts: Effect of pH value in the co-precipitation step, Journal of Molecular Catalysis A: Chemical, 400 (2015) 132-138. https://doi.org/10.1016/j.molcata.2015.01.008
[65] S. Meesattham, P. Kim-Lohsoontorn, Low-temperature alcohol-assisted methanol synthesis from CO2 and H2: The effect of alcohol type, International Journal of Hydrogen Energy, 47 (2022) 22691-22703. https://doi.org/10.1016/j.ijhydene.2022.05.083
[66] X. Gui, Z. Tang, W. Fei, Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (288.15 to 318.15) K, Journal of Chemical & Engineering Data, 56 (2011) 2420-2429. https://doi.org/10.1021/je101344v
[67] Z. Jiang, D. Yan, J. Xin, F. Li, M. Guo, Q. Zhou, J. Xu, Y. Hu, X. Lu, Poly (ionic liquid) s as efficient and recyclable catalysts for methanolysis of PET, Polymer Degradation and Stability, 199 (2022) 109905. https://doi.org/10.1016/j.polymdegradstab.2022.109905
[68] J.-T. Du, Q. Sun, X.-F. Zeng, D. Wang, J.-X. Wang, J.-F. Chen, ZnO nanodispersion as pseudohomogeneous catalyst for alcoholysis of polyethylene terephthalate, Chemical Engineering Science, 220 (2020) 115642. https://doi.org/10.1016/j.ces.2020.115642
[69] Y.Z. Ge, C.H. Han, D. Zhang, Study of PET depolymerization catalyzed by metal oxide with different acidity/basicity under microwave irradiation, Advanced Materials Research, 233 (2011) 1076-1079. https://doi.org/10.4028/www.scientific.net/AMR.233-235.1076
[70] B. Liang, J. Ma, X. Su, C. Yang, H. Duan, H. Zhou, S. Deng, L. Li, Y. Huang, Investigation on deactivation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol, Industrial & Engineering Chemistry Research, 58 (2019) 9030-9037. https://doi.org/10.1021/acs.iecr.9b01546
[71] F. Liao, Y. Huang, J. Ge, W. Zheng, K. Tedsree, P. Collier, X. Hong, S.C. Tsang, Morphology‐dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH, Angewandte Chemie, 123 (2011) 2210-2213. https://doi.org/10.1002/anie.201007108
[72] J. Toyir, P.R.r. de la Piscina, J.L.G. Fierro, N.s. Homs, Catalytic performance for CO2 conversion to methanol of gallium-promoted copper-based catalysts: influence of metallic precursors, Applied Catalysis B: Environmental, 34 (2001) 255-266. https://doi.org/10.1016/S0926-3373(01)00203-X
[73] A. Le Valant, C. Comminges, C. Tisseraud, C. Canaff, L. Pinard, Y. Pouilloux, The Cu-ZnO synergy in methanol synthesis from CO2, Part 1: Origin of active site explained by experimental studies and a sphere contact quantification model on Cu+ZnO mechanical mixtures, Journal of Catalysis, 324 (2015) 41-49. https://doi.org/10.1016/j.jcat.2015.01.021
[74] P. Gao, F. Li, N. Zhao, F. Xiao, W. Wei, L. Zhong, Y. Sun, Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol, Applied Catalysis A: General, 468 (2013) 442-452. https://doi.org/10.1016/j.apcata.2013.09.026
[75] F. Arena, K. Barbera, G. Italiano, G. Bonura, L. Spadaro, F. Frusteri, Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol, Journal of Catalysis, 249 (2007) 185-194. https://doi.org/10.1016/j.jcat.2007.04.003
[76] R. Ladera, F.J. Pérez-Alonso, J.M. González-Carballo, M. Ojeda, S. Rojas, J.L.G. Fierro, Catalytic valorization of CO2 via methanol synthesis with Ga-promoted Cu–ZnO–ZrO2 catalysts, Applied Catalysis B: Environmental, 142 (2013) 241-248. https://doi.org/10.1016/j.apcatb.2013.05.019
[77] X.-M. Liu, G. Lu, Z.-F. Yan, Nanocrystalline zirconia as catalyst support in methanol synthesis, Applied Catalysis A: General, 279 (2005) 241-245. https://doi.org/10.1016/j.apcata.2004.10.040
[78] H. Bahruji, M. Bowker, G. Hutchings, N. Dimitratos, P. Wells, E. Gibson, W. Jones, C. Brookes, D. Morgan, G. Lalev, Pd/ZnO catalysts for direct CO2 hydrogenation to methanol, Journal of catalysis, 343 (2016) 133-146. https://doi.org/10.1016/j.jcat.2016.03.017
[79] X. Zhou, J. Qu, F. Xu, J. Hu, J.S. Foord, Z. Zeng, X. Hong, S.C.E. Tsang, Shape selective plate-form Ga2O3 with strong metal-support interaction to overlying Pd for hydrogenation of CO2 to CH3OH, Chemical Communications, 49 (2013) 1747-1749. https://doi.org/10.1039/C3CC38455A
[80] N. Rui, Z. Wang, K. Sun, J. Ye, Q. Ge, C.-j. Liu, CO2 hydrogenation to methanol over Pd/In2O3: effects of Pd and oxygen vacancy, Applied Catalysis B: Environmental, 218 (2017) 488-497. https://doi.org/10.1016/j.apcatb.2017.06.069
[81] X. Jiang, N. Koizumi, X. Guo, C. Song, Bimetallic Pd-Cu catalysts for selective CO2 hydrogenation to methanol, Applied Catalysis B: Environmental, 170 (2015) 173-185. https://doi.org/10.1016/j.apcatb.2015.01.010
[82] A. Ota, E.L. Kunkes, I. Kasatkin, E. Groppo, D. Ferri, B. Poceiro, R.M.N. Yerga, M. Behrens, Comparative study of hydrotalcite-derived supported Pd2Ga and PdZn intermetallic nanoparticles as methanol synthesis and methanol steam reforming catalysts, Journal of catalysis, 293 (2012) 27-38. https://doi.org/10.1016/j.jcat.2012.05.020
[83] Z. Shi, Q. Tan, C. Tian, Y. Pan, X. Sun, J. Zhang, D. Wu, CO2 hydrogenation to methanol over Cu-In intermetallic catalysts: Effect of reduction temperature, Journal of Catalysis, 379 (2019) 78-89. https://doi.org/10.1016/j.jcat.2019.09.024
[84] S. Kattel, P.J. Ramírez, J.G. Chen, J.A. Rodriguez, P. Liu, Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, Science, 355 (2017) 1296-1299. https://doi.org/10.1126/science.aal3573
[85] Y. Wang, S. Kattel, W. Gao, K. Li, P. Liu, J.G. Chen, H. Wang, Exploring the ternary interactions in Cu-ZnO-ZrO2 catalysts for efficient CO2 hydrogenation to methanol, Nature communications, 10 (2019) 1166. https://doi.org/10.1038/s41467-019-09072-6
[86] C. Tisseraud, C. Comminges, T. Belin, H. Ahouari, A. Soualah, Y. Pouilloux, A. Le Valant, The Cu-ZnO synergy in methanol synthesis from CO2, Part 2: Origin of the methanol and CO selectivities explained by experimental studies and a sphere contact quantification model in randomly packed binary mixtures on Cu-ZnO coprecipitate catalysts, Journal of Catalysis, 330 (2015) 533-544. https://doi.org/10.1016/j.jcat.2015.04.035
[87] T. Fujitani, J. Nakamura, The chemical modification seen in the Cu/ZnO methanol synthesis catalysts, Applied Catalysis A: General, 191 (2000) 111-129. https://doi.org/10.1016/S0926-860X(99)00313-0
[88] J. Nakamura, Y. Choi, T. Fujitani, On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts, Topics in catalysis, 22 (2003) 277-285. https://doi.org/10.1023/A:1023588322846
[89] N. Iwasa, H. Suzuki, M. Terashita, M. Arai, N. Takezawa, Methanol synthesis from CO2 under atmospheric pressure over supported Pd catalysts, Catalysis letters, 96 (2004) 75-78. https://doi.org/10.1023/B:CATL.0000029533.41604.13
[90] H. Nakatsuji, M. Hada, Interaction of a hydrogen molecule with palladium, Journal of the American Chemical Society, 107 (1985) 8264-8266. https://doi.org/10.1021/ja00312a078
[91] B.D. Adams, A. Chen, The role of palladium in a hydrogen economy, Materials today, 14 (2011) 282-289. https://doi.org/10.1016/S1369-7021(11)70143-2
[92] S.E. Collins, M.A. Baltanas, A.L. Bonivardi, An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/β-Ga2O3, Journal of Catalysis, 226 (2004) 410-421. https://doi.org/10.1016/j.jcat.2016.03.017
[93] Y. Yin, B. Hu, X. Li, X. Zhou, X. Hong, G. Liu, Pd@zeolitic imidazolate framework-8 derived PdZn alloy catalysts for efficient hydrogenation of CO2 to methanol, Applied Catalysis B: Environmental, 234 (2018) 143-152. https://doi.org/10.1016/j.apcatb.2018.04.024
[94] C.-H. Chung, F.-Y. Tu, T.-A. Chiu, T.-T. Wu, W.-Y. Yu, Critical roles of surface oxygen vacancy in heterogeneous catalysis over ceria-based materials: a selected review, Chemistry Letters, 50 (2021) 856-865. https://doi.org/10.1246/cl.200845
[95] A.S. Malik, S.F. Zaman, A.A. Al-Zahrani, M.A. Daous, H. Driss, L.A. Petrov, Development of highly selective PdZn/CeO2 and Ca-doped PdZn/CeO2 catalysts for methanol synthesis from CO2 hydrogenation, Applied Catalysis A: General, 560 (2018) 42-53. https://doi.org/10.1016/j.apcata.2018.04.036
[96] M. Yamaye, T. Hashime, K. Yamamoto, Y. Kosugi, N. Cho, T. Ichiki, T. Kito, Chemical recycling of poly (ethylene terephthalate). 2. Preparation of terephthalohydroxamic acid and terephthalohydrazide, Industrial & engineering chemistry research, 41 (2002) 3993-3998. https://doi.org/10.1021/ie010894b
[97] M. Genta, M. Goto, M. Sasaki, Heterogeneous continuous kinetics modeling of PET depolymerization in supercritical methanol, The Journal of Supercritical Fluids, 52 (2010) 266-275. https://doi.org/10.1016/j.supflu.2010.01.007
[98] M. Goto, H. Koyamoto, A. Kodama, T. Hirose, S. Nagaoka, B.J. McCoy, Degradation kinetics of polyethylene terephthalate in supercritical methanol, AIChE journal, 48 (2002) 136-144. https://doi.org/10.1002/aic.690480114
[99] Z. Lin, B. Lin, Z. Wang, S. Chen, C. Wang, M. Dong, Q. Gao, Q. Shao, T. Ding, H. Liu, Facile preparation of 1T/2H‐Mo (S1‐xSex) 2 nanoparticles for boosting hydrogen evolution reaction, ChemCatChem, 11 (2019) 2217-2222. https://doi.org/10.1002/cctc.201900095
[100] B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, Surface intercalated spherical MoS2xSe2(1-x) nanocatalysts for highly efficient and durable hydrogen evolution reactions, Dalton Transactions, 48 (2019) 8279-8287. https://doi.org/10.1039/C9DT01218D
[101] H. Wang, Y. Liu, Z. Li, X. Zhang, S. Zhang, Y. Zhang, Glycolysis of poly (ethylene terephthalate) catalyzed by ionic liquids, European Polymer Journal, 45 (2009) 1535-1544. https://doi.org/10.1016/j.eurpolymj.2009.01.025
[102] A. Al-Sabagh, F. Yehia, A. Eissa, M. Moustafa, G. Eshaq, A. Rabie, A. ElMetwally, Cu-and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly (ethylene terephthalate), Polymer Degradation and Stability, 110 (2014) 364-377. https://doi.org/10.1016/j.polymdegradstab.2014.10.005
[103] P.A. Krisbiantoro, Y.-W. Chiao, W. Liao, J.-P. Sun, D. Tsutsumi, H. Yamamoto, Y. Kamiya, K.C.-W. Wu, Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe2O4 (M= Co, Ni, Cu and Zn) spinel, Chemical Engineering Journal, 450 (2022) 137926. https://doi.org/10.1016/j.cej.2022.137926
[104] S. Farah, K.R. Kunduru, A. Basu, A.J. Domb, Molecular weight determination of polyethylene terephthalate, Poly (ethylene terephthalate) based blends, composites and nanocomposites, Elsevier2015, pp. 143-165. https://doi.org/10.1016/C2013-0-19172-6
[105] X. Zhang, L. Zhong, Q. Guo, H. Fan, H. Zheng, K. Xie, Influence of the calcination on the activity and stability of the Cu/ZnO/Al2O3 catalyst in liquid phase methanol synthesis, Fuel, 89 (2010) 1348-1352. https://doi.org/10.1016/j.fuel.2009.06.011
[106] P.J. Smith, S.A. Kondrat, P.A. Chater, B.R. Yeo, G.M. Shaw, L. Lu, J.K. Bartley, S.H. Taylor, M.S. Spencer, C.J. Kiely, A new class of Cu/ZnO catalysts derived from zincian georgeite precursors prepared by co-precipitation, Chemical science, 8 (2017) 2436-2447. https://doi.org/10.1039/C6SC04130B
[107] D. King, R. Nix, Thermal stability and reducibility of ZnO and Cu/ZnO catalysts, Journal of Catalysis, 160 (1996) 76-83. https://doi.org/10.1006/jcat.1996.0125
[108] H. Tang, N. Li, G. Li, A. Wang, Y. Cong, G. Xu, X. Wang, T. Zhang, Synthesis of gasoline and jet fuel range cycloalkanes and aromatics from poly (ethylene terephthalate) waste, Green Chemistry, 21 (2019) 2709-2719. https://doi.org/10.1039/C9GC00571D
[109] K. Tomita, H. Ida, Studies on the formation of poly (ethylene terephthalate): 2. Rate of transesterification of dimethyl terephthalate with ethylene glycol, Polymer, 14 (1973) 55-60. https://doi.org/10.1016/0032-3861(73)90096-7
[110] M. Han, Depolymerization of PET bottle via methanolysis and hydrolysis, Recycling of Polyethylene Terephthalate Bottles, Elsevier2019, pp. 85-108. https://doi.org/10.1016/B978-0-12-811361-5.00005-5
[111] D.D. Pham, J. Cho, Low-energy catalytic methanolysis of poly (ethyleneterephthalate), Green Chemistry, 23 (2021) 511-525. https://doi.org/10.1039/D0GC03536J
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89864-
dc.description.abstract由於工業的快速發展,塑膠廢棄物的污染和二氧化碳的過度排放都成為迫切需要被解決的環境問題,為了維持永續以及碳中和的環境,塑膠以及二氧化碳回收再利用的技術便成為學界和業界共同努力的目標。本研究透過一鍋反應法(one-pot reaction)將聚對苯二甲酸乙二酯(poly(ethylene terephthalate), PET)進行化學回收,此方法利用Cu/ZnO催化劑上透過二氧化碳氫化產生的甲醇,將PET降解為對甲苯二甲酸二甲酯(dimethyl terephthalate, DMT)和乙二醇,並添加催化溶劑以增加甲醇產生速率及產量,並探討溶劑結構對此反應的影響。反應測試結果顯示,以異丙醇作為催化溶劑可有效提升PET一鍋甲醇解中甲醇的產量及PET的轉化率,同時維持DMT的高選擇率。透過不同反應條件的活性測試,我們發現異丙醇的高選擇率可歸因於其本身不易與PET和DMT進行轉酯化反應的特性,在最佳化的條件下(220°C, 6 h),可得到63.1%的PET轉化率以及57.2%的DMT產率,大幅提升在未添加異丙醇系統的PET轉化率(31.9%)和DMT產率(25.8%),顯示了以異丙醇催化二氧化碳氫化反應是一種具有潛力的一鍋PET甲醇解方法,同時將廢棄PET和二氧化碳進行再利用。zh_TW
dc.description.abstractPlastic pollution and CO2 emissions have emerged as critical issues requiring immediate attention to achieve a sustainable, carbon-neutral society. Addressing these challenges demands the development of novel processes to recycle and repurpose waste plastics and CO2 resulting from human activities. This study focuses on the chemical recycling of poly(ethylene terephthalate) (PET) through a one-pot process, wherein PET is transformed into dimethyl terephthalate (DMT) and ethylene glycol by methanol (MeOH) produced in-situ via CO2 hydrogenation over the Cu/ZnO catalyst.
To enhance MeOH and DMT yields, this study investigates the impact of alcohol addition during the one-pot PET methanolysis. Specifically, isopropanol (i-PrOH) is employed as a catalytic solvent within the CO2-H2-PET system. The results demonstrate the effectiveness of i-PrOH as a catalyst solvent, significantly boosting PET degradation while maintaining high selectivity for DMT. This selectivity is attributed to the limitation of i-PrOH to PET alcoholysis and DMT transesterification abilities.
