Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89849
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥仰zh_TW
dc.contributor.advisorMike Y. Chenen
dc.contributor.author柯柏丞zh_TW
dc.contributor.authorBo-Cheng Keen
dc.date.accessioned2023-09-22T16:23:10Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-22-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation[1] K. Aoyama, H. Iizuka, H. Ando, and T. Maeda. Four-pole galvanic vestibular stim ulation causes body sway about three axes. Scientific reports, 5(1):1–8, 2015.
[2] D. Artworks. Scifi platform city, mar 2022.
[3] H.-Y. Chang, W.-J. Tseng, C.-E. Tsai, H.-Y. Chen, R. L. Peiris, and L. Chan. Face push: Introducing normal force on face with head-mounted displays. In Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology, pages 927–935, New York, NY, USA, 2018. ACM.
[4] J. Christensen. The quack attack is back, apr 2021.
[5] C. Diels and J. E. Bos. Self-driving carsickness. Applied ergonomics, 53:374–382, 2016.
[6] F. Gabbiani and S. Cox. Mathematics for Neuroscientists. Elsevier Science, USA, 2017.
[7] G. Gálvez-García, M. Hay, and C. Gabaude. Alleviating simulator sickness with galvanic cutaneous stimulation. Human factors, 57(4):649–657, 2015.
[8] J. F. Golding. Motion sickness susceptibility questionnaire revised and its relation ship to other forms of sickness. Brain research bulletin, 47(5):507–516, 1998.
[9] J. Gugenheimer, D. Wolf, E. R. Eiriksson, P. Maes, and E. Rukzio. Gyrovr: Sim ulating inertia in virtual reality using head worn flywheels. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pages 227–232, New York, NY, USA, 2016. ACM.
[10] H. Gurocak, S. Jayaram, B. Parrish, and, and U. Jayaram. Weight sensation in virtual environments using a haptic device with air jets. J. Comput. Inf. Sci. Eng., 3(2):130– 135, 2003.
[11] S. Heo, C. Chung, G. Lee, and D. Wigdor. Thor’s hammer: An ungrounded force feedback device utilizing propeller-induced propulsive force. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pages 1–11, New York, NY, USA, 2018. ACM.
[12] M. Hoppe, D. Oskina, A. Schmidt, and T. Kosch. Odin’s helmet: A head-worn haptic feedback device to simulate g-forces on the human body in virtual reality. Proceedings of the ACM on Human-Computer Interaction, 5(EICS):1–15, 2021.
[13] M. Israel. Airvūz, 2015.
[14] S. Je, H. Lee, M. J. Kim, and A. Bianchi. Wind-blaster: A wearable propeller based prototype that provides ungrounded force-feedback. In ACM SIGGRAPH 2018 Emerging Technologies, pages 1–2. ACM, New York, NY, USA, 2018.
[15] B.-C. Ke, M.-H. Li, Y. Chen, C.-Y. Cheng, C.-J. Chang, Y.-F. Li, S.-Y. Wang, C. Fang, and M. Y. Chen. Turnahead: Designing 3-dof rotational haptic cues to improve first-person viewing (fpv) experiences. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems, pages 1–15, New York, NY, USA, 2023. ACM.
[16] B. Keshavarz, B. E. Riecke, L. J. Hettinger, and J. L. Campos. Vection and visually induced motion sickness: how are they related? Frontiers in psychology, 6:472, 2015.
[17] Y. Kon, T. Nakamura, and H. Kajimoto. Hangerover: Hmd-embedded haptics dis play with hanger reflex. In ACM SIGGRAPH 2017 Emerging Technologies, pages 1–2. ACM, New York, NY, USA, 2017.
[18] B. Lenggenhager, C. Lopez, and O. Blanke. Influence of galvanic vestibular stim ulation on egocentric and object-based mental transformations. Experimental Brain Research, 184(2):211–221, 2008.
[19] S.-H. Liu, P.-C. Yen, Y.-H. Mao, Y.-H. Lin, E. Chandra, and M. Y. Chen. Head blaster: a wearable approach to simulating motion perception using head-mounted air propulsion jets. ACM Transactions on Graphics (TOG), 39(4):84–1, 2020.
[20] S.-H. Liu, N.-H. Yu, L. Chan, Y.-H. Peng, W.-Z. Sun, and M. Y. Chen. Phantomlegs: Reducing virtual reality sickness using head-worn haptic devices. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 817–826, Osaka, Japan, 2019. IEEE, IEEE.
[21] N. A. Macmillan and C. D. Creelman. Detection theory: A user’s guide. Cambridge University Press, UK, 1991.
[22] T. Maeda, H. Ando, and M. Sugimoto. Virtual acceleration with galvanic vestibular stimulation in a virtual reality environment. In IEEE Proceedings. VR 2005. Virtual Reality, 2005., pages 289–290, Bonn, Germany, 2005. IEEE, IEEE.
[23] S. H. Park, B. Han, and G. J. Kim. Mixing in reverse optical flow to mitigate vection and simulation sickness in virtual reality. In CHI Conference on Human Factors in Computing Systems, pages 1–11, New Orleans, LA, USA, 2022. ACM.
[24] Y.-H. Peng, C. Yu, S.-H. Liu, C.-W. Wang, P. Taele, N.-H. Yu, and M. Y. Chen. Walkingvibe: Reducing virtual reality sickness and improving realism while walking in vr using unobtrusive head-mounted vibrotactile feedback. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–12, New York, NY, USA, 2020. ACM.
[25] U. Pictures. Flying camera! ambulance fpv drone featurette, mar 2022.
[26] Porsche. Drive2extremes: Taycan cross turismo x johnny fpv, jun 2021
[27] A. Rolnick and R. Lubow. Why is the driver rarely motion sick? the role of control lability in motion sickness. Ergonomics, 34(7):867–879, 1991.
[28] J. M. Romano and K. J. Kuchenbecker. The airwand: Design and characterization of a large-workspace haptic device. In 2009 IEEE International Conference on Robotics and Automation, pages 1461–1466, Kobe, Japan, 2009. IEEE, IEEE.
[29] R. Rosenthal, H. Cooper, L. Hedges, et al. Parametric measures of effect size. The handbook of research synthesis, 621(2):231–244, 1994.
[30] T. Sasaki, R. S. Hartanto, K.-H. Liu, K. Tsuchiya, A. Hiyama, and M. Inami. Leviopole: mid-air haptic interactions using multirotor. In ACM SIGGRAPH 2018 Emerging Technologies, pages 1–2. ACM, New York, NY, USA, 2018.
[31] M. Sra, A. Jain, and P. Maes. Adding proprioceptive feedback to virtual reality experiences using galvanic vestibular stimulation. In Proceedings of the 2019 CHI conference on human factors in computing systems, pages 1–14, New York, NY, USA, 2019. ACM.
[32] S. T. Flooded grounds, jan 2019.
[33] S. T. Sun temple, jan 2019.
[34] Y. Tanaka, J. Nishida, and P. Lopes. Electrical head actuation: Enabling interac tive systems to directly manipulate head orientation. In CHI Conference on Human Factors in Computing Systems, pages 1–15, New York, NY, USA, 2022. ACM.
[35] Tesla. Flying through giga berlin, apr 2022.
[36] C.-Y. Tsai, I.-L. Tsai, C.-J. Lai, D. Chow, L. Wei, L.-P. Cheng, and M. Y. Chen. Airracket: Perceptual design of ungrounded, directional force feedback to improve virtual racket sports experiences. In CHI Conference on Human Factors in Comput ing Systems, pages 1–15, New York, NY, USA, 2022. ACM.
[37] C. Wang, D.-Y. Huang, S.-w. Hsu, C.-E. Hou, Y.-L. Chiu, R.-C. Chang, J.-Y. Lo, and B.-Y. Chen. Masque: Exploring lateral skin stretch feedback on the face with head-mounted displays. In Proceedings of the 32nd Annual ACM Symposium on User Interface Software and Technology, pages 439–451, New Orleans, LA, USA, 2019. ACM.
[38] Y.-W. Wang, Y.-H. Lin, P.-S. Ku, Y. Miyatake, Y.-H. Mao, P. Y. Chen, C.-M. Tseng, and M. Y. Chen. Jetcontroller: High-speed ungrounded 3-dof force feedback con trollers using air propulsion jets. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pages 1–12, New York, NY, USA, 2021. ACM.
[39] K. Watanabe, F. Nakamura, K. Sakurada, T. Teo, and M. Sugimoto. An Integrated Ducted Fan-Based Multi-Directional Force Feedback with a Head Mounted Display. In H. Uchiyama and J.-M. Normand, editors, ICAT-EGVE 2022 - International Con ference on Artificial Reality and Telexistence and Eurographics Symposium on Vir tual Environments, pages 55–63, Europe, 2022. The Eurographics Association.
[40] S. Weech, J. Moon, and N. F. Troje. Influence of bone-conducted vibration on sim ulator sickness in virtual reality. PloS one, 13(3):e0194137, 2018.
[41] S. Weech and N. F. Troje. Vection latency is reduced by bone-conducted vibra tion and noisy galvanic vestibular stimulation. Multisensory Research, 30(1):65–90, 2017.
