Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89859
標題: 利用自然語言處理技術學習過去施工排程以達成自動施工規劃
Automated Construction Planning using NLP to Learn from Past Schedules
作者: Akarsth Kumar Singh
Akarsth Kumar Singh
指導教授: 謝尚賢
Shang-Hsien HSIEH
關鍵字: 自動化施工規劃與排程,從過去的排程學習,工作包形式化,自然語言處理,
Automated Construction Planning,Learning from Past Schedule,Formalizing Work Items,Natural Language Processing (NLP),
出版年 : 2023
學位: 碩士
摘要: 幾十年來,建築、工程和施工(AEC) 行業一直遭受延誤和成本超支的困擾。為了按時並在預算範圍內完成項目,AEC 行業在很大程度上依賴於施工項目進度。然而,這些進度表仍然是手動創建和更新的,這會花費大量時間,導致錯誤,並導致規劃和調度不善,這是當今項目延誤的主要原因之一。因此,克服這些挑戰需要一種自動化的施工進度管理方法,該方法從現有和以前的數據庫中提取資訊和知識,並學習施工過程以改進施工規劃和進度安排。本研究旨在開發一種基於學習的施工進度模板,自動從歷史專案規劃和進度記錄中學習施工知識以生成進度模板。在最近的研究中,自然語言處理(NLP) 技術可以通過提供從專案文檔、模型和過去的專案知識中提取和解釋數據的能力,徹底改變施工規劃和調度。具體來說,我們提出了基於構建活動的向量和實體表示的基於自動學習的進度開發,其中使用三種不同的語言模型(基於BERT 的uncased、DistilBERT 和RoBERTa)對排序和邏輯依賴知識進行建模。我們從各個建築項目獲得的16 個施工進度表的多樣化數據集對本研究所提出的基於學習的進度建構方法進行了詳盡的測試和驗證。結果表明,我們的方法可以有效地組織施工進度活動並準確預測活動的順序及其在不同工作包中的邏輯聯繫。它支持規劃人員建立利用歷史數據的知識管理系統,從而改進未來專案中重複情境的決策。
The Architecture, Engineering, and Construction (AEC) industry has been suffering from delays and cost overruns for decades. To complete projects on time and under budget the AEC industry heavily relies on construction project planning and scheduling. However, these schedules are still created and updated manually, which takes a lot of time, causes mistakes, and leads to poor planning and scheduling, one of the main reasons for project delays today. Consequently, overcoming these challenges requires an automated construction plan schedule management method that extracts information and knowledge from existing and previous databases as well as learns the construction process to improve construction planning and scheduling. This study developed a learning-based construction planning which, automatically learns the construction knowledge from historical project planning and scheduling records. In recent studies, Natural Language Processing (NLP) technologies that can revolutionise construction planning and scheduling by providing the ability to extract and interpret data from project documents, models, and past project knowledge-based. Specifically, we present Automatic Learning-Based Construction Planning based on a vector and entity representation for construction activities where the sequencing and logic dependency knowledge is modeled with three different language model (BERT-based uncased, DistilBERT and RoBERTa). Our learning-based language models are exhaustively tested and validated on a diverse dataset of 16 construction schedules obtained from various building projects. The results indicated that our method is effective in formalizing construction planning activities and accurately predicting the sequences of activities and their logic dependency in different work items. It supports the planners to establish knowledge management systems that leverage historical data, leading to improved decision making for repetitive scenarios in future projects.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89859
DOI: 10.6342/NTU202303805
全文授權: 同意授權(限校園內公開)
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
2.86 MBAdobe PDF
顯示文件完整紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved