Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89820
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 蔡欣祐 | zh_TW |
dc.contributor.advisor | Hsin-Yue Tsai | en |
dc.contributor.author | 曾依婷 | zh_TW |
dc.contributor.author | Yi-Ting Tseng | en |
dc.date.accessioned | 2023-09-22T16:15:34Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | Zhou, L., Azfer, A., Niu, J., Graham, S., Choudhury, M., Adamski, F.M., Younce, C., Binkley, P.F. and Kolattukudy, P.E. (2006) Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res, 98, 1177-1185.
Matsushita, K., Takeuchi, O., Standley, D.M., Kumagai, Y., Kawagoe, T., Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H. et al. (2009) Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 458, 1185-1190. Mizgalska, D., Wegrzyn, P., Murzyn, K., Kasza, A., Koj, A., Jura, J., Jarzab, B. and Jura, J. (2009) Interleukin-1-inducible MCPIP protein has structural and functional properties of RNase and participates in degradation of IL-1beta mRNA. FEBS J, 276, 7386-7399. Liang, J., Saad, Y., Lei, T., Wang, J., Qi, D., Yang, Q., Kolattukudy, P.E. and Fu, M. (2010) MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med, 207, 2959-2973. Niu, J., Shi, Y., Xue, J., Miao, R., Huang, S., Wang, T., Wu, J., Fu, M. and Wu, Z.H. (2013) USP10 inhibits genotoxic NF-kappaB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J, 32, 3206-3219. Lyu, J.H., Park, D.W., Huang, B., Kang, S.H., Lee, S.J., Lee, C., Bae, Y.S., Lee, J.G. and Baek, S.H. (2015) RGS2 suppresses breast cancer cell growth via a MCPIP1-dependent pathway. J Cell Biochem, 116, 260-267. Yokogawa, M., Tsushima, T., Noda, N.N., Kumeta, H., Enokizono, Y., Yamashita, K., Standley, D.M., Takeuchi, O., Akira, S. and Inagaki, F. (2016) Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci Rep, 6, 22324. Xu, J., Peng, W., Sun, Y., Wang, X., Xu, Y., Li, X., Gao, G. and Rao, Z. (2012) Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res, 40, 6957-6965. Lin, R.J., Chu, J.S., Chien, H.L., Tseng, C.H., Ko, P.C., Mei, Y.Y., Tang, W.C., Kao, Y.T., Cheng, H.Y., Liang, Y.C. et al. (2014) MCPIP1 suppresses hepatitis C virus replication and negatively regulates virus-induced proinflammatory cytokine responses. J Immunol, 193, 4159-4168. Tan, X., Gao, J., Shi, Z., Tai, S., Chan, L.L., Yang, Y., Peng, D.Q., Liao, D.F., Jiang, Z.S., Chang, Y.Z. et al. (2017) MG132 Induces Expression of Monocyte Chemotactic Protein-Induced Protein 1 in Vascular Smooth Muscle Cells. J Cell Physiol, 232, 122-128. Blazusiak, E., Florczyk, D., Jura, J., Potempa, J. and Koziel, J. (2013) Differential regulation by Toll-like receptor agonists reveals that MCPIP1 is the potent regulator of innate immunity in bacterial and viral infections. J Innate Immun, 5, 15-23. Sparna, T., Retey, J., Schmich, K., Albrecht, U., Naumann, K., Gretz, N., Fischer, H.P., Bode, J.G. and Merfort, I. (2010) Genome-wide comparison between IL-17 and combined TNF-alpha/IL-17 induced genes in primary murine hepatocytes. BMC Genomics, 11, 226. Qi, D., Huang, S., Miao, R., She, Z.G., Quinn, T., Chang, Y., Liu, J., Fan, D., Chen, Y.E. and Fu, M. (2011) Monocyte chemotactic protein-induced protein 1 (MCPIP1) suppresses stress granule formation and determines apoptosis under stress. J Biol Chem, 286, 41692-41700. Lu, W., Ning, H., Gu, L., Peng, H., Wang, Q., Hou, R., Fu, M., Hoft, D.F. and Liu, J. (2016) MCPIP1 Selectively Destabilizes Transcripts Associated with an Antiapoptotic Gene Expression Program in Breast Cancer Cells That Can Elicit Complete Tumor Regression. Cancer Res, 76, 1429-1440. Skalniak, L., Mizgalska, D., Zarebski, A., Wyrzykowska, P., Koj, A. and Jura, J. (2009) Regulatory feedback loop between NF-kappaB and MCP-1-induced protein 1 RNase. FEBS J, 276, 5892-5905. Iwasaki, H., Takeuchi, O., Teraguchi, S., Matsushita, K., Uehata, T., Kuniyoshi, K., Satoh, T., Saitoh, T., Matsushita, M., Standley, D.M. et al. (2011) The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol, 12, 1167-1175. Uehata, T., Iwasaki, H., Vandenbon, A., Matsushita, K., Hernandez-Cuellar, E., Kuniyoshi, K., Satoh, T., Mino, T., Suzuki, Y., Standley, D.M. et al. (2013) Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell, 153, 1036-1049. Wawro, M., Kochan, J. and Kasza, A. (2016) The perplexities of the ZC3H12A self-mRNA regulation. Acta Biochim Pol, 63, 411-415. Yao, H., Ma, R., Yang, L., Hu, G., Chen, X., Duan, M., Kook, Y., Niu, F., Liao, K., Fu, M. et al. (2014) MiR-9 promotes microglial activation by targeting MCPIP1. Nat Commun, 5, 4386. Makki, M.S., Haseeb, A. and Haqqi, T.M. (2015) MicroRNA-9 promotion of interleukin-6 expression by inhibiting monocyte chemoattractant protein-induced protein 1 expression in interleukin-1beta-stimulated human chondrocytes. Arthritis Rheumatol, 67, 2117-2128. Mino, T., Murakawa, Y., Fukao, A., Vandenbon, A., Wessels, H.H., Ori, D., Uehata, T., Tartey, S., Akira, S., Suzuki, Y. et al. (2015) Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell, 161, 1058-1073. Li, M., Cao, W., Liu, H., Zhang, W., Liu, X., Cai, Z., Guo, J., Wang, X., Hui, Z., Zhang, H. et al. (2012) MCPIP1 down-regulates IL-2 expression through an ARE-independent pathway. PLoS One, 7, e49841. Behrens, G., Winzen, R., Rehage, N., Dorrie, A., Barsch, M., Hoffmann, A., Hackermuller, J., Tiedje, C., Heissmeyer, V. and Holtmann, H. (2018) A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Res, 46, 4256-4270. Lipert, B., Wilamowski, M., Gorecki, A. and Jura, J. (2017) MCPIP1, alias Regnase-1 binds and cleaves mRNA of C/EBPbeta. PLoS One, 12, e0174381. Lipert, B., Wegrzyn, P., Sell, H., Eckel, J., Winiarski, M., Budzynski, A., Matlok, M., Kotlinowski, J., Ramage, L., Malecki, M. et al. (2014) Monocyte chemoattractant protein-induced protein 1 impairs adipogenesis in 3T3-L1 cells. Biochim Biophys Acta, 1843, 780-788. Masuda, K., Ripley, B., Nyati, K.K., Dubey, P.K., Zaman, M.M., Hanieh, H., Higa, M., Yamashita, K., Standley, D.M., Mashima, T. et al. (2016) Arid5a regulates naive CD4+ T cell fate through selective stabilization of Stat3 mRNA. J Exp Med, 213, 605-619. Suzuki, H.I., Arase, M., Matsuyama, H., Choi, Y.L., Ueno, T., Mano, H., Sugimoto, K. and Miyazono, K. (2011) MCPIP1 ribonuclease antagonizes dicer and terminates microRNA biogenesis through precursor microRNA degradation. Mol Cell, 44, 424-436. Happel, C., Ramalingam, D. and Ziegelbauer, J.M. (2016) Virus-Mediated Alterations in miRNA Factors and Degradation of Viral miRNAs by MCPIP1. PLoS Biol, 14, e2000998. Kook, I. and Ziegelbauer, J.M. (2021) Monocyte chemoattractant protein-induced protein 1 directly degrades viral miRNAs with a specific motif and inhibits KSHV infection. Nucleic Acids Res, 49, 4456-4471. Chen, F., Wang, Q., Yu, X., Yang, N., Wang, Y., Zeng, Y., Zheng, Z., Zhou, F. and Zhou, Y. (2021) MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis. Cell Death Dis, 12, 370. Dhamija, S., Winzen, R., Doerrie, A., Behrens, G., Kuehne, N., Schauerte, C., Neumann, E., Dittrich-Breiholz, O., Kracht, M. and Holtmann, H. (2013) Interleukin-17 (IL-17) and IL-1 activate translation of overlapping sets of mRNAs, including that of the negative regulator of inflammation, MCPIP1. J Biol Chem, 288, 19250-19259. Schott, J., Reitter, S., Philipp, J., Haneke, K., Schafer, H. and Stoecklin, G. (2014) Translational regulation of specific mRNAs controls feedback inhibition and survival during macrophage activation. PLoS Genet, 10, e1004368. Wilamowski, M., Gorecki, A., Dziedzicka-Wasylewska, M. and Jura, J. (2018) Substrate specificity of human MCPIP1 endoribonuclease. Sci Rep, 8, 7381. Jolma, A., Zhang, J., Mondragon, E., Morgunova, E., Kivioja, T., Laverty, K.U., Yin, Y., Zhu, F., Bourenkov, G., Morris, Q. et al. (2020) Binding specificities of human RNA-binding proteins toward structured and linear RNA sequences. Genome Res, 30, 962-973. Ruiz-Romeu, E., Ferran, M., Gimenez-Arnau, A., Bugara, B., Lipert, B., Jura, J., Florencia, E.F., Prens, E.P., Celada, A., Pujol, R.M. et al. (2016) MCPIP1 RNase Is Aberrantly Distributed in Psoriatic Epidermis and Rapidly Induced by IL-17A. J Invest Dermatol, 136, 1599-1607. Garg, A.V., Amatya, N., Chen, K., Cruz, J.A., Grover, P., Whibley, N., Conti, H.R., Hernandez Mir, G., Sirakova, T., Childs, E.C. et al. (2015) MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity, 43, 475-487. Folkman, J. (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med, 285, 1182-1186. Ramjaun, A.R. and Hodivala-Dilke, K. (2009) The role of cell adhesion pathways in angiogenesis. Int J Biochem Cell Biol, 41, 521-530. Breviario, F., Caveda, L., Corada, M., Martin-Padura, I., Navarro, P., Golay, J., Introna, M., Gulino, D., Lampugnani, M.G. and Dejana, E. (1995) Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol, 15, 1229-1239. Breier, G., Breviario, F., Caveda, L., Berthier, R., Schnurch, H., Gotsch, U., Vestweber, D., Risau, W. and Dejana, E. (1996) Molecular cloning and expression of murine vascular endothelial-cadherin in early stage development of cardiovascular system. Blood, 87, 630-641. Lampugnani, M.G., Resnati, M., Raiteri, M., Pigott, R., Pisacane, A., Houen, G., Ruco, L.P. and Dejana, E. (1992) A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol, 118, 1511-1522. Huber, P., Dalmon, J., Engiles, J., Breviario, F., Gory, S., Siracusa, L.D., Buchberg, A.M. and Dejana, E. (1996) Genomic structure and chromosomal mapping of the mouse VE-cadherin gene (Cdh5). Genomics, 32, 21-28. Vittet, D., Buchou, T., Schweitzer, A., Dejana, E. and Huber, P. (1997) Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryoid bodies. Proc Natl Acad Sci U S A, 94, 6273-6278. Carmeliet, P., Lampugnani, M.G., Moons, L., Breviario, F., Compernolle, V., Bono, F., Balconi, G., Spagnuolo, R., Oosthuyse, B., Dewerchin, M. et al. (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell, 98, 147-157. Lampugnani, M.G., Corada, M., Andriopoulou, P., Esser, S., Risau, W. and Dejana, E. (1997) Cell confluence regulates tyrosine phosphorylation of adherens junction components in endothelial cells. J Cell Sci, 110 ( Pt 17), 2065-2077. Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.T., Tomar, A., Tancioni, I., Uryu, S. et al. (2012) VEGF-induced vascular permeability is mediated by FAK. Dev Cell, 22, 146-157. Dejana, E., Orsenigo, F. and Lampugnani, M.G. (2008) The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci, 121, 2115-2122. Matsumura, T., Wolff, K. and Petzelbauer, P. (1997) Endothelial cell tube formation depends on cadherin 5 and CD31 interactions with filamentous actin. J Immunol, 158, 3408-3416. Sauteur, L., Krudewig, A., Herwig, L., Ehrenfeuchter, N., Lenard, A., Affolter, M. and Belting, H.G. (2014) Cdh5/VE-cadherin promotes endothelial cell interface elongation via cortical actin polymerization during angiogenic sprouting. Cell Rep, 9, 504-513. Hendrix, M.J., Seftor, E.A., Meltzer, P.S., Gardner, L.M., Hess, A.R., Kirschmann, D.A., Schatteman, G.C. and Seftor, R.E. (2001) Expression and functional significance of VE-cadherin in aggressive human melanoma cells: role in vasculogenic mimicry. Proc Natl Acad Sci U S A, 98, 8018-8023. Parker, B.S., Argani, P., Cook, B.P., Liangfeng, H., Chartrand, S.D., Zhang, M., Saha, S., Bardelli, A., Jiang, Y., St Martin, T.B. et al. (2004) Alterations in vascular gene expression in invasive breast carcinoma. Cancer Res, 64, 7857-7866. Higuchi, K., Inokuchi, M., Takagi, Y., Ishikawa, T., Otsuki, S., Uetake, H., Kojima, K. and Kawano, T. (2017) Cadherin 5 expression correlates with poor survival in human gastric cancer. J Clin Pathol, 70, 217-221. Fry, S.A., Robertson, C.E., Swann, R. and Dwek, M.V. (2016) Cadherin-5: a biomarker for metastatic breast cancer with optimum efficacy in oestrogen receptor-positive breast cancers with vascular invasion. Br J Cancer, 114, 1019-1026. Liao, F., Li, Y., O'Connor, W., Zanetta, L., Bassi, R., Santiago, A., Overholser, J., Hooper, A., Mignatti, P., Dejana, E. et al. (2000) Monoclonal antibody to vascular endothelial-cadherin is a potent inhibitor of angiogenesis, tumor growth, and metastasis. Cancer Res, 60, 6805-6810. Corada, M., Zanetta, L., Orsenigo, F., Breviario, F., Lampugnani, M.G., Bernasconi, S., Liao, F., Hicklin, D.J., Bohlen, P. and Dejana, E. (2002) A monoclonal antibody to vascular endothelial-cadherin inhibits tumor angiogenesis without side effects on endothelial permeability. Blood, 100, 905-911. Nakajima, D., Okazaki, N., Yamakawa, H., Kikuno, R., Ohara, O. and Nagase, T. (2002) Construction of Expression-ready cDNA Clones for KIAA Genes: Manual Curation of 330 KIAA cDNA Clones. DNA Research, 9, 99-106. Akashi, M., Higashi, T., Masuda, S., Komori, T. and Furuse, M. (2011) A coronary artery disease-associated gene product, JCAD/KIAA1462, is a novel component of endothelial cell-cell junctions. Biochem Biophys Res Commun, 413, 224-229. Erdmann, J., Willenborg, C., Nahrstaedt, J., Preuss, M., Konig, I.R., Baumert, J., Linsel-Nitschke, P., Gieger, C., Tennstedt, S., Belcredi, P. et al. (2011) Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. Eur Heart J, 32, 158-168. Coronary Artery Disease Genetics, C. (2011) A genome-wide association study in Europeans and South Asians identifies five new loci for coronary artery disease. Nat Genet, 43, 339-344. Hara, T., Monguchi, T., Iwamoto, N., Akashi, M., Mori, K., Oshita, T., Okano, M., Toh, R., Irino, Y., Shinohara, M. et al. (2017) Targeted Disruption of JCAD (Junctional Protein Associated With Coronary Artery Disease)/KIAA1462, a Coronary Artery Disease-Associated Gene Product, Inhibits Angiogenic Processes In Vitro and In Vivo. Arterioscler Thromb Vasc Biol, 37, 1667-1673. Douglas, G., Mehta, V., Al Haj Zen, A., Akoumianakis, I., Goel, A., Rashbrook, V.S., Trelfa, L., Donovan, L., Drydale, E., Chuaiphichai, S. et al. (2020) A key role for the novel coronary artery disease gene JCAD in atherosclerosis via shear stress mechanotransduction. Cardiovasc Res, 116, 1863-1874. Ye, J., Li, T.S., Xu, G., Zhao, Y.M., Zhang, N.P., Fan, J. and Wu, J. (2017) JCAD Promotes Progression of Nonalcoholic Steatohepatitis to Liver Cancer by Inhibiting LATS2 Kinase Activity. Cancer Res, 77, 5287-5300. Jones, P.D., Kaiser, M.A., Ghaderi Najafabadi, M., Koplev, S., Zhao, Y., Douglas, G., Kyriakou, T., Andrews, S., Rajmohan, R., Watkins, H. et al. (2018) JCAD, a Gene at the 10p11 Coronary Artery Disease Locus, Regulates Hippo Signaling in Endothelial Cells. Arterioscler Thromb Vasc Biol, 38, 1711-1722. Kratzschmar, J., Lum, L. and Blobel, C.P. (1996) Metargidin, a membrane-anchored metalloprotease-disintegrin protein with an RGD integrin binding sequence. J Biol Chem, 271, 4593-4596. Najy, A.J., Day, K.C. and Day, M.L. (2008) The ectodomain shedding of E-cadherin by ADAM15 supports ErbB receptor activation. J Biol Chem, 283, 18393-18401. Tousseyn, T., Thathiah, A., Jorissen, E., Raemaekers, T., Konietzko, U., Reiss, K., Maes, E., Snellinx, A., Serneels, L., Nyabi, O. et al. (2009) ADAM10, the rate-limiting protease of regulated intramembrane proteolysis of Notch and other proteins, is processed by ADAMS-9, ADAMS-15, and the gamma-secretase. J Biol Chem, 284, 11738-11747. Zhang, X.P., Kamata, T., Yokoyama, K., Puzon-McLaughlin, W. and Takada, Y. (1998) Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem, 273, 7345-7350. Nath, D., Slocombe, P.M., Stephens, P.E., Warn, A., Hutchinson, G.R., Yamada, K.M., Docherty, A.J. and Murphy, G. (1999) Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5beta1 integrins on different haemopoietic cells. J Cell Sci, 112 ( Pt 4), 579-587. Eto, K., Puzon-McLaughlin, W., Sheppard, D., Sehara-Fujisawa, A., Zhang, X.P. and Takada, Y. (2000) RGD-independent binding of integrin alpha9beta1 to the ADAM-12 and -15 disintegrin domains mediates cell-cell interaction. J Biol Chem, 275, 34922-34930. Poghosyan, Z., Robbins, S.M., Houslay, M.D., Webster, A., Murphy, G. and Edwards, D.R. (2002) Phosphorylation-dependent interactions between ADAM15 cytoplasmic domain and Src family protein-tyrosine kinases. J Biol Chem, 277, 4999-5007. Fried, D., Bohm, B.B., Krause, K. and Burkhardt, H. (2012) ADAM15 protein amplifies focal adhesion kinase phosphorylation under genotoxic stress conditions. J Biol Chem, 287, 21214-21223. Herren, B., Raines, E.W. and Ross, R. (1997) Expression of a disintegrin-like protein in cultured human vascular cells and in vivo. Faseb j, 11, 173-180. Horiuchi, K., Weskamp, G., Lum, L., Hammes, H.P., Cai, H., Brodie, T.A., Ludwig, T., Chiusaroli, R., Baron, R., Preissner, K.T. et al. (2003) Potential role for ADAM15 in pathological neovascularization in mice. Mol Cell Biol, 23, 5614-5624. Komiya, K., Enomoto, H., Inoki, I., Okazaki, S., Fujita, Y., Ikeda, E., Ohuchi, E., Matsumoto, H., Toyama, Y. and Okada, Y. (2005) Expression of ADAM15 in rheumatoid synovium: up-regulation by vascular endothelial growth factor and possible implications for angiogenesis. Arthritis Res Ther, 7, R1158-1173. Ham, C., Levkau, B., Raines, E.W. and Herren, B. (2002) ADAM15 is an adherens junction molecule whose surface expression can be driven by VE-cadherin. Exp Cell Res, 279, 239-247. Sun, C., Wu, M.H., Guo, M., Day, M.L., Lee, E.S. and Yuan, S.Y. (2010) ADAM15 regulates endothelial permeability and neutrophil migration via Src/ERK1/2 signalling. Cardiovasc Res, 87, 348-355. Nishimi, S., Isozaki, T., Wakabayashi, K., Takeuchi, H. and Kasama, T. (2019) A Disintegrin and Metalloprotease 15 is Expressed on Rheumatoid Arthritis Synovial Tissue Endothelial Cells and may Mediate Angiogenesis. Cells, 8. Dong, D.D., Zhou, H. and Li, G. (2015) ADAM15 targets MMP9 activity to promote lung cancer cell invasion. Oncol Rep, 34, 2451-2460. Hong, K.H., Ryu, J. and Han, K.H. (2005) Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood, 105, 1405-1407. Niu, J., Azfer, A., Zhelyabovska, O., Fatma, S. and Kolattukudy, P.E. (2008) Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem, 283, 14542-14551. Roy, A. and Kolattukudy, P.E. (2012) Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal, 24, 2123-2131. Roy, A., Zhang, M., Saad, Y. and Kolattukudy, P.E. (2013) Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am J Physiol Cell Physiol, 305, C1021-1032. He, M., Liang, X., He, L., Wen, W., Zhao, S., Wen, L., Liu, Y., Shyy, J.Y. and Yuan, Z. (2013) Endothelial dysfunction in rheumatoid arthritis: the role of monocyte chemotactic protein-1-induced protein. Arterioscler Thromb Vasc Biol, 33, 1384-1391. Ligeza, J., Marona, P., Gach, N., Lipert, B., Miekus, K., Wilk, W., Jaszczynski, J., Stelmach, A., Loboda, A., Dulak, J. et