[42] B. Yip and J. S. Jin. Determination of pivot point of a human head from the front. In Proceedings of 2004 International Symposium on Intelligent Multimedia, Video and Speech Processing, 2004., pages 362–365, Hong Kong, China, 2004. IEEE, IEEE
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89849-
dc.description.abstract「第一人稱視角(FPV)無人機」是最近發展起來的無人機種類,能夠進行精確地飛行並且捕捉以往難以捕捉的精采視覺體驗,例如穿越狹窄的室內空間和極近的接觸表面上飛行。FPV 視覺體驗雖然令人興奮,但通常會有頻繁的旋轉,可能導致受試者有不適感。因此,我們提出了「TurnAhead」,它使用對應鏡頭旋轉的 3 自由度(3-DoF)旋轉觸覺提示,以提高 FPV 體驗的舒適度、沉浸感和有趣度。它使用頭戴式附載空氣噴射裝置提供旋轉力回饋,是首個支持所有旋轉軸(偏航、俯仰和翻滾)旋轉的設備。我們進行了一系列的感知和形成性研究,探索觸覺提示的時間點和強度的設計,隨後進行了用戶體驗評估,共有 44 名參與者(四個實驗分別為 12, 8, 6, 18 人)。結果顯示,「TurnAhead」顯著改善了整體舒適度、沉浸感和有趣度,並且有89%的受試者偏好使用它。zh_TW
dc.description.abstractFirst-Person View (FPV) drone is a recently developed category of drones designed for precision flying and for capturing exhilarating experiences that could not be captured before, such as navigating through tight indoor spaces and flying extremely close to subjects of interest. FPV viewing experiences, while exhilarating, typically have frequent rotations that can lead to visually induced discomfort. We present TurnAhead, which uses 3-DoF rotational haptic cues that correspond to camera rotations to improve the comfort, immersion, and enjoyment of FPV experiences. It uses headset-mounted air jets to provide ungrounded rotational forces and is the first device to support rotation around all 3 axes: yaw, pitch, and roll. We conducted a series of perception and formative studies to explore the design space of timing and intensity of haptic cues, followed by user experience evaluation, for a combined total of 44 participants (n=12, 8, 6, 18). Results showed that TurnAhead significantly improved overall comfort, immersion, and enjoyment, and was preferred by 89% of participants.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:23:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-22T16:23:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iv
Abstract v

1 Introduction . . 1
2 Background of FPV Drones and Analysis of Top FPV Videos . . 4
2.1 Background of FPV Drones and Video Categories . . . . . . . . . . . . . 4
2.2 Analysis of Rotation Speed, Angle, Axes, Duration, and Frequency of FPV Videos . . 5
3 Related Work . . 8
3.1 Head-mounted Haptic Feedback . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Air Propulsion-based Haptics . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Visuo-Vestibular Recoupling to Improve Comfort . . . . . . . . . . . . . . . 9
4 system design, implementation, and validation . . 11
4.1 Wearable Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Pneumatic Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Force Magnitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Torque Arm Lengths and Torque Calculation . . . . . . . . . .. . . . . . . 14
4.5 Actuation Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Study #1: Directional Cue Recognition Threshold . . 16
5.1 Study Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2 Study Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
6 Study #2: Small Formative Design Study on Rotation Speed and Angle . . 21
6.1 Design Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.1.1 Scaling Intensity based on Rotation Speed . . . . . . . . . . . . . 22
6.1.2 Easing-out based on Rotation Angle . . . . . . . . . . . . . . . . 22
6.2 Study Design and Procedure . . . . . . . . . . . . . . . . . . . . . . . . 24
6.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
7 Study #3: Small Formative Design Study on Timing . . 27
7.1 Design Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Study Design and Procedure . . . . . . . . . . . . . . . . . . . . . . . . 28
7.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8 Study #4: User Experience Evaluation . . 30
8.1 Designing FPV Experience . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.1 VR 360 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
8.1.2 2D Video . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
8.2 Study Design and Procedure . . . . . . . . . . . . . . . . . . . . . . . . 32
8.3 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
8.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
9 Discussion and Future Work . . 35
9.1 Adaptive Anticipatory and Onset Cues . . . . . . . . . . . . . . . . . . . 35
9.2 General Model and Personalization . . . . . . . . . . . . . . . . . . . . . 35
9.3 Automating Rotation Analysis of FPV Videos . . . . . . . . . . . . . . . 36
9.4 Comfort and VR Sickness . . . . . . . . . . . . . . . . . . . . . . . . . 36
10 Conclusions . . 38

Bibliography . . 39
Appendices . . 44
Top 30 FPV Videos used in Rotation Analysis . . 45
Line charts for the percentage of participants that recognized correctly in at least one of the two trials from Study #1 . . 46
-
dc.language.isoen-
dc.subject使用者體驗設計zh_TW
dc.subject空壓噴氣zh_TW
dc.subject觸覺回饋裝置zh_TW
dc.subject虛擬實境zh_TW
dc.subject第一人稱視角影片zh_TW
dc.subjectHaptic Deviceen
dc.subjectCompressed Air Jeten
dc.subjectVirtual Realityen
dc.subjectUser Experience Designen
dc.subjectFirst-person Viewing Videoen
dc.title設計三自由度旋轉觸覺提示以改進第一人稱視角體驗zh_TW
dc.titleTurnAhead: Designing 3-DoF Rotational Haptic Cues to Improve First-person Viewing (FPV) Experiencesen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭龍磻;陳炳宇;余能豪;蔡欣叡zh_TW
dc.contributor.oralexamcommitteeLung-Pan Cheng;Bing-Yu Chen;Jones Yu;Hsin-Ruey Tsaien
dc.subject.keyword使用者體驗設計,觸覺回饋裝置,空壓噴氣,虛擬實境,第一人稱視角影片,zh_TW
dc.subject.keywordUser Experience Design,Haptic Device,Compressed Air Jet,Virtual Reality,First-person Viewing Video,en
dc.relation.page46-
dc.identifier.doi10.6342/NTU202303686-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-10-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊網路與多媒體研究所-
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf13.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved