請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89827完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林先和 | zh_TW |
| dc.contributor.advisor | Hsien-Ho Lin | en |
| dc.contributor.author | 曾柏翔 | zh_TW |
| dc.contributor.author | Bo-Siang Zeng | en |
| dc.date.accessioned | 2023-09-22T16:17:26Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-11 | - |
| dc.identifier.citation | 1. World Health Organization. Ambient (outdoor) air pollution. World Health Organization. September 22, 2021. Accessed September 20, 2022. https:// www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and- health
2. European Environment Agency. Health impacts of air pollution in Europe, 2021. Nov 15, 2021. European Environment Agency. Accessed September 20, 2022. https://www.eea.europa.eu/publications/air-quality-in-europe-2021/health-impacts- of-air-pollution 3. Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006;56(6):709-742. doi:10.1080/10473289.2006.10464485 4. World Health Organization. WHO global air quality guidelines: particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. World Health Organization. Accessed September 23, 2022. https:// apps.who.int/iris/handle/10665/345329 5. Health Effects Institute, Institute for Health Metrics and Evaluation. State of Global Air 2020. Accessed September 23, 2022. https://www.stateofglobalair.org/ 6. Lin HH, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4(1):e20. doi:10.1371/journal.pmed.0040020 7. Lönnroth K, Castro KG, Chakaya JM, et al. Tuberculosis control and elimination 2010-50: cure, care, and social development. Lancet. 2010;375(9728):1814-1829. doi:10.1016/S0140-6736(10)60483-7 8. Global Tuberculosis Report 2021. World Health Organization; 2021. 9. Houtmeyers E, Gosselink R, Gayan-Ramirez G, Decramer M. Regulation of mucociliary clearance in health and disease. Eur Respir J. 1999;13(5):1177-1188. doi:10.1034/j.1399-3003.1999.13e39.x 10. Sopori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002;2(5):372-377. doi:10.1038/nri803 11. Wang H, Yu M, Ochani M, et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature. 2003;421(6921):384-388. doi:10.1038/nature01339 12. Boelaert JR, Gomes MS, Gordeuk VR. Smoking, iron, and tuberculosis. Lancet. 2003;362(9391):1243-1244. doi:10.1016/S0140-6736(03)14529-1 13. Smith GS, Van Den Eeden SK, Garcia C, et al. Air pollution and pulmonary tuberculosis: A nested case-control study among members of a Northern California health plan. Environ Health Perspect. 2016;124(6):761-768. doi:10.1289/ ehp.1408166 14. Wu DW, Cheng YC, Wang CW, et al. Impact of the synergistic effect of pneumonia and air pollutants on newly diagnosed pulmonary tuberculosis in southern Taiwan. Environ Res. 2022;212(Pt B):113215. doi:10.1016/j.envres.2022.113215 15. Lai TC, Chiang CY, Wu CF, et al. Ambient air pollution and risk of tuberculosis: a cohort study. Occup Environ Med. 2016;73(1):56-61. doi:10.1136/ oemed-2015-102995 16. Torres M, Carranza C, Sarkar S, et al. Urban airborne particle exposure impairs human lung and blood Mycobacterium tuberculosis immunity. Thorax. 2019;74(7):675-683. doi:10.1136/thoraxjnl-2018-212529 17. Ministry of interior. Statistical Yearbook of Interior. Accessed September 25, 2022. https://www.moi.gov.tw/cl.aspx?n=4414 18. Ho CC, Chen LJ, Hwang JS. Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors. Environ Pollut. 2020;264(114810):114810. doi:10.1016/ j.envpol.2020.114810 19. Lo WC, Ho CC, Tseng E, Hwang JS, Chan CC, Lin HH. Long-term exposure to ambient fine particulate matter (PM2.5) and associations with cardiopulmonary diseases and lung cancer in Taiwan: a nationwide longitudinal cohort study. Int J Epidemiol. 2022;51(4):1230-1242. doi:10.1093/ije/dyac082 20. Ku LJ, Li CC, Li CY. The Establishment and Application of Healthcare Utilization Database in Taiwan. The Journal of Health Sciences. 2018. doi:10.6979/ TJHS.201812/SP.0003 21. Centers for Disease Control, Ministry of Health and Welfare, R.O.C.(Taiwan). Statistics of Communicable Diseases and Surveillance Report. Accessed February 14, 2023. https://www.cdc.gov.tw/InfectionReport/List/ DRiONFTwYxu8T162Hm6yFw 22. Centers for Disease Control, Ministry of Health and Welfare, R.O.C.(Taiwan). Taiwan guidelines for TB diagnosis & treatment 7th ed. Accessed September 26, 2022. https://www.cdc.gov.tw/En/InfectionReport/Info/ 9YUAXbFsmorP5T10V8qvMA?infoId=9qq_6LqI1gU4k7Ih0D-ipQ 23. Chen CC, Chiang CY, Pan SC, Wang JY, Lin HH. Health system delay among patients with tuberculosis in Taiwan: 2003-2010. BMC Infect Dis. 2015;15(1):491. doi:10.1186/s12879-015-1228-x 24. Lin HH, Ezzati M, Murray M. Tobacco smoke, indoor air pollution and tuberculosis: a systematic review and meta-analysis. PLoS Med. 2007;4(1):e20. doi:10.1371/journal.pmed.0040020 25. Lönnroth K, Williams BG, Stadlin S, Jaramillo E, Dye C. Alcohol use as a risk factor for tuberculosis - a systematic review. BMC Public Health. 2008;8(1):289. doi:10.1186/1471-2458-8-289 26. Sulis G, Roggi A, Matteelli A, Raviglione MC. Tuberculosis: epidemiology and control. Mediterr J Hematol Infect Dis. 2014;6(1):e2014070. doi:10.4084/ MJHID.2014.070 27. Lambert ML, Hasker E, Van Deun A, Roberfroid D, Boelaert M, Van der Stuyft P. Recurrence in tuberculosis: relapse or reinfection? Lancet Infect Dis. 2003;3(5):282-287. doi:10.1016/s1473-3099(03)00607-8 28. Imtiaz S, Shield KD, Roerecke M, Samokhvalov AV, Lönnroth K, Rehm J. Alcohol consumption as a risk factor for tuberculosis: meta-analyses and burden of disease. Eur Respir J. 2017;50(1):1700216. doi:10.1183/13993003.00216-2017 29. Nhamoyebonde S, Leslie A. Biological differences between the sexes and susceptibility to tuberculosis. J Infect Dis. 2014;209 Suppl 3(suppl 3):S100-6. doi:10.1093/infdis/jiu147 30. Canchola AJ, Stewart SL, Bernstein L, et al. Cox regression using different time- scales. Lexjansen.com. Accessed December 22, 2022. https://www.lexjansen.com/ wuss/2003/DataAnalysis/i-cox_time_scales.pdf 31. Penning de Vries BBL, Groenwold RHH. Bias of time-varying exposure effects due to time-varying covariate measurement strategies. Pharmacoepidemiol Drug Saf. 2022;31(1):22-27. doi:10.1002/pds.5328 32. Harrell FE Jr. Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Springer New York; 2001. 33. Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Radic Biol Med. 2020;151:56-68. doi:10.1016/j.freeradbiomed.2020.01.179 34. Ghio AJ, Carraway MS, Madden MC. Composition of air pollution particles and oxidative stress in cells, tissues, and living systems. J Toxicol Environ Health B Crit Rev. 2012;15(1):1-21. doi:10.1080/10937404.2012.632359 35. Lin PL, Plessner HL, Voitenok NN, Flynn JL. Tumor necrosis factor and tuberculosis. J Investig Dermatol Symp Proc. 2007;12(1):22-25. doi:10.1038/ sj.jidsymp.5650027 36. Hiraiwa K, van Eeden SF. Contribution of lung macrophages to the inflammatory responses induced by exposure to air pollutants. Mediators Inflamm. 2013;2013:619523. doi:10.1155/2013/619523 37. Wei T, Tang M. Biological effects of airborne fine particulate matter (PM2.5) exposure on pulmonary immune system. Environ Toxicol Pharmacol. 2018;60:195-201. doi:10.1016/j.etap.2018.04.004 38. Lin HH, Ezzati M, Chang HY, Murray M. Association between tobacco smoking and active tuberculosis in Taiwan: prospective cohort study: Prospective cohort study. Am J Respir Crit Care Med. 2009;180(5):475-480. doi:10.1164/ rccm.200904-0549OC 39. Burnett RT, Pope CA 3rd, Ezzati M, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014;122(4):397-403. doi:10.1289/ehp.1307049 40. Bolte G, Heitmann D, Kiranoglu M, et al. Exposure to environmental tobacco smoke in German restaurants, pubs and discotheques. J Expo Sci Environ Epidemiol. 2008;18(3):262-271. doi:10.1038/sj.jes.7500590 41. Dogar OF, Pillai N, Safdar N, Shah SK, Zahid R, Siddiqi K. Second-hand smoke and the risk of tuberculosis: a systematic review and a meta-analysis. Epidemiol Infect. 2015;143(15):3158-3172. doi:10.1017/s0950268815001235 42. Pope CA 3rd, Burnett RT, Krewski D, et al. Cardiovascular mortality and exposure to airborne fine particulate matter and cigarette smoke: shape of the exposure- response relationship: Shape of the exposure-response relationship. Circulation. 2009;120(11):941-948. doi:10.1161/CIRCULATIONAHA.109.857888 43. Inghammar M, Ekbom A, Engström G, et al. COPD and the risk of tuberculosis--a population-based cohort study. PLoS One. 2010;5(4):e10138. doi:10.1371/ journal.pone.0010138 44. Huang HC, Lin FCF, Wu MF, et al. Association between chronic obstructive pulmonary disease and PM2.5 in Taiwanese nonsmokers. Int J Hyg Environ Health. 2019;222(5):884-888. doi:10.1016/j.ijheh.2019.03.009 45. Yang X, Zhang T, Zhang Y, Chen H, Sang S. Global burden of COPD attributable to ambient PM2.5 in 204 countries and territories, 1990 to 2019: A systematic analysis for the Global Burden of Disease Study 2019. Sci Total Environ. 2021;796(148819):148819. doi:10.1016/j.scitotenv.2021.148819 46. Bo Y, Chang LY, Guo C, et al. Reduced ambient PM2.5, better lung function, and decreased risk of chronic obstructive pulmonary disease. Environ Int. 2021;156(106706):106706. doi:10.1016/j.envint.2021.106706 47. Lee CH, Lee MC, Shu CC, et al. Risk factors for pulmonary tuberculosis in patients with chronic obstructive airway disease in Taiwan: a nationwide cohort study. BMC Infect Dis. 2013;13:194. doi:10.1186/1471-2334-13-194 48. Wu CY, Ieorger T, Lee CH, Lin JN, Lee SJ, Lu PL, Lin HH. 2021 Oct. Combing whole genome sequencing, geographic and public health information to study transmission dynamics of tuberculosis in Taiwan: a population-based cohort study. Oral presentation at the 52nd Union World Conference. 49. Yew WW, Yoshiyama T, Leung CC, Chan DP. Epidemiological, clinical and mechanistic perspectives of tuberculosis in older people. Respirology. 2018;23(6):567-575. doi:10.1111/resp.13303 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89827 | - |
| dc.description.abstract | 背景
目前關於長期暴露於直徑小於或等於2.5微米的懸浮微粒(PM2.5)與結核病之間關係的證據有限且不一致。本研究旨在利用來自臺灣全國代表性樣本來調查兩者間的關聯性。 方法 我們對參加了2001年至2017年間五次全國健康訪問調查的12歲及以上個體進行了一項長期追蹤研究。每位參與者在發生結核病、死亡或2020年12月31日之前均進行了隨訪。個體基於ICD代碼和抗結核藥物處方被診斷為發生結核病。PM2.5暴露是使用空氣質量監測站和微型傳感器數據估計的。我們進行了時間相依的Cox迴歸分析,使用前兩年的平均PM2.5水平作為暴露窗口。受限制的立方曲線被用來檢驗非線性關聯。 結果 在追蹤時間中位數為11年的72180名個體中,報告了488例結核病病例。隨訪的第一年,平均PM2.5水平為31.0 μg/m3(標準差: 9.7 μg/m3)。調整性別、年齡、身體質量指數、吸菸、飲酒、教育程度、家庭平均月收入、居住在山地行政區、結核病病史和結核病的時間趨勢後,PM2.5年平均值每增加10 μg/m3 調整後的HR為0.94(CI: 0.84-1.05)。受限制的立方曲線Cox迴歸分析的結果顯示,PM2.5和結核病之間可能存在非線性關係(p-value for non-linearity: 0.084)。我們還觀察到年齡的效應修飾(p-value: 0.048),在65歲以上和65歲以下的個體之間結核病風險存在顯著差異。改變暴露窗口和結點選擇方法對主要結果影響有限。 結論 這項大型基於人口的世代研究結果顯示,PM2.5和結核病之間可能存在非線性關係,特別是在低濃度下呈現反向關係。老年族群可能是受空氣污染影響的易感族群。 | zh_TW |
| dc.description.abstract | Background
Available evidence on the relationship between long-term exposure to particulate matter with aerodynamic diameter of ≤ 2.5 μm (PM2.5) and tuberculosis (TB) has been limited and inconsistent. This study aimed to investigate this association using a nationally representative sample from Taiwan. Methods We conducted a longitudinal cohort study on individuals aged ≥12 years who participated in 5 rounds of the National Health Interview Survey from 2001 to 2017. Participants were followed up until the incidence of active TB, death, or 31 December 2020. TB incidence was identified based on ICD codes and prescription of anti-TB drugs. PM2.5 exposure was estimated using air quality monitoring stations and microsensors data. Time-dependent Cox regression analyses were conducted, using the average PM2.5 level in the preceding two years as the exposure window. Nonlinear associations were examined using restricted cubic splines. Results Among 72,180 individuals with a median follow-up time of 11 years, 488 TB cases were reported. During the first year of follow-up, the mean PM2.5 level was 31.0 μg/m3 (SD: 9.7 μg/m3). After adjusting for sex, age, body mass index, cigarettes smoking, alcohol use, education level, household income, living in mountain administrative areas, TB history, and secular trend of TB, the adjusted HR was 0.94 (CI: 0.84-1.05) for every 10 μg/m3 increase with preceding two years average PM2.5 level. The results of the restricted cubic spline Cox regression analysis suggested a potential nonlinear relationship between PM2.5 and TB (p-value for non-linearity: 0.084). We also observed effect modification by age (p-value: 0.048), with a significant difference in TB risk between individuals aged above 65 years and those aged 65 years and below. Changing the exposure window and knot selection method had limited impact on the main findings. Conclusions In the large population-based cohort study, the results revealed a nonlinear relationship between PM2.5 and TB, particularly an inverse relationship at low levels. The elderly population might be the vulnerable subgroup for the effect of air pollution. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:17:26Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:17:26Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Method 5 2.1 Settings and study population 5 2.2 Measurement of PM2.5 5 2.3 Measurement of TB status 6 2.4 Measurement of covariates 7 2.5 Statistical analysis 7 Chapter 3 Results 9 3.1 Population characteristics 9 3.2 Incidence of TB and Cox hazard regression 9 3.3 Stratified analysis 11 Chapter 4 Discussion 12 Reference 23 Appendix 31 Appendix Reference 43 | - |
| dc.language.iso | en | - |
| dc.subject | 懸浮微粒 | zh_TW |
| dc.subject | 非線性擬合 | zh_TW |
| dc.subject | 時間相依Cox迴歸 | zh_TW |
| dc.subject | 結核病 | zh_TW |
| dc.subject | PM2.5 | zh_TW |
| dc.subject | restricted cubic splines | en |
| dc.subject | time-dependent Cox regression | en |
| dc.subject | particulate matter | en |
| dc.subject | tuberculosis | en |
| dc.subject | PM2.5 | en |
| dc.title | 空氣污染與結核病風險之世代研究 | zh_TW |
| dc.title | Ambient air pollution and risk of active tuberculosis: a nationwide population-based cohort study in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 洪弘 | zh_TW |
| dc.contributor.coadvisor | Hung Hung | en |
| dc.contributor.oralexamcommittee | 羅偉成;詹長權;江振源 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Cheng Lo;Chang-Chuan Chan;Chen-Yuan Chiang | en |
| dc.subject.keyword | 懸浮微粒,PM2.5,結核病,時間相依Cox迴歸,非線性擬合, | zh_TW |
| dc.subject.keyword | particulate matter,PM2.5,tuberculosis,time-dependent Cox regression,restricted cubic splines, | en |
| dc.relation.page | 45 | - |
| dc.identifier.doi | 10.6342/NTU202304067 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-11 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 流行病學與預防醫學研究所 | - |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.36 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