al. (2017) MCPIP1 contributes to clear cell renal cell carcinomas development. Angiogenesis, 20, 325-340. Marona, P., Gorka, J., Mazurek, Z., Wilk, W., Rys, J., Majka, M., Jura, J. and Miekus, K. (2017) MCPIP1 Downregulation in Clear Cell Renal Cell Carcinoma Promotes Vascularization and Metastatic Progression. Cancer Res, 77, 4905-4920. Gorka, J., Marona, P., Kwapisz, O., Rys, J., Jura, J. and Miekus, K. (2020) The anti-inflammatory protein MCPIP1 inhibits the development of ccRCC by maintaining high levels of tumour suppressors. Eur J Pharmacol, 888, 173591. Szukala, W., Lichawska-Cieslar, A., Pietrzycka, R., Kulecka, M., Rumienczyk, I., Mikula, M., Chlebicka, I., Konieczny, P., Dziedzic, K., Szepietowski, J.C. et al. (2021) Loss of epidermal MCPIP1 is associated with aggressive squamous cell carcinoma. J Exp Clin Cancer Res, 40, 391. Ye, W., Cui, Y., Rong, J., Huang, W., Zheng, Z., Li, A. and Li, Y. (2023) MCPIP1 Suppresses the NF-kappaB Signaling Pathway Through Negative Regulation of K63-Linked Ubiquitylation of TRAF6 in Colorectal Cancer. Cancer Gene Ther, 30, 96-107. Skalniak, A., Boratyn, E., Tyrkalska, S.D., Horwacik, I., Durbas, M., Lastowska, M., Jura, J. and Rokita, H. (2014) Expression of the monocyte chemotactic protein-1-induced protein 1 decreases human neuroblastoma cell survival. Oncol Rep, 31, 2385-2392. Afgan, E., Baker, D., van den Beek, M., Blankenberg, D., Bouvier, D., Cech, M., Chilton, J., Clements, D., Coraor, N., Eberhard, C. et al. (2016) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids Res, 44, W3-W10. Jalili, V., Afgan, E., Gu, Q., Clements, D., Blankenberg, D., Goecks, J., Taylor, J. and Nekrutenko, A. (2020) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res, 48, W395-W402. Afgan, E., Baker, D., Batut, B., van den Beek, M., Bouvier, D., Cech, M., Chilton, J., Clements, D., Coraor, N., Gruning, B.A. et al. (2018) The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res, 46, W537-W544. Kechin, A., Boyarskikh, U., Kel, A. and Filipenko, M. (2017) cutPrimers: A New Tool for Accurate Cutting of Primers from Reads of Targeted Next Generation Sequencing. J Comput Biol, 24, 1138-1143. Kim, D., Paggi, J.M., Park, C., Bennett, C. and Salzberg, S.L. (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol, 37, 907-915. Liao, Y., Smyth, G.K. and Shi, W. (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30, 923-930. Love, M.I., Huber, W. and Anders, S. (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol, 15, 550. Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B. et al. (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods, 9, 676-682. Birgit Möller, M.G., Danny Misiak and Stefan Posch. (2016) MiToBo - A Toolbox for Image Processing and Analysis. Journal of open research software, 4, e17. Van Nostrand, E.L., Pratt, G.A., Shishkin, A.A., Gelboin-Burkhart, C., Fang, M.Y., Sundararaman, B., Blue, S.M., Nguyen, T.B., Surka, C., Elkins, K. et al. (2016) Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat Methods, 13, 508-514. Langmead, B., Trapnell, C., Pop, M. and Salzberg, S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol, 10, R25. Salameh, T.J., Wang, X., Song, F., Zhang, B., Wright, S.M., Khunsriraksakul, C., Ruan, Y. and Yue, F. (2020) A supervised learning framework for chromatin loop detection in genome-wide contact maps. Nat Commun, 11, 3428. Machanick, P. and Bailey, T.L. (2011) MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics, 27, 1696-1697. Miladi, M., Sokhoyan, E., Houwaart, T., Heyne, S., Costa, F., Gruning, B. and Backofen, R. (2019) GraphClust2: Annotation and discovery of structured RNAs with scalable and accessible integrative clustering. Gigascience, 8. Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S. et al. (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 102, 15545-15550. Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar, J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E. et al. (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34, 267-273. Mi, H., Muruganujan, A., Casagrande, J.T. and Thomas, P.D. (2013) Large-scale gene function analysis with the PANTHER classification system. Nat Protoc, 8, 1551-1566. DeLisser, H.M., Christofidou-Solomidou, M., Strieter, R.M., Burdick, M.D., Robinson, C.S., Wexler, R.S., Kerr, J.S., Garlanda, C., Merwin, J.R., Madri, J.A. et al. (1997) Involvement of endothelial PECAM-1/CD31 in angiogenesis. Am J Pathol, 151, 671-677. Corada, M., Mariotti, M., Thurston, G., Smith, K., Kunkel, R., Brockhaus, M., Lampugnani, M.G., Martin-Padura, I., Stoppacciaro, A., Ruco, L. et al. (1999) Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci U S A, 96, 9815-9820. Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R. and Zeiher, A.M. (1999) Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 399, 601-605. Babaei, S., Teichert-Kuliszewska, K., Zhang, Q., Jones, N., Dumont, D.J. and Stewart, D.J. (2003) Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am J Pathol, 162, 1927-1936. Park, S., DiMaio, T.A., Scheef, E.A., Sorenson, C.M. and Sheibani, N. (2010) PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell-cell and cell-matrix interactions. Am J Physiol Cell Physiol, 299, C1468-1484. Tanaka, H., Arima, Y., Kamimura, D., Tanaka, Y., Takahashi, N., Uehata, T., Maeda, K., Satoh, T., Murakami, M. and Akira, S. (2019) Phosphorylation-dependent Regnase-1 release from endoplasmic reticulum is critical in IL-17 response. J Exp Med, 216, 1431-1449. Van Nostrand, E.L., Freese, P., Pratt, G.A., Wang, X., Wei, X., Xiao, R., Blue, S.M., Chen, J.Y., Cody, N.A.L., Dominguez, D. et al. (2020) A large-scale binding and functional map of human RNA-binding proteins. Nature, 583, 711-719. Bailey, T.L. (2011) DREME: motif discovery in transcription factor ChIP-seq data. Bioinformatics, 27, 1653-1659. Heyne, S., Costa, F., Rose, D. and Backofen, R. (2012) GraphClust: alignment-free structural clustering of local RNA secondary structures. Bioinformatics, 28, i224-232. Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 31, 3406-3415. Tabruyn, S.P., Memet, S., Ave, P., Verhaeghe, C., Mayo, K.H., Struman, I., Martial, J.A. and Griffioen, A.W. (2009) NF-kappaB activation in endothelial cells is critical for the activity of angiostatic agents. Mol Cancer Ther, 8, 2645-2654. Karlsson, M., Zhang, C., Mear, L., Zhong, W., Digre, A., Katona, B., Sjostedt, E., Butler, L., Odeberg, J., Dusart, P. et al. (2021) A single-cell type transcriptomics map of human tissues. Sci Adv, 7. Karali, E., Bellou, S., Stellas, D., Klinakis, A., Murphy, C. and Fotsis, T. (2014) VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol Cell, 54, 559-572. Sims, D., Sudbery, I., Ilott, N.E., Heger, A. and Ponting, C.P. (2014) Sequencing depth and coverage: key considerations in genomic analyses. Nat Rev Genet, 15, 121-132. Zhuang, J., Wu, Y., Chen, L., Liang, S., Wu, M., Zhou, L., Fan, C. and Zhang, Y. (2018) Single-Cell Mobility Analysis of Metastatic Breast Cancer Cells. Adv Sci (Weinh), 5, 1801158. Gorka, J., Marona, P., Kwapisz, O., Rys, J., Jura, J. and Miekus, K. (2022) MCPIP1 regulates focal adhesion kinase and Rho GTPase-dependent migration in clear cell renal cell carcinoma. Eur J Pharmacol, 922, 174804. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89820 | - |
dc.description.abstract | 血管新生是指新的血管於既有的血管上形成的過程,此過程需要被嚴格的控制以確保傷口癒合無虞,而失控的血管增生則會促進癌細胞的轉移。本研究旨在探討單核細胞趨化蛋白-1誘導蛋白-1 (MCP-1 induced protein-1, MCPIP1) 於血管新生調控中扮演的角色。先前的研究指出MCPIP1能促進內皮細胞的血管新生能力,但最近的癌症相關研究卻指出MCPIP1的表現量與癌細胞的轉移呈現負相關。由於MCPIP1在血管新生中的調控機制不明,所以目前MCPIP1在血管新生中扮演的角色尚無定論。本研究發現在兩種不同的內皮細胞中降低MCPIP1的表現,會導致血管新生相關基因的表現量增加,並且促進細胞爬行以及血管新生的能力。我們也發現血管內皮生長因子 (Vascular endothelial growth factor, VEGF) 能夠引發血管新生並且誘導MCPIP1的表現,進而進行反饋抑制的工作,避免血管新生失控。利用在內皮細胞中成功執行的增強交聯與免疫沈澱 (enhanced crosslinking and immunoprecipitation, eCLIP) 結合與轉錄組學 (transcriptomic) 的交互分析我找到了七個MCPIP1的目標基因,且證實因為MCPIP1表現量降低,使得ADAM15和 CDH5的穩定度增加導致其總體表現量增加,進而促進血管新生。此外,我更進一步探究MCPIP1對目標信使核醣核酸 (mRNA) 作用的分子機制,發現該蛋白會透過與目標基因3端非轉譯區域 (3′UTR) 上的雙莖環結構 (double stem-loop structure) 結合來標的並降解目標基因。總的來說,我的研究為MCPIP1對血管新生的調控機制提供了新的見解,並闡明了其標靶的分子機制,該機制透過辨識雙莖環結構來調控信使核醣核酸的降解。 | zh_TW |
dc.description.abstract | Angiogenesis is a critical process in which new blood vessels form from a pre-exist one. The process must be tightly controlled to ensure proper wound healing, as uncontrolled angiogenesis can promote cancer cell metastasis. In this study, I investigated the role of MCP-1 induced protein 1 (MCPIP1) in the regulation of angiogenesis. Previous studies have suggested a pro-angiogenic role for MCPIP1, but recent cancer-related studies have shown conflicting results. However, the mechanisms underlying MCPIP1 modulation of angiogenesis is remain unclear, the regulatory role of MCPIP1 is still controversial. This study found that knockdown of MCPIP1 promotes the expression of angiogenesis marker genes, migration rate, and tube formation in both HMEC-1 and HUVECs. The expression of MCPIP1 is induced by vascular endothelial growth factor (VEGF), and act as a feedback inhibitor of VEGF-mediated angiogenesis in both cell types. Applying the first enhanced crosslinking and immunoprecipitation (eCLIP) in endothelial cells (HMEC-1) and combining the analysis with transcriptomic result, I identified seven MCPIP1 targets and confirmed that knockdown of MCPIP1 promotes angiogenesis by the elevating of the expression of ADAM15 and CDH5. Furthermore, I investigated the molecular mechanism of MCPIP1 targeting, identifying a double stem-loop structure in the 3′UTR region of targets RNAs. Overall, these findings provide new insights into the regulation of angiogenesis by MCPIP1 and shed light on its targeting mechanism, which involves mRNA degradation through the double stem-loop structure. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:15:34Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:15:34Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 ii Abstract iv Contents vi List of Figures viii List of Tables xi List of Appendix xii Introduction 1 Specific aim 13 Material and method 14 Result 26 Discussion 46 Figures 59 Tables 103 Reference 108 Appendix 126 | - |
dc.language.iso | zh_TW | - |
dc.title | 內皮細胞中的MCPIP1:血管新生的調節因子 | zh_TW |
dc.title | MCPIP1 in endothelial cells: a regulator of angiogenesis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 李芳仁;譚婉玉;蔡丰喬;朱家瑜;朱家瑩 | zh_TW |
dc.contributor.oralexamcommittee | Fang-Jen S. Lee;Woan-Yuh Tarn;Feng-Chiao Tsai;Chia-Yu Chu;Chia-Ying Chu | en |
dc.subject.keyword | 單核細胞趨化蛋白-1 誘導蛋白-1,血管新生,增強交聯與免疫沈澱,信使核糖核酸降解,雙莖環結構, | zh_TW |
dc.subject.keyword | MCP-1 induced protein 1 (MCPIP1),angiogenesis,enhanced crosslinking precipitation (eCLIP),mRNA-degradation,double stem-loop structure, | en |
dc.relation.page | 127 | - |
dc.identifier.doi | 10.6342/NTU202302751 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-07 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 分子醫學研究所 | - |
Appears in Collections: | 分子醫學研究所 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
ntu-111-2.pdf Restricted Access | 7.97 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.