請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89850完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 潘述元 | zh_TW |
| dc.contributor.advisor | Shu-Yuan Pan | en |
| dc.contributor.author | 余美香 | zh_TW |
| dc.contributor.author | Mei-Siang Yu | en |
| dc.date.accessioned | 2023-09-22T16:23:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Aalami, M., Abbasi, H., & Nourani, V. (2018). Sustainable Management of Reservoir Water Quality and Quantity Through Reservoir Operational Strategy and Watershed Control Strategies. International Journal of Environmental Research, 12, 1-16. doi:10.1007/s41742-018-0130-y
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., . . . Srinivasan, R. (2007). Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology, 333(2), 413-430. doi:https://doi.org/10.1016/j.jhydrol.2006.09.014 Abu-Zreig, M., Rudra, R. P., Lalonde, M. N., Whiteley, H. R., & Kaushik, N. K. (2004). Experimental investigation of runoff reduction and sediment removal by vegetated filter strips. Hydrological Processes, 18(11), 2029-2037. doi:https://doi.org/10.1002/hyp.1400 Aeriyanie, A. R., Sinang, S. C., Nayan, N., & Song, H. (2021). Comparison of water level and eutrophication indicators during the wet and dry period in a eutrophic urban lake. Acta Ecologica Sinica, 41(2), 73-78. doi:https://doi.org/10.1016/j.chnaes.2020.03.003 Ahmad Kamal, N., Muhammad, N. S., & Abdullah, J. (2020). Scenario-based pollution discharge simulations and mapping using integrated QUAL2K-GIS. Environmental Pollution, 259, 113909. doi:https://doi.org/10.1016/j.envpol.2020.113909 Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., & Neitsch, S. L. (2013). SWAT 2012 Input/Output Documentation. doi:https://hdl.handle.net/1969.1/149194 Ashley Smyth, L. W., Rafael Muñoz-Carpena, and Yuncong Li. (2018). Vegetative Filter Strips—a Best Management Practice For Controlling Nonpoint Source Pollution. UF/IFAS Extension. doi:https://edis.ifas.ufl.edu/publication/SS646 Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234(3), 228-248. doi:https://doi.org/10.1016/S0022-1694(00)00253-5 Bachmair, S., Svensson, C., Hannaford, J., Barker, L. J., & Stahl, K. (2016). A quantitative analysis to objectively appraise drought indicators and model drought impacts. Hydrol. Earth Syst. Sci., 20(7), 2589-2609. doi:10.5194/hess-20-2589-2016 Barrett, M. E., Walsh, P. M., Malina, J. F., & Charbeneau, R. J. (1998). Performance of Vegetative Controls for Treating Highway Runoff. Journal of Environmental Engineering, 124(11), 1121-1128. doi:doi:10.1061/(ASCE)0733-9372(1998)124:11(1121) Benedini, M., & Tsakiris, G. (2013). Water quality modelling for rivers and streams: Springer Science & Business Media. Bergström, A.-K. (2010). The use of TN:TP and DIN:TP ratios as indicators for phytoplankton nutrient limitation in oligotrophic lakes affected by N deposition. Aquatic Sciences, 72(3), 277-281. doi:10.1007/s00027-010-0132-0 Blarasin, M., Cabrera, A., Matiatos, I., Becher Quinodóz, F., Giuliano Albo, J., Lutri, V., . . . Panarello, H. (2020). Comparative evaluation of urban versus agricultural nitrate sources and sinks in an unconfined aquifer by isotopic and multivariate analyses. Science of The Total Environment, 741, 140374. doi:https://doi.org/10.1016/j.scitotenv.2020.140374 Brylinsky, M. (2004). User's Manual for Prediction of Phosphorus Concentration In Nova Scotia Lakes: A Tool for Decision Making. The Nova Scotia Water Quality Objectives and Model Development Steering Committee. Carlson, R. E. (1977). A trophic state index for lakes1. Limnology and Oceanography, 22(2), 361-369. doi:https://doi.org/10.4319/lo.1977.22.2.0361 Chang, C.-L., & Chen, Y.-A. (2021). Assimilative Capacity Analysis and Total Maximum Daily Load Strategy for a Reservoir System. TAIWAN WATER CONSERVANCY, 69(2), 8-15. doi:10.6937/twc.202106/pp_69(2).0002 Chang, C.-S., & Chang, C.-L. (2020). Analysis of the Pollution Hotspots and Improvement Strategies of Reservoir Water Quality for the Mingde Reservoir Watershed. [Analysis of the Pollution Hotspots and Improvement Strategies of Reservoir Water Quality for the Mingde Reservoir Watershed]. Journal of Taiwan Agricultural Engineering, 66(4), 36-45. doi:10.29974/jtae.202012_66(4).0004 Chapra, S. C. (2008). Surface water-quality modeling: Waveland press. Chaubey, I., Migliaccio, K., Green, C., Arnold, J., & Srinivasan, R. (2006). 7 Phosphorus Modeling in Soil and Water Assessment Tool (SWAT) Model. doi:10.1201/9781420005417.sec2 Chen, C.-Y. (2009). Sedimentary impacts from landslides in the Tachia River Basin, Taiwan. Geomorphology, 105(3), 355-365. doi:https://doi.org/10.1016/j.geomorph.2008.10.009 Chen, Y.-J. (2019). Principal Component Analysis to Evaluate the Relationship between Water Quality and Algal Change in Subtropical Techi Reservoir, Taiwan. Journal of Taiwan Agricultural Engineering, 65(3), 11-21. Chiang, L.-C., Liao, C.-J., Lu, C.-M., & Wang, Y.-C. (2021). Applicability of modified SWAT model (SWAT-Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environmental Monitoring and Assessment, 193(8), 520. doi:10.1007/s10661-021-09283-9 Church, R., & ReVelle, C. (1974). The maximal covering location problem. Papers of the Regional Science Association, 32(1), 101-118. doi:10.1007/BF01942293 Cibin, R., Chaubey, I., Helmers, M. J., Sudheer, K. P., White, M. J., & Arnold, J. G. (2018). An Improved Representation of Vegetative Filter Strips in SWAT. Transactions of the ASABE, 61(3), 1017-1024. doi:https://doi.org/10.13031/trans.12661 Copetti, D., Valsecchi, L., Tartari, G., Mingazzini, M., & Palumbo, M. T. (2023). Phosphate adsorption by riverborne clay sediments in a southern-Italy Mediterranean reservoir: Insights from a “natural geo-engineering” experiment. Science of The Total Environment, 856, 159225. doi:https://doi.org/10.1016/j.scitotenv.2022.159225 Dash, S. S., Sahoo, B., & Raghuwanshi, N. S. (2022). An adaptive multi-objective reservoir operation scheme for improved supply-demand management. Journal of Hydrology, 615, 128718. doi:https://doi.org/10.1016/j.jhydrol.2022.128718 Dash, S. S., Sena, D. R., Mandal, U., Kumar, A., Kumar, G., Mishra, P. K., & Rawat, M. (2020). A hydrological modelling-based approach for vulnerable area identification under changing climate scenarios. Journal of Water and Climate Change, 12(2), 433-452. doi:10.2166/wcc.2020.202 Dogan, F. N., & Karpuzcu, M. E. (2023). Modeling fate and transport of pesticides from dryland agriculture using SWAT model. Journal of Environmental Management, 334, 117457. doi:https://doi.org/10.1016/j.jenvman.2023.117457 Dutta, D., Arya, S., & Kumar, S. (2021). Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere, 285, 131245. doi:https://doi.org/10.1016/j.chemosphere.2021.131245 Fan, C., Chen, K.-H., & Huang, Y.-Z. (2021). Model-based carrying capacity investigation and its application to total maximum daily load (TMDL) establishment for river water quality management: A case study in Taiwan. Journal of Cleaner Production, 291, 125251. doi:https://doi.org/10.1016/j.jclepro.2020.125251 Fletcher, T. D., Shuster, W., Hunt, W. F., Ashley, R., Butler, D., Arthur, S., . . . Viklander, M. (2015). SUDS, LID, BMPs, WSUD and more – The evolution and application of terminology surrounding urban drainage. Urban Water Journal, 12(7), 525-542. doi:10.1080/1573062X.2014.916314 Glantz, S. A., & Slinker, B. K. (1990). Primer of Applied Regression & Analysis of Variance. Glysson, G. D. (1987). Sediment-transport curves (87-218). Retrieved from http://pubs.er.usgs.gov/publication/ofr87218 Graff, C. D., Sadeghi, A. M., Lowrance, R., & Williams, R. G. (2005). Quantifying the Sensitivity of Riparian Ecosystem Management Model (REMM) to Changes in Climate and Buffer Characteristics Common to Conservation Practices. Transactions of the ASAE, 48. doi:10.13031/2013.19195 Higgins, J. M., & Kim, B. R. (1981). Phosphorus retention models for Tennessee Valley Authority reservoirs. Water Resources Research, 17(3), 571-576. doi:https://doi.org/10.1029/WR017i003p00571 Hoss, F., Fischbach, J., & Molina-Perez, E. (2016). Effectiveness of Best Management Practices for Stormwater Treatment as a Function of Runoff Volume. Journal of Water Resources Planning and Management, 142(11), 05016009. doi:doi:10.1061/(ASCE)WR.1943-5452.0000684 Hsieh, C.-D., & Yang, W.-F. (2007). Optimal nonpoint source pollution control strategies for a reservoir watershed in Taiwan. Journal of Environmental Management, 85(4), 908-917. doi:https://doi.org/10.1016/j.jenvman.2006.10.022 Ibrahim, A., Ismail, A., Juahir, H., Iliyasu, A. B., Wailare, B. T., Mukhtar, M., & Aminu, H. (2023). Water quality modelling using principal component analysis and artificial neural network. Marine Pollution Bulletin, 187, 114493. doi:https://doi.org/10.1016/j.marpolbul.2022.114493 Jamshidi, S., & Naderi, A. (2023). A quantitative approach on environment-food nexus: integrated modeling and indices for cumulative impact assessment of farm management practices. PeerJ, 11, e14816. doi:10.7717/peerj.14816 Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374(2065), 20150202. doi:doi:10.1098/rsta.2015.0202 Juahir, H., Ghazali, A., Ismail, A., Mohamad, M., Mohamad Hamzah, F., Lokman, M., . . . Syaukat, Y. (2018). Spatial and Temporal Assessment of Titiwangsa Lake Water Quality Using Chemometrics Analysis. International Journal of Engineering and Technology(UAE), 7, 20-25. doi:10.14419/ijet.v7i3.14.16856 Lai, V., Huang, Y. F., Koo, C. H., Ahmed, A. N., & El-Shafie, A. (2022). A Review of Reservoir Operation Optimisations: from Traditional Models to Metaheuristic Algorithms. Archives of Computational Methods in Engineering, 29(5), 3435-3457. doi:10.1007/s11831-021-09701-8 Li, M., & Guo, Q. (2020). SWAT Model Simulation of Non-Point Source Pollution in the Miyun Reservoir Watershed. IOP Conference Series: Earth and Environmental Science, 428(1), 012075. doi:10.1088/1755-1315/428/1/012075 Liangliang GAO, D. L. (2014). A review of hydrological/water-quality models. Front. Agr. Sci. Eng., 1(4), 267-276. doi:10.15302/j-fase-2014041 Lima Neto, I. E., Medeiros, P. H. A., Costa, A. C., Wiegand, M. C., Barros, A. R. M., & Barros, M. U. G. (2022). Assessment of phosphorus loading dynamics in a tropical reservoir with high seasonal water level changes. Science of The Total Environment, 815, 152875. doi:https://doi.org/10.1016/j.scitotenv.2021.152875 Lin, G.-Z. (2017). Application of nonpoint source pollution model SWAT to evaluate streamflow and the flow pathways of nitrogenous fertilizer in the upstream watershed of Feitsui Reservoir. (Master). National Taiwan Normal University, Taipei. Retrieved from https://hdl.handle.net/11296/63tahg Lin, J.-L., Karangan, A., Huang, Y. M., & Kang, S.-F. (2022). Eutrophication factor analysis using Carlson trophic state index (CTSI) towards non-algal impact reservoirs in Taiwan. Sustainable Environment Research, 32(1), 25. doi:10.1186/s42834-022-00134-x Liu, M., Chen, X., Yao, H., & Chen, Y. (2015). A coupled modeling approach to evaluate nitrogen retention within the Shanmei Reservoir watershed, China. Estuarine, Coastal and Shelf Science, 166, 189-198. doi:https://doi.org/10.1016/j.ecss.2015.06.008 Liu, W., Zhang, L., Wu, H., Wang, Y., Zhang, Y., Xu, J., . . . Xie, X. (2023). Strategy for cost-effective BMPs of non-point source pollution in the small agricultural watershed of Poyang Lake: A case study of the Zhuxi River. Chemosphere, 333, 138949. doi:https://doi.org/10.1016/j.chemosphere.2023.138949 Liu, Y., Engel, B. A., Flanagan, D. C., Gitau, M. W., McMillan, S. K., & Chaubey, I. (2017). A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Science of The Total Environment, 601-602, 580-593. doi:https://doi.org/10.1016/j.scitotenv.2017.05.212 Liu, Z., Rong, L., & Wei, W. (2022). Impacts of land use/cover change on water balance by using the SWAT model in a typical loess hilly watershed of China. Geography and Sustainability. doi:https://doi.org/10.1016/j.geosus.2022.11.006 Mabaya, G., Unami, K., & Fujihara, M. (2017). Stochastic optimal control of agrochemical pollutant loads in reservoirs for irrigation. Journal of Cleaner Production, 146, 37-46. doi:https://doi.org/10.1016/j.jclepro.2016.05.108 Mankin, K., Srinivasan, R., & Arnold, J. (2010). Soil and Water Assessment Tool (SWAT) Model: Current Developments and Applications. 53. doi:10.13031/2013.34915 McDowell, R. W., Larned, S. T., & Houlbrooke, D. J. (2009). Nitrogen and phosphorus in New Zealand streams and rivers: Control and impact of eutrophication and the influence of land management. New Zealand Journal of Marine and Freshwater Research, 43(4), 985-995. doi:10.1080/00288330909510055 Meals, D. W., Dressing, S. A., & Davenport, T. E. (2010). Lag Time in Water Quality Response to Best Management Practices: A Review. Journal of Environmental Quality, 39(1), 85-96. doi:https://doi.org/10.2134/jeq2009.0108 Messina, N. J., Couture, R.-M., Norton, S. A., Birkel, S. D., & Amirbahman, A. (2020). Modeling response of water quality parameters to land-use and climate change in a temperate, mesotrophic lake. Science of The Total Environment, 713, 136549. doi:https://doi.org/10.1016/j.scitotenv.2020.136549 Mikayilov, F., Vejdani, M., & Haghighat, S. (2007). SWAT-CUP calibration and uncertainty programs for SWAT. Proc.Intl. Congress on Modelling and Simulation (MODSIM'07). Mokhtar, A., He, H., Zhao, H., Keo, S., Bai, C., Zhang, C., . . . Zhou, J. (2020). Risks to water resources and development of a management strategy in the river basins of the Hengduan Mountains, Southwest China. Environmental Science: Water Research & Technology, 6(3), 656-678. doi:10.1039/C9EW00883G Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-34447500396&partnerID=40&md5=50b5724614f28257edef46d43db96018 Mosley, L. M. (2015). Drought impacts on the water quality of freshwater systems; review and integration. Earth-Science Reviews, 140, 203-214. doi:https://doi.org/10.1016/j.earscirev.2014.11.010 Muñoz-Carpena, R., & Parsons, J. (2014). VFSMOD: Vegetative filter strip modelling system. Model documentation and users manual, version 6. x. Munoz-Carpena, R., & Parsons, J. (2004). A design procedure for vegetative filter strips using VFSMOD-W. Transactions of the ASAE, 47(6), 1933-1941. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10(3), 282-290. doi:https://doi.org/10.1016/0022-1694(70)90255-6 Nazari-Sharabian, M., & Taheriyoun, M. (2022). Climate change impact on water quality in the integrated Mahabad Dam watershed-reservoir system. Journal of Hydro-environment Research, 40, 28-37. doi:https://doi.org/10.1016/j.jher.2021.12.001 Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Retrieved from Ning, S.-K., Chang, N.-B., Jeng, K.-Y., & Tseng, Y.-H. (2006). Soil erosion and non-point source pollution impacts assessment with the aid of multi-temporal remote sensing images. Journal of Environmental Management, 79(1), 88-101. doi:https://doi.org/10.1016/j.jenvman.2005.05.019 Pan, k.-h. (1985). Report on Soil Survey of Hillsides in Taichung City and County. Retrieved from https://tssurgo.tari.gov.tw/Tssurgo/Search/Detail?ID=20161121120900 Park, Y. S., Park, J. H., Jang, W. S., Ryu, J. C., Kang, H., Choi, J., & Lim, K. J. (2011). Hydrologic Response Unit Routing in SWAT to Simulate Effects of Vegetated Filter Strip for South-Korean Conditions Based on VFSMOD. Water, 3(3), 819-842. Retrieved from https://www.mdpi.com/2073-4441/3/3/819 Pennsylvania, D. (2006). Pennsylvania stormwater best management practices manual. In: Pennsylvania Department of Environmental Protection, Bureau of Watershed. Qiu, J., Shen, Z., & Xie, H. (2022). Drought impacts on hydrology and water quality under climate change. Science of The Total Environment, 159854. doi:https://doi.org/10.1016/j.scitotenv.2022.159854 Rashid, M. U., Abid, I., & Latif, A. (2022). Optimization of hydropower and related benefits through Cascade Reservoirs for sustainable economic growth. Renewable Energy, 185, 241-254. doi:https://doi.org/10.1016/j.renene.2021.12.073 Richardson, J. S., Naiman, R. J., & Bisson, P. A. (2012). How did fixed-width buffers become standard practice for protecting freshwaters and their riparian areas from forest harvest practices? Freshwater Science, 31(1), 232-238. doi:10.1899/11-031.1 Samuel Kwesi, A. (2020). Processes and Factors Affecting Phosphorus Sorption in Soils. In K. George & L. Nikolaos (Eds.), Sorption in 2020s (pp. Ch. 3). Rijeka: IntechOpen. Sharma, A., Patel, P. L., & Sharma, P. J. (2022). Influence of climate and land-use changes on the sensitivity of SWAT model parameters and water availability in a semi-arid river basin. CATENA, 215, 106298. doi:https://doi.org/10.1016/j.catena.2022.106298 Sheshukov, A. Y., Douglas-Mankin, K. R., Sinnathamby, S., & Daggupati, P. (2016). Pasture BMP effectiveness using an HRU-based subarea approach in SWAT. Journal of Environmental Management, 166, 276-284. doi:https://doi.org/10.1016/j.jenvman.2015.10.023 Taghizadeh, S., Khani, S., & Rajaee, T. (2021). Hybrid SWMM and particle swarm optimization model for urban runoff water quality control by using green infrastructures (LID-BMPs). Urban Forestry & Urban Greening, 60, 127032. doi:https://doi.org/10.1016/j.ufug.2021.127032 Teshager, A. D., Gassman, P. W., Secchi, S., Schoof, J. T., & Misgna, G. (2016). Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environmental Management, 57(4), 894-911. doi:10.1007/s00267-015-0636-4 Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1-2), 123-138. Retrieved from https://www.int-res.com/abstracts/cr/v47/n1-2/p123-138/ Tripathi, M., & Singal, S. K. (2019). Use of Principal Component Analysis for parameter selection for development of a novel Water Quality Index: A case study of river Ganga India. Ecological Indicators, 96, 430-436. doi:https://doi.org/10.1016/j.ecolind.2018.09.025 Uribe, N., Corzo, G., Quintero, M., van Griensven, A., & Solomatine, D. (2018). Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management, 209, 62-72. doi:https://doi.org/10.1016/j.agwat.2018.07.006 Vanham, D., Hoekstra, A. Y., Wada, Y., Bouraoui, F., de Roo, A., Mekonnen, M. M., . . . Bidoglio, G. (2018). Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 “Level of water stress”. Science of The Total Environment, 613-614, 218-232. doi:https://doi.org/10.1016/j.scitotenv.2017.09.056 Vollenweider, R. A. (1968). Scientific fundamentals of the eutrophication of lakes and flowing waters, with particular reference to nitrogen and phosphorus as factors in eutrophication (DAS/CSI/62.27). Retrieved from Paris, France: Wang, C.-W., Chen, C.-F., & Lin, J.-Y. (2014). Effects of Buffer Strips on Reducing Nonpoint Source Pollution and Improving Water Quality in Feitsui Reservoir. Journal of Chinese Soil and Water Conservation, 45(3), 207-215. doi:https://doi.org/10.29417/JCSWC.201409_45(3).0007 White, M. J., & Arnold, J. G. (2009). Development of a simplistic vegetative filter strip model for sediment and nutrient retention at the field scale. Hydrological Processes, 23(11), 1602-1616. doi:https://doi.org/10.1002/hyp.7291 Williams, J. R. (1975). SEDIMENT-YIELD PREDICTION WITH UNIVERSAL EQUATION USING RUNOFF ENERGY FACTOR. Sediment-Yield Workshop, Present and Prospective Technol for Predict Sediment Yields and Sources, Proc, USDA Sediment Lab, 244-252. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-0016864022&partnerID=40&md5=16451b64e35fddf262df5181ce63646c Wold, S., Esbensen, K., & Geladi, P. (1987). Principal component analysis. Chemometrics and Intelligent Laboratory Systems, 2(1), 37-52. doi:https://doi.org/10.1016/0169-7439(87)80084-9 Wu, L., Muñoz-Carpena, R., Gao, B., Yang, W., & Pachepsky, Y. A. (2014). Colloid Filtration in Surface Dense Vegetation: Experimental Results and Theoretical Predictions. Environmental Science & Technology, 48(7), 3883-3890. doi:10.1021/es404603g Yamaguchi, K., So, M., Aguirre, C., Ikenaka, K., Mochizuki, H., Kawata, Y., & Goto, Y. (2021). Polyphosphates induce amyloid fibril formation of α-synuclein in concentration-dependent distinct manners. Journal of Biological Chemistry, 296, 100510. doi:https://doi.org/10.1016/j.jbc.2021.100510 Yeo, I.-Y., Lee, S., Lang, M. W., Yetemen, O., McCarty, G. W., Sadeghi, A. M., & Evenson, G. (2019). Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A catchment modeling approach - Part 2. Science of The Total Environment, 653, 1557-1570. doi:https://doi.org/10.1016/j.scitotenv.2018.11.237 Yuan, S., Quiring, S. M., Kalcic, M. M., Apostel, A. M., Evenson, G. R., & Kujawa, H. A. (2020). Optimizing climate model selection for hydrological modeling: A case study in the Maumee River basin using the SWAT. Journal of Hydrology, 588, 125064. doi:https://doi.org/10.1016/j.jhydrol.2020.125064 Zhang, S., Kang, Y., Gao, X., Chen, P., Cheng, X., Song, S., & Li, L. (2023). Optimal reservoir operation and risk analysis of agriculture water supply considering encounter uncertainty of precipitation in irrigation area and runoff from upstream. Agricultural Water Management, 277, 108091. doi:https://doi.org/10.1016/j.agwat.2022.108091 Zhang, X., Chen, P., Dai, S., & Han, Y. (2022). Analysis of non-point source nitrogen pollution in watersheds based on SWAT model. Ecological Indicators, 138, 108881. doi:https://doi.org/10.1016/j.ecolind.2022.108881 SDG Good Practices - A compilation of success stories and lessons learned in SDG implementation (First Edition). Department of Economic and Social Affairs, United Nations (2020). Costanzo, S., Dennison, B., & Fries, A. (2012). Measuring Effectiveness of Best Management Practices. University of Maryland Center for Environmental Science: Integration and Application Network. Retrieved from: https://ian.umces.edu/publications/measuring-effectiveness-of-best-management-practices/ Li, Chen-Yang (2019). Soil and Water Conservation Handbook. Nantou: Soil and Water Conservation Bureau, Council of Agriculture, Executive Yuan. Pan, Shu-Yuan (2022). Water Quality and Algae Monitoring Management Plan for Te-Chi Reservoir, 2021. Management Committee of Techi Reservoir Watershed. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89850 | - |
| dc.description.abstract | 本研究以德基水庫流域為研究區域,建立耦合式SWAT-Vollenweider水質模型,透過彙整歷史30年水質觀測數據,分析集水區內特徵營養鹽與貢獻較高之熱區,評估不同設置情境之植生過濾帶的削減效益,進而最佳化其設置策略。本研究進行庫區水質參數之相關性與主成分分析,訂定總磷為德基水庫的限制營養鹽,並建立SWAT土壤水文模式,評估集水區之輸砂量與總磷負荷等貢獻,接續匯入Vollenweider模式模擬庫區水體的總磷濃度。結果顯示單位面積輸砂量與總磷貢獻較高之區域大多為農業利用,且SWAT模式可合理模擬集水區逕流、輸砂量與總磷負荷。根據污染熱區分析,本研究選擇前10高之水力反應單元模擬四種操作情境之結構性最佳管理作為,分別為沿著區域邊界或沿著河岸設置植生過濾帶,寬度設定為5或10公尺。模擬結果顯示單位面積貢獻較高之操作情境為沿著河岸設置5公尺的植生過濾帶,可減少各熱點輸砂量約每公頃2.7至38.8噸,總磷輸出則減少約每公頃4.0至34.4公斤。本研究率定庫區總磷之沉降速度為25 m/yr,並透過Vollenweider模式模擬緩衝帶設置情境下的總磷濃度趨勢;結果顯示植生帶寬度為10公尺之削減量較5公尺高,整體營養鹽削減率約介於0.5至9.1%。本研究透過最佳化分析找出可達到目標削減量之植生過濾帶區位與最小設置面積,並推得設置面積為9、13與23公頃時出現削減量臨界值。綜合上述,可知植生過濾帶可確實減少德基水庫集水區的輸砂與營養鹽輸出,並可進一步探討不同限制條件下的植生過濾帶最佳配置策略,提升以自然為本之集水區保護措施效益。 | zh_TW |
| dc.description.abstract | The study examines the effects of establishing vegetative filter strips (VFSs) by the water quality model systems of SWAT and Vollenweider in Techi Reservoir watershed. Historical 30-year observed data is analyzed for correlation and principal component analysis to identify total phosphorus (TP) as the specific nutrient in Techi Reservoir. This study applies Soil and Water Assessment Tool (SWAT) model to assess sediment and TP load from Techi Reservoir watershed, and analyzes the areas within the watershed that contribute higher sediment and nutrient loads. Additionally, Vollenweider model is chosen to simulate the trends of TP in the reservoir. The analysis reveals that areas with higher sediment and TP load per unit area are primarily for agricultural uses. On the other hand, SWAT model demonstrates satisfactory performance in simulating streamflow, sediment, and TP load within the watershed. Based on the analysis of pollution hotspots, this study selects the top 10 Hydrologic Response Units (HRUs) to establish structural BMP with VFS scenarios of along the field edge or along the riverbank, and widths of 5 or 10 meters. The results show that under scenario of 5-meter VFS along the riverbank contributes the most reduction per unit area, which effectively reduce sediment yield by approximately 2.7 to 38.8 tons/ha and TP load by about 4.0 to 34.4 kg/ha. Vollenweider model is also calibrated and validated, with the TP settling velocity in the reservoir set at 25 m/yr. The model simulates the trends in TP concentration under different width of VFS, and the results indicate that the 10-meter VFS achieves a higher reduction rates than the 5-meter VFS, with the reduction rates around 0.5 to 9.1%. This study employed optimization analysis to ascertain the optimal placement of VFSs and calculate the minimum VFS areas necessary to achieve the target reduction amounts. Additionally, this study identified the critical reduction values for VFS implementation at areas of 9, 13, and 23 hectares. The findings indicate that VFSs are effective in reducing sediment and nutrient discharge in Techi Reservoir watershed. Further investigation into the optimal configuration strategies for VFSs, considering different constraint factors, has the potential to enhance the efficacy of nature-based measures for watershed protection. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:23:25Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:23:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員會審定書 i
中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES ix LIST OF TABLES xii Chapter 1 - Introduction 1 1.1 Background 1 1.2 Objectives 2 Chapter 2 - Literature Review 3 2.1 Water Resources of Reservoir 3 2.1.1 Reservoir Management of Water Resource 3 2.1.2 Risks of Water Resource 6 2.1.3 Principal Component Analysis of Techi Reservoir 7 2.2 Watershed Management 9 2.2.1 Non-point Source Pollution 9 2.2.2 Best Management Practices 11 2.2.3 Vegetative Filter Strips 13 2.2.4 Principle of Optimization Method 15 2.3 Water Quality Model 16 2.3.1 SWAT Model 17 2.3.2 Vollenweider Model 19 Chapter 3 - Methods 21 3.1 Research Structure 21 3.2 Study Area 22 3.2.1 Techi Reservoir 22 3.2.2 Observed Data 23 3.3 SWAT Model Setup 30 3.3.1 Input Data 30 3.3.2 Simulation Principle 32 3.3.2.1 Surface Runoff 32 3.3.2.2 Sediment Transport 33 3.3.2.3 Nutrient Load – Total Phosphorus 34 3.3.3 SWAT-CUP Objective Functions 37 3.4 Vollenweider Model Setup 39 3.4.1 Input Data 39 3.4.2 Simulation Principle 40 3.5 Vegetative Filter Strips Scenario 42 3.5.1 VFSs Model Principle 42 3.5.1.1 Scenario A: VFSs Along the Field Edge 43 3.5.1.2 Scenario B: VFSs Along the Riverbank 44 3.5.2 VFSs Implementation Area 47 Chapter 4 - Results and Discussion 50 4.1 Historical Data Analysis 50 4.1.1 Hydrological Data 50 4.1.2 Specific Nutrients Analysis of Techi Reservoir 52 4.1.2.1 Correlation Analysis of Water Quality Parameters 53 4.1.2.2 Principal Component Analysis 56 4.1.2.3 Limiting Nutrients Analysis 57 4.2 Development and Calibration of SWAT-Vollenweider Model 59 4.2.1 Rating Curves of Sediment Transport and Nutrient load 59 4.2.2 Calibration of SWAT Model 63 4.2.2.1 Watershed Delineation 63 4.2.2.2 Calibration of SWAT Model Parameters 64 4.2.3 Calibration of Vollenweider Model 72 4.2.3.1 Settling Velocity 72 4.2.3.2 Simulation Results of Total Phosphorus 73 4.3 Effects of VFS on Reservoir Water Quality 74 4.3.1 Identification of Hotspot HRUs in Watershed 74 4.3.2 Evaluation of Sediment Reduction 79 4.3.3 Evaluation of Total Phosphorus Reduction 82 4.3.4 Comparison of Sediment and Total Phosphorus Reduction 85 4.3.5 Contributions of VFS deployment on watershed water quality 88 4.4 Optimization of VFS Deployment 90 4.4.1 Definition of Optimization 90 4.4.2 Optimization of maximum reduction rates 92 Chapter 5 – Conclusions and Recommendations 95 5.1 Conclusions 95 5.2 Recommendations 99 References 101 Appendix 111 A. Observed Data 111 A.1 Streamflow 111 A.2 Sediment Load 112 A.3 Total Phosphorus Load 114 A.4 Total Phosphorus Concentration in Reservoir 115 A.5 Precipitation Data 116 B. Analysis and Simulation Results 137 B.1 Principal Component Analysis 137 B.2 Reduction Amount of VFS Scenario 138 B.2.1 Sediment and Total Phosphorus Load by SWAT Model 138 B.2.2 Sediment Reduction 139 B.2.3 Total Phosphorus Reduction 141 | - |
| dc.language.iso | en | - |
| dc.subject | 最佳化配置 | zh_TW |
| dc.subject | 德基水庫 | zh_TW |
| dc.subject | 植生過濾帶 | zh_TW |
| dc.subject | 水質模式 | zh_TW |
| dc.subject | 營養鹽削減效益 | zh_TW |
| dc.subject | Vegetative filter strips | en |
| dc.subject | Techi Reservoir | en |
| dc.subject | Optimization of configuration strategies | en |
| dc.subject | Nutrient reduction effects | en |
| dc.subject | Water quality model | en |
| dc.title | 植生過濾帶於營養鹽負荷削減效益評估:以德基水庫為例 | zh_TW |
| dc.title | Effects of Vegetative Filter Strips on Nutrient Loading Reduction Exemplified by Techi Reservoir | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 范致豪;江莉琦;游晟暐;張慧嫺 | zh_TW |
| dc.contributor.oralexamcommittee | Chih-Hao Fan;Li-Chi Chiang;Cheng-Wei Yu;Hui-Hsien Chang | en |
| dc.subject.keyword | 德基水庫,植生過濾帶,水質模式,營養鹽削減效益,最佳化配置, | zh_TW |
| dc.subject.keyword | Techi Reservoir,Vegetative filter strips,Water quality model,Nutrient reduction effects,Optimization of configuration strategies, | en |
| dc.relation.page | 142 | - |
| dc.identifier.doi | 10.6342/NTU202303244 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 生物環境系統工程學系 | - |
| 顯示於系所單位: | 生物環境系統工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 7.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