At 220°C for 6 hours, the CO2-H2-PET-i-PrOH system achieves a PET conversion of 63.1% and a DMT monomer yield of 57.2%, surpassing the results obtained from the CO2-H2-PET system, which had a PET conversion of 31.9% and a DMT yield of 25.8%. The findings underscore the potential of i-PrOH-assisted CO2 hydrogenation as a promising approach for one-pot PET methanolysis, enabling the efficient valorization of waste PET and CO2. Ultimately, this research offers valuable insights for the development of sustainable and efficient processes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:27:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:27:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
誌謝 ii
摘要 iv
Abstract v
目錄 vi
圖目錄 viii
表目錄 xiii
Chapter 1 緒論 1
1.1 聚酯塑膠的回收 1
1.1.1 廢棄塑膠回收方法簡介 2
1.1.2 PET的化學回收 4
1.2 二氧化碳之轉化與應用 7
1.2.1 二氧化碳還原生成甲醇反應 8
1.3 二氧化碳氫化應用於聚酯塑膠之醇解反應 10
1.4 催化溶劑應用於二氧化碳氫化反應 13
1.5 觸媒介紹 15
1.5.1 二氧化碳氫化反應之觸媒發展 15
1.5.2 PET甲醇解反應之觸媒發展 21
1.6 研究目標 23
Chapter 2 實驗方法 25
2.1 實驗藥品 25
2.2 觸媒製備 27
2.3 催化反應活性測試及產物分析 28
2.3.1 催化活性測試 28
2.3.2 產物分析-氣相層析火焰離子化偵測儀(GC-FID) 30
2.3.3 產物分析-氣相層析質譜儀(GC-MS) 33
2.4 觸媒鑑定 43
2.4.1 X光繞射儀(XRD) 43
2.4.2 感應耦合電漿光學發射光譜儀(ICP-OES) 44
2.4.3 比表面積及孔隙分布測定儀(ASPS) 46
2.4.4 化學吸附分析儀 47
Chapter 3 結果與討論 48
3.1 觸媒鑑定 48
3.1.1 觸媒還原性質 48
3.1.2 觸媒結構與物理性質鑑定 50
3.2 乙醇作為催化溶劑對一鍋反應之影響 53
3.2.1 乙醇量添加量對產物選擇率之影響 58
3.3 醇類結構對一鍋反應之影響 62
3.3.1 添加催化溶劑於PET一鍋甲醇解反應 62
3.3.2 PET的醇解反應測試 68
3.3.3 DMT與醇類的轉酯化反應測試 70
3.3.4 以醇類作為催化溶劑之二氧化碳氫化反應測試 73
3.4 反應參數之效應 76
3.4.1 溫度效應 76
3.4.2 時間效應 80
3.4.3 觸媒量對反應的影響 86
3.4.4 反應物量對反應的影響 90
Chapter 4 結論 93
Chapter 5 未來展望 94
參考文獻 95
學習經歷 109
-
dc.language.isozh_TW-
dc.subject甲醇解zh_TW
dc.subject一鍋反應zh_TW
dc.subject催化溶劑zh_TW
dc.subject聚對苯二甲酸乙二酯zh_TW
dc.subject二氧化碳氫化反應zh_TW
dc.subjectmethanolysisen
dc.subjectpoly(ethylene terephthalate)en
dc.subjectCO2 hydrogenationen
dc.subjectone-pot reactionen
dc.subjectcatalytic solventen
dc.title聚對苯二甲酸乙二酯的一鍋甲醇解聚:以異丙醇輔助二氧化碳氫化zh_TW
dc.titleOne-Pot Methanolysis of Poly(Ethylene Terephthalate) Enabled by Isopropanol-Assisted CO2 Hydrogenationen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳炳宏;官韋帆;余柏毅zh_TW
dc.contributor.oralexamcommitteeBing-Hung Chen;Wei-Fan Kuan;Bor-Yih Yuen
dc.subject.keyword二氧化碳氫化反應,聚對苯二甲酸乙二酯,甲醇解,催化溶劑,一鍋反應,zh_TW
dc.subject.keywordCO2 hydrogenation,poly(ethylene terephthalate),methanolysis,catalytic solvent,one-pot reaction,en
dc.relation.page109-
dc.identifier.doi10.6342/NTU202302569-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-08-
dc.contributor.author-college工學院-
dc.contributor.author-dept化學工程學系-
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
5.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved