請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89818
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林靖愉 | zh_TW |
dc.contributor.advisor | Ching-Yu Lin | en |
dc.contributor.author | 洪子涵 | zh_TW |
dc.contributor.author | Tzu-Han Hung | en |
dc.date.accessioned | 2023-09-22T16:15:02Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-07 | - |
dc.identifier.citation | Abbott, B. D., Wolf, C. J., Das, K. P., Zehr, R. D., Schmid, J. E., Lindstrom, A. B., . . . Lau, C. (2009). Developmental toxicity of perfluorooctane sulfonate (PFOS) is not dependent on expression of peroxisome proliferator activated receptor-alpha (PPARα) in the mouse. Reproductive Toxicology, 27(3), 258-265. doi:https://doi.org/10.1016/j.reprotox.2008.05.061
Akchurin, O. M., & Kaskel, F. (2015). Update on Inflammation in Chronic Kidney Disease. Blood Purification, 39(1-3), 84-92. doi:10.1159/000368940 Alexandri, E., Ahmed, R., Siddiqui, H., Choudhary, M., Tsiafoulis, C., & Gerothanassis, I. (2017). High Resolution NMR Spectroscopy as a Structural and Analytical Tool for Unsaturated Lipids in Solution. Molecules, 22(10), 1663. doi:10.3390/molecules22101663 Antunes, M. M., Godoy, G., Fernandes, I. D. L., Manin, L. P., Zappielo, C., Masi, L. N., . . . Bazotte, R. B. (2020). The Dietary Replacement of Soybean Oil by Canola Oil Does Not Prevent Liver Fatty Acid Accumulation and Liver Inflammation in Mice. Nutrients, 12(12), 3667. doi:10.3390/nu12123667 Arouri, A., Lauritsen, K. E., Nielsen, H. L., & Mouritsen, O. G. (2016). Effect of fatty acids on the permeability barrier of model and biological membranes. Chemistry and Physics of Lipids, 200, 139-146. doi:https://doi.org/10.1016/j.chemphyslip.2016.10.001 Beach, S. A., Newsted, J. L., Coady, K., & Giesy, J. P. (2006). Ecotoxicological Evaluation of Perfluorooctanesulfonate (PFOS). In Reviews of Environmental Contamination and Toxicology (pp. 133-174): Springer New York. Bian, H., Hakkarainen, A., Zhou, Y., Lundbom, N., Olkkonen, V. M., & Yki-Järvinen, H. (2015). Impact of non-alcoholic fatty liver disease on liver volume in humans. Hepatol Res, 45(2), 210-219. doi:10.1111/hepr.12338 Biltagi, M. A., Baset, A. A., Bassiouny, M., Kasrawi, M. A., & Attia, M. (2009). Omega-3 fatty acids, vitamin C and Zn supplementation in asthmatic children: a randomized self-controlled study. Acta Paediatrica, 98(4), 737-742. doi:10.1111/j.1651-2227.2008.01213.x Bligh, E. G., & Dyer, W. J. (1959). A RAPID METHOD OF TOTAL LIPID EXTRACTION AND PURIFICATION. Canadian Journal of Biochemistry and Physiology, 37(8), 911-917. doi:10.1139/o59-099 %M 13671378 Bloom, M. S., Commodore, S., Ferguson, P. L., Neelon, B., Pearce, J. L., Baumer, A., . . . Hunt, K. J. (2022). Association between gestational PFAS exposure and Children's adiposity in a diverse population. Environmental research, 203, 111820. doi:https://doi.org/10.1016/j.envres.2021.111820 Bobulescu, I. A. (2010). Renal lipid metabolism and lipotoxicity. Current Opinion in Nephrology and Hypertension, 19(4), 393-402. doi:10.1097/mnh.0b013e32833aa4ac Cadore, A., Chou, C. H. S. J., Jones, D. G., Llados, F., & Pohl, H. R. (2009). Draft toxicological profile for perfluoroalkyls. Retrieved from https://stacks.cdc.gov/view/cdc/5391 Casu, M., Anderson, G. J., Choi, G., & Gibbons, W. A. (1991). NMR lipid profiles of cells, tissues and body fluids. I— 1D and 2D Proton NMR of lipids from rat liver. Magnetic Resonance in Chemistry, 29(6), 594-602. doi:10.1002/mrc.1260290610 Cerqueira, N. M. F. S. A., Oliveira, E. F., Gesto, D. S., Santos-Martins, D., Moreira, C., Moorthy, H. N., . . . Fernandes, P. A. (2016). Cholesterol Biosynthesis: A Mechanistic Overview. Biochemistry, 55(39), 5483-5506. doi:10.1021/acs.biochem.6b00342 Chang, N. W., & Huang, P. C. (1998). Effects of the ratio of polyunsaturated and monounsaturated fatty acid to saturated fatty acid on rat plasma and liver lipid concentrations. Lipids, 33(5), 481-487. doi:https://doi.org/10.1007/s11745-998-0231-9 Chen, Y., Ma, Z., Shen, X., Li, L., Zhong, J., Min, L. S., . . . Dai, L. (2018). Serum Lipidomics Profiling to Identify Biomarkers for Non-Small Cell Lung Cancer. BioMed Research International, 2018, 1-16. doi:10.1155/2018/5276240 Cheng, J., Lv, S., Nie, S., Liu, J., Tong, S., Kang, N., . . . Yang, D. (2016). Chronic perfluorooctane sulfonate (PFOS) exposure induces hepatic steatosis in zebrafish. Aquatic Toxicology, 176, 45-52. doi:https://doi.org/10.1016/j.aquatox.2016.04.013 Cheng, M., Zhang, S., Ning, C., & Huo, Q. (2021). Omega-3 Fatty Acids Supplementation Improve Nutritional Status and Inflammatory Response in Patients With Lung Cancer: A Randomized Clinical Trial. Frontiers in Nutrition, 8. doi:10.3389/fnut.2021.686752 Choi, S. S., & Diehl, A. M. (2008). Hepatic triglyceride synthesis and nonalcoholic fatty liver disease. Current Opinion in Lipidology, 19(3). Retrieved from https://journals.lww.com/co-lipidology/Fulltext/2008/06000/Hepatic_triglyceride_synthesis_and_nonalcoholic.13.aspx Chou, H.-C., Wen, L.-L., Chang, C.-C., Lin, C.-Y., Jin, L., & Juan, S.-H. (2017). From the Cover: l-Carnitine via PPARγ- and Sirt1-Dependent Mechanisms Attenuates Epithelial-Mesenchymal Transition and Renal Fibrosis Caused by Perfluorooctanesulfonate. Toxicological Sciences, 160(2), 217-229. doi:10.1093/toxsci/kfx183 Coen, M., Lenz, E. M., Nicholson, J. K., Wilson, I. D., Pognan, F., & Lindon, J. C. (2003). An Integrated Metabonomic Investigation of Acetaminophen Toxicity in the Mouse Using NMR Spectroscopy. Chemical Research in Toxicology, 16(3), 295-303. doi:10.1021/tx0256127 Cole, L. K., Vance, J. E., & Vance, D. E. (2012). Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1821(5), 754-761. doi:https://doi.org/10.1016/j.bbalip.2011.09.009 Covington, M. B. (2004). Omega-3 fatty acids. Am Fam Physician, 70(1), 133-140. Cui, L., Zhou, Q.-F., Liao, C.-Y., Fu, J.-J., & Jiang, G.-B. (2009). Studies on the Toxicological Effects of PFOA and PFOS on Rats Using Histological Observation and Chemical Analysis. Archives of Environmental Contamination and Toxicology, 56(2), 338-349. doi:10.1007/s00244-008-9194-6 Curran, I., Hierlihy, S. L., Liston, V., Pantazopoulos, P., Nunnikhoven, A., Tittlemier, S., . . . Bondy, G. (2008). Altered Fatty Acid Homeostasis and Related Toxicologic Sequelae in Rats Exposed to Dietary Potassium Perfluorooctanesulfonate (PFOS). Journal of Toxicology and Environmental Health, Part A, 71(23), 1526-1541. doi:10.1080/15287390802361763 Dan-Qin, S., Sheng-Jie, W., Wen-Yue, L., Li-Ren, W., Yi-Ran, C., Dong-Chu, Z., . . . Ming-Hua, Z. (2016). Association of low-density lipoprotein cholesterol within the normal range and NAFLD in the non-obese Chinese population: a cross-sectional and longitudinal study. BMJ Open, 6(12), e013781. doi:10.1136/bmjopen-2016-013781 Domanski, M. J., Tian, X., Wu, C. O., Reis, J. P., Dey, A. K., Gu, Y., . . . Fuster, V. (2020). Time Course of LDL Cholesterol Exposure and Cardiovascular Disease Event Risk. Journal of the American College of Cardiology, 76(13), 1507-1516. doi:doi:10.1016/j.jacc.2020.07.059 Dongiovanni, P., Paolini, E., Corsini, A., Sirtori, C. R., & Ruscica, M. (2021). Nonalcoholic fatty liver disease or metabolic dysfunction‐associated fatty liver disease diagnoses and cardiovascular diseases: From epidemiology to drug approaches. European Journal of Clinical Investigation, 51(7). doi:10.1111/eci.13519 Emwas, A.-H., Roy, R., Mckay, R. T., Tenori, L., Saccenti, E., Gowda, G. A. N., . . . Wishart, D. S. (2019). NMR Spectroscopy for Metabolomics Research. Metabolites, 9(7), 123. doi:10.3390/metabo9070123 Fabbrini, E., Mohammed, B. S., Magkos, F., Korenblat, K. M., Patterson, B. W., & Klein, S. (2008). Alterations in Adipose Tissue and Hepatic Lipid Kinetics in Obese Men and Women With Nonalcoholic Fatty Liver Disease. Gastroenterology, 134(2), 424-431. doi:https://doi.org/10.1053/j.gastro.2007.11.038 Fahy, E., Cotter, D., Sud, M., & Subramaniam, S. (2011). Lipid classification, structures and tools. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, 1811(11), 637-647. doi:https://doi.org/10.1016/j.bbalip.2011.06.009 Fajardo, V. A., Mcmeekin, L., & Leblanc, P. J. (2011). Influence of Phospholipid Species on Membrane Fluidity: A Meta-analysis for a Novel Phospholipid Fluidity Index. The Journal of Membrane Biology, 244(2), 97-103. doi:10.1007/s00232-011-9401-7 Fang, C., Huang, Q., Ye, T., Chen, Y., Liu, L., Kang, M., . . . Dong, S. (2013). Embryonic exposure to PFOS induces immunosuppression in the fish larvae of marine medaka. Ecotoxicology and Environmental Safety, 92, 104-111. doi:https://doi.org/10.1016/j.ecoenv.2013.03.005 Fei, C., Mclaughlin, J. K., Lipworth, L., & Olsen, J. (2009). Maternal levels of perfluorinated chemicals and subfecundity. Human Reproduction, 24(5), 1200-1205. doi:10.1093/humrep/den490 Fragki, S., Dirven, H., Fletcher, T., Grasl-Kraupp, B., Bjerve Gützkow, K., Hoogenboom, R., . . . Luijten, M. (2021). Systemic PFOS and PFOA exposure and disturbed lipid homeostasis in humans: what do we know and what not? Critical Reviews in Toxicology, 51(2), 141-164. doi:10.1080/10408444.2021.1888073 Fuentes, F., López-Miranda, J., Sánchez, E., Sánchez, F., Paez, J., Paz-Rojas, E., . . . Pérez-Jiménez, F. (2001). Mediterranean and Low-Fat Diets Improve Endothelial Function in Hypercholesterolemic Men. Annals of Internal Medicine, 134(12), 1115-1119. doi:10.7326/0003-4819-134-12-200106190-00011 Gai, Z., Wang, T., Visentin, M., Kullak-Ublick, G., Fu, X., & Wang, Z. (2019). Lipid Accumulation and Chronic Kidney Disease. Nutrients, 11(4), 722. doi:10.3390/nu11040722 Gautier, C., & Aurich, C. (2022). “Fine feathers make fine birds” – The mammalian sperm plasma membrane lipid composition and effects on assisted reproduction. Animal Reproduction Science, 246, 106884. doi:https://doi.org/10.1016/j.anireprosci.2021.106884 Geng, D., Musse, A. A., Wigh, V., Carlsson, C., Engwall, M., Orešič, M., . . . Hyötyläinen, T. (2019). Effect of perfluorooctanesulfonic acid (PFOS) on the liver lipid metabolism of the developing chicken embryo. Ecotoxicology and Environmental Safety, 170, 691-698. doi:https://doi.org/10.1016/j.ecoenv.2018.12.040 Gluba-Brzozka, A., Franczyk, B., & Rysz, J. (2019). Cholesterol Disturbances and the Role of Proper Nutrition in CKD Patients. Nutrients, 11(11), 2820. doi:10.3390/nu11112820 Guo, S., Wang, Y., Zhou, D., & Li, Z. (2015). Significantly increased monounsaturated lipids relative to polyunsaturated lipids in six types of cancer microenvironment are observed by mass spectrometry imaging. Scientific Reports, 4(1). doi:10.1038/srep05959 Habegger, K. M., Heppner, K. M., Geary, N., Bartness, T. J., Dimarchi, R., & Tschöp, M. H. (2010). The metabolic actions of glucagon revisited. Nature Reviews Endocrinology, 6(12), 689-697. doi:10.1038/nrendo.2010.187 Hajhosseiny, R., Khavandi, K., & Goldsmith, D. J. (2013). Cardiovascular disease in chronic kidney disease: untying the Gordian knot. International Journal of Clinical Practice, 67(1), 14-31. doi:10.1111/j.1742-1241.2012.02954.x Hatting, M., Tavares, C. D. J., Sharabi, K., Rines, A. K., & Puigserver, P. (2018). Insulin regulation of gluconeogenesis. Annals of the New York Academy of Sciences, 1411(1), 21-35. doi:10.1111/nyas.13435 Hsu, J.-Y., Hsu, J.-F., Ho, H.-H., Chiang, C.-F., & Liao, P.-C. (2013). Background levels of Persistent Organic Pollutants in humans from Taiwan: Perfluorooctane sulfonate and perfluorooctanoic acid. Chemosphere, 93(3), 532-537. doi:https://doi.org/10.1016/j.chemosphere.2013.06.047 Hu, W. y., Jones, P. D., DeCoen, W., King, L., Fraker, P., Newsted, J., & Giesy, J. P. (2003). Alterations in cell membrane properties caused by perfluorinated compounds. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 135(1), 77-88. doi:https://doi.org/10.1016/S1532-0456(03)00043-7 Ipsen, D. H., Lykkesfeldt, J., & Tveden-Nyborg, P. (2018). Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cellular and Molecular Life Sciences, 75(18), 3313-3327. doi:10.1007/s00018-018-2860-6 Jacobs, R. L., Devlin, C., Tabas, I., & Vance, D. E. (2004). Targeted Deletion of Hepatic CTP:phosphocholine Cytidylyltransferase α in Mice Decreases Plasma High Density and Very Low Density Lipoproteins. Journal of Biological Chemistry, 279(45), 47402-47410. doi:10.1074/jbc.m404027200 Jin, Y., Saito, N., Harada, K. H., Inoue, K., & Koizumi, A. (2007). Historical Trends in Human Serum Levels of Perfluorooctanoate and Perfluorooctane Sulfonate in Shenyang, China. The Tohoku Journal of Experimental Medicine, 212(1), 63-70. doi:10.1620/tjem.212.63 Jocken, J. W. E., Langin, D., Smit, E., Saris, W. H. M., Valle, C., Hul, G. B., . . . Blaak, E. E. (2007). Adipose Triglyceride Lipase and Hormone-Sensitive Lipase Protein Expression Is Decreased in the Obese Insulin-Resistant State. The Journal of Clinical Endocrinology & Metabolism, 92(6), 2292-2299. doi:10.1210/jc.2006-1318 Kaddah, S., Khreich, N., Kaddah, F., Charcosset, C., & Greige-Gerges, H. (2018). Cholesterol modulates the liposome membrane fluidity and permeability for a hydrophilic molecule. Food and Chemical Toxicology, 113, 40-48. doi:https://doi.org/10.1016/j.fct.2018.01.017 Khan, M., Rahman, M., Zaman, S., Jahangir, T., & Razu, M. (2015). Omega-3 Polyunsaturated Fatty Acids from Algae. In (pp. 1-17). Lara-Castro, C., & Garvey, W. T. (2008). Intracellular Lipid Accumulation in Liver and Muscle and the Insulin Resistance Syndrome. Endocrinology and Metabolism Clinics of North America, 37(4), 841-856. doi:10.1016/j.ecl.2008.09.002 Lee, H., Lee, S., Lee, M., Son, Y., Kim, S., & An, W. (2018). Effect of Omega-3 Fatty Acid on STAMP2 Expression in the Heart and Kidney of 5/6 Nephrectomy Rat Model. Marine Drugs, 16(11), 398. doi:10.3390/md16110398 Lee, S.-H., Tseng, W.-C., Du, Z.-Y., Lin, W.-Y., Chen, M.-H., Lin, C.-C., . . . Lin, C.-Y. (2021). Lipid responses to environmental perfluoroalkyl substance exposure in a Taiwanese Child cohort. Environmental Pollution, 283, 117007. doi:10.1016/j.envpol.2021.117007 Lee, S.-H., Wang, T.-Y., Hong, J.-H., Cheng, T.-J., & Lin, C.-Y. (2016). NMR-based metabolomics to determine acute inhalation effects of nano- and fine-sized ZnO particles in the rat lung. Nanotoxicology, 10(7), 924-934. doi:10.3109/17435390.2016.1144825 Li, X., Li, T., Wang, Z., Wei, J., Liu, J., Zhang, Y., & Zhao, Z. (2021). Distribution of perfluorooctane sulfonate in mice and its effect on liver lipidomic. Talanta, 226, 122150. doi:https://doi.org/10.1016/j.talanta.2021.122150 Li, Y., Fletcher, T., Mucs, D., Scott, K., Lindh, C. H., Tallving, P., & Jakobsson, K. (2018). Half-lives of PFOS, PFHxS and PFOA after end of exposure to contaminated drinking water. Occupational and Environmental Medicine, 75(1), 46-51. doi:10.1136/oemed-2017-104651 Li, Z., Zhang, Y., Wang, F., Wang, R., Zhang, S., Zhang, Z., . . . He, M. (2022). Associations between serum PFOA and PFOS levels and incident chronic kidney disease risk in patients with type 2 diabetes. Ecotoxicology and Environmental Safety, 229, 113060. doi:https://doi.org/10.1016/j.ecoenv.2021.113060 Li, Z. Z., Berk, M., Mcintyre, T. M., & Feldstein, A. E. (2009). Hepatic Lipid Partitioning and Liver Damage in Nonalcoholic Fatty Liver Disease. Journal of Biological Chemistry, 284(9), 5637-5644. doi:10.1074/jbc.m807616200 Liang, R., He, J., Shi, Y., Li, Z., Sarvajayakesavalu, S., Baninla, Y., . . . Lu, Y. (2017). Effects of Perfluorooctane sulfonate on immobilization, heartbeat, reproductive and biochemical performance of Daphnia magna. Chemosphere, 168, 1613-1618. doi:https://doi.org/10.1016/j.chemosphere.2016.11.147 Lin, C.-Y., Chen, P.-C., Lin, Y.-C., & Lin, L.-Y. (2009). Association Among Serum Perfluoroalkyl Chemicals, Glucose Homeostasis, and Metabolic Syndrome in Adolescents and Adults. Diabetes Care, 32(4), 702-707. doi:10.2337/dc08-1816 Lin, P.-C., Chou, C.-L., Ou, S.-H., Fang, T.-C., & Chen, J.-S. (2021). Systematic Review of Nutrition Supplements in Chronic Kidney Diseases: A GRADE Approach. Nutrients, 13(2), 469. doi:10.3390/nu13020469 Lin, Y.-L., Wang, C.-L., Liu, K.-L., Yeh, C.-N., & Chiang, T.-I. (2022). Omega-3 Fatty Acids Improve Chronic Kidney Disease—Associated Pruritus and Inflammation. Medicina, 58(6), 796. doi:10.3390/medicina58060796 Liu, Y., Li, A., An, Q., Liu, K., Zheng, P., Yin, S., & Liu, W. (2022). Prenatal and postnatal transfer of perfluoroalkyl substances from mothers to their offspring. Critical Reviews in Environmental Science and Technology, 52(14), 2510-2537. doi:10.1080/10643389.2021.1886556 Long, Y., Wang, Y., Ji, G., Yan, L., Hu, F., & Gu, A. (2013). Neurotoxicity of Perfluorooctane Sulfonate to Hippocampal Cells in Adult Mice. PLOS ONE, 8(1), e54176. doi:10.1371/journal.pone.0054176 Lydic, T. A., & Goo, Y. H. (2018). Lipidomics unveils the complexity of the lipidome in metabolic diseases. Clinical and Translational Medicine, 7(1). doi:10.1186/s40169-018-0182-9 Martín, V., Fabelo, N., Santpere, G., Puig, B., Marín, R., Ferrer, I., & Díaz, M. (2010). Lipid Alterations in Lipid Rafts from Alzheimer's Disease Human Brain Cortex. Journal of Alzheimer's Disease, 19(2), 489-502. doi:10.3233/jad-2010-1242 Merscher, S., Pedigo, C. E., & Mendez, A. J. (2014). Metabolism, Energetics, and Lipid Biology in the Podocyte – Cellular Cholesterol-Mediated Glomerular Injury. Frontiers in Endocrinology, 5. doi:10.3389/fendo.2014.00169 Meshkani, R., & Adeli, K. (2009). Hepatic insulin resistance, metabolic syndrome and cardiovascular disease. Clinical Biochemistry, 42(13), 1331-1346. doi:https://doi.org/10.1016/j.clinbiochem.2009.05.018 Meyer-Schwesinger, C. (2020). The ins-and-outs of podocyte lipid metabolism. Kidney International, 98(5), 1087-1090. doi:https://doi.org/10.1016/j.kint.2020.07.008 Milhas, D., Clarke, C. J., & Hannun, Y. A. (2010). Sphingomyelin metabolism at the plasma membrane: Implications for bioactive sphingolipids. FEBS Letters, 584(9), 1887-1894. doi:10.1016/j.febslet.2009.10.058 Murata, N., & Los, D. A. (1997). Membrane Fluidity and Temperature Perception. Plant Physiol, 115(3), 875-879. doi:10.1104/pp.115.3.875 Nelson, J. W., Hatch, E. E., & Webster, T. F. (2010). Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general US population. Environmental Health Perspectives, 118(2), 197-202. Qin, Y., Gu, T., Ling, J., Luo, J., Zhao, J., Hu, B., . . . Jiang, S. (2022). PFOS facilitates liver inflammation and steatosis: An involvement of NLRP3 inflammasome-mediated hepatocyte pyroptosis. Journal of Applied Toxicology, 42(5), 806-817. doi:https://doi.org/10.1002/jat.4258 Qiu, T., Chen, M., Sun, X., Cao, J., Feng, C., Li, D., . . . Yao, X. (2016). Perfluorooctane sulfonate-induced insulin resistance is mediated by protein kinase B pathway. Biochemical and Biophysical Research Communications, 477(4), 781-785. doi:https://doi.org/10.1016/j.bbrc.2016.06.135 Qu, J.-H., Lu, C.-C., Xu, C., Chen, G., Qiu, L.-L., Jiang, J.-K., . . . Wang, X.-R. (2016). Perfluorooctane sulfonate-induced testicular toxicity and differential testicular expression of estrogen receptor in male mice. Environmental Toxicology and Pharmacology, 45, 150-157. doi:https://doi.org/10.1016/j.etap.2016.05.025 Rice, T. W. (2011). Enteral Omega-3 Fatty Acid, γ-Linolenic Acid, and Antioxidant Supplementation in Acute Lung Injury. JAMA, 306(14), 1574. doi:10.1001/jama.2011.1435 Saccenti, E., Hoefsloot, H. C. J., Smilde, A. K., Westerhuis, J. A., & Hendriks, M. M. W. B. (2014). Reflections on univariate and multivariate analysis of metabolomics data. Metabolomics, 10(3), 361-374. doi:10.1007/s11306-013-0598-6 Scorletti, E., & Byrne, C. D. (2013). Omega-3 Fatty Acids, Hepatic Lipid Metabolism, and Nonalcoholic Fatty Liver Disease. Annual Review of Nutrition, 33(1), 231-248. doi:10.1146/annurev-nutr-071812-161230 Shoji, T., Kakiya, R., Hayashi, T., Tsujimoto, Y., Sonoda, M., Shima, H., . . . Inaba, M. (2013). Serum n-3 and n-6 Polyunsaturated Fatty Acid Profile as an Independent Predictor of Cardiovascular Events in Hemodialysis Patients. American Journal of Kidney Diseases, 62(3), 568-576. doi:https://doi.org/10.1053/j.ajkd.2013.02.362 Stadler, K., Goldberg, I. J., & Susztak, K. (2015). The Evolving Understanding of the Contribution of Lipid Metabolism to Diabetic Kidney Disease. Current Diabetes Reports, 15(7). doi:10.1007/s11892-015-0611-8 Toft, G., Jönsson, B. A. G., Lindh, C. H., Giwercman, A., Spano, M., Heederik, D., . . . Bonde, J. P. (2012). Exposure to perfluorinated compounds and human semen quality in arctic and European populations. Human Reproduction, 27(8), 2532-2540. doi:10.1093/humrep/des185 Wan, H. T., Zhao, Y. G., Wei, X., Hui, K. Y., Giesy, J. P., & Wong, C. K. C. (2012). PFOS-induced hepatic steatosis, the mechanistic actions on β-oxidation and lipid transport. Biochimica et Biophysica Acta (BBA) - General Subjects, 1820(7), 1092-1101. doi:https://doi.org/10.1016/j.bbagen.2012.03.010 Wang, J., Zeng, X.-W., Bloom, M. S., Qian, Z., Hinyard, L. J., Belue, R., . . . Dong, G.-H. (2019). Renal function and isomers of perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS): Isomers of C8 Health Project in China. Chemosphere, 218, 1042-1049. doi:https://doi.org/10.1016/j.chemosphere.2018.11.191 Wang, L., Wang, Y., Liang, Y., Li, J., Liu, Y., Zhang, J., . . . Jiang, G. (2014). PFOS induced lipid metabolism disturbances in BALB/c mice through inhibition of low density lipoproteins excretion. Scientific Reports, 4(1), 1-8. Wang, R., Li, B., Lam, S. M., & Shui, G. (2020). Integration of lipidomics and metabolomics for in-depth understanding of cellular mechanism and disease progression. Journal of Genetics and Genomics, 47(2), 69-83. Wen, L.-L., Lin, C.-Y., Chou, H.-C., Chang, C.-C., Lo, H.-Y., & Juan, S.-H. (2016). Perfluorooctanesulfonate Mediates Renal Tubular Cell Apoptosis through PPARgamma Inactivation. PLOS ONE, 11(5), e0155190. doi:10.1371/journal.pone.0155190 Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., Vis, D. J., Smilde, A. K., Van Velzen, E. J. J., . . . Van Dorsten, F. A. (2008). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81-89. doi:10.1007/s11306-007-0099-6 Worley, R. R., Moore, S. M., Tierney, B. C., Ye, X., Calafat, A. M., Campbell, S., . . . Fisher, J. (2017). Per- and polyfluoroalkyl substances in human serum and urine samples from a residentially exposed community. Environment International, 106, 135-143. doi:https://doi.org/10.1016/j.envint.2017.06.007 Xie, W., Ludewig, G., Wang, K., & Lehmler, H.-J. (2010). Model and cell membrane partitioning of perfluorooctanesulfonate is independent of the lipid chain length. Colloids and Surfaces B: Biointerfaces, 76(1), 128-136. doi:10.1016/j.colsurfb.2009.10.025 Yeh, W.-C., Tsao, Y.-C., Li, W.-C., Tzeng, I. S., Chen, L.-S., & Chen, J.-Y. (2019). Elevated triglyceride-to-HDL cholesterol ratio is an indicator for insulin resistance in middle-aged and elderly Taiwanese population: a cross-sectional study. Lipids in Health and Disease, 18(1), 176. doi:10.1186/s12944-019-1123-3 Zhang, Y., Mustieles, V., Sun, Y., Oulhote, Y., Wang, Y.-X., & Messerlian, C. (2022). Association between serum per- and polyfluoroalkyl substances concentrations and common cold among children and adolescents in the United States. Environment International, 164, 107239. doi:https://doi.org/10.1016/j.envint.2022.107239 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89818 | - |
dc.description.abstract | 研究背景與目的:全氟辛烷磺酸(PFOS)是一種人工化學物質,目前被廣泛用於工業及商業產品。根據研究,PFOS已經被釋放至環境中,並能在環境造成持久性汙染,在人體血清也可以檢測到PFOS。流行病學研究顯示,PFOS暴露和一些不良健康效應相關,例如:體內脂質失去平衡、引起代謝症候群等,然而現在針對PFOS暴露導致體內脂質的影響資訊仍有限。因此這個研究的目的為利用脂質體學方法,探討大鼠暴露PFOS之後器官內的脂質體變化。
研究材料與方法:實驗以18隻雄性大鼠作為模型,每日分別以管餵暴露0、5、10毫克/千克體重的劑量,連續暴露21天後犧牲大鼠,採集心臟、肺臟、肝臟、腎臟、胰臟及睪丸樣本,再進行高解析核磁共振儀分析。核磁共振圖譜會經過圖譜前處理並進行單變量和多變量分析,最後進行數據及生物資訊的解釋。 研究結果與討論:在器官重量變化的分析結果,肝臟重量/體重有顯著變化。而PCA和PLS-DA結果顯示相較於其他器官,肝臟和腎臟有較多的脂質變化,包含膽固醇、飽和及不飽和脂肪酸、三酸甘油酯、甘油酯、鞘磷脂、磷脂醯膽鹼和磷脂醯乙醇胺。這些脂質變化可能與肝臟脂質累積、非酒精性脂肪肝、胰島素阻抗、細胞膜功能變化和慢性腎臟疾病有關。睪丸、心臟、肺臟中的脂質變化可能分別導致精子細胞膜功能干擾、心血管疾病和肺部損傷。而胰臟則無觀察到顯著的脂質變化。 結論:總而言之,這個研究使用脂質體學方法揭示了PFOS暴露後脂質在各器官內的變化,並認為肝臟和腎臟是主要的目標器官。另外PFOS造成的脂質的改變也和代謝疾病有潛在的關聯,特別是非酒精性脂肪肝和慢性腎臟疾病。 | zh_TW |
dc.description.abstract | Introduction: Perfluorooctane sulfonate (PFOS) is an artificial chemical and has been extensively used in commercial and industrial products. PFOS has been released to the environment widely and been persistent in the environment. It has also been detected in human serum. Epidemiological studies showed that PFOS exposure is related to several adverse health effects, such as lipid disturbances and metabolic syndromes. However, the lipid events of PFOS exposure are still unclear.
Materials and methods: The study aims to identify the organ-specific lipidome changes in Sprague-Dawley rats after PFOS exposure with lipidomic approach. Eighteen male Sprague-Dawley rats were treated with PFOS in 0, 5, and 10 mg/kg body weight/day by gavage. After 21 days continuously exposure, the heart, lung, liver, kidney, pancreas and testis were collected and extracted followed by high resolution nuclear magnetic resonance analysis. Univariate and multivariate analysis were conducted after spectral pretreatment followed by data interpretation. Results and discussions: The results presented the liver/body weight ratio had a significant change. The results of PCA and PLS-DA analysis showed the liver and kidney had greater lipid changes, including cholesterol, saturated and unsaturated fatty acids, triglyceride, glycerides, sphingomyelin, phosphatidylcholine, and phosphatidylethanolamine. These findings were potentially correlated with hepatic lipid accumulation, non-alcoholic fatty liver disease (NAFLD), insulin resistance, alterations in cell membrane, and chronic kidney disease (CKD). The lipid changes in the testis, heart, and lung may lead to the interference in the functions of sperm membrane, cardiovascular disease, and the lung injury, respectively. There was no significant lipid alteration observed in the pancreas. Conclusion: The lipidomic approach revealed lipid changes after PFOS exposure, whereas the result suggested the liver and kidney are the target organs. The lipid alterations indicate that there are potential association between PFOS and metabolic diseases, especially NAFLD and CKD. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:15:02Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:15:02Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
謝辭 ii 摘要 iii Abstract iv I. Introduction 1 1-1 Perfluorooctanesulfonic Acid 1 1-2 Lipidomics 3 1-3 Study aims 5 II. Materials and methods 6 2-1 Experimental framework 6 2-2 Animal experiment and sample collection 7 2-3 Measurement of lipid profiles in organs by 1H NMR spectroscopy 7 2-3-1 Sample preparation 7 2-3-2 Lipid profiles collection 8 2-3-3 Spectral processing 9 2-3-4 Peak identification 9 2-4 Statistical analysis 9 III. Results 12 3-1 Changes in the weights of SD rats 12 3-2 Lipid profiling in SD rats by 1H NMR spectroscopy 12 3-3 Association between PFOS exposure and lipid responses in the organs 13 3-4 Selective lipid significant changes in the organs after PFOS exposure 14 IV. Discussion 16 4-1 The impact of PFOS exposure on the liver 16 4-1-1 Lipid accumulation and non-alcoholic fatty liver disease 17 4-1-2 Insulin resistance 18 4-1-3 Alteration in the structure and functions of cell membrane 19 4-2 The impact of PFOS exposure on the kidney 19 4-2-1 Chronic kidney disease 20 4-2-2 Alteration in the functions of cell membrane 22 4-2-3 The comparison between the significant lipid changes in the liver and kidney 22 4-3 The impact of PFOS exposure on the testis, heart, and lung 23 4-3-1 Testicular membrane disturbances 23 4-3-2 Cardiovascular disease 23 4-3-3 Lung injury 24 4-4 The strengths and limitations 24 V. Conclusions and future works 26 References 28 | - |
dc.language.iso | en | - |
dc.title | 應用核磁共振儀探討大鼠暴露全氟辛烷磺酸之多器官脂質反應研究 | zh_TW |
dc.title | Lipid Responses to Perfluorooctanesulfonic Acid Exposure in Multiple Organs of Rats using Nuclear Magnetic Resonance | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 陳保中;羅宇軒;李昇翰 | zh_TW |
dc.contributor.oralexamcommittee | Pau-Chung Chen;Yu-Syuan Luo;Sheng-Han Lee | en |
dc.subject.keyword | 全氟辛烷磺酸,脂質體學,核磁共振儀,多器官毒性, | zh_TW |
dc.subject.keyword | Perfluorooctane sulfonate,Lipidomics,Nuclear magnetic resonance,multiple organ toxicity, | en |
dc.relation.page | 77 | - |
dc.identifier.doi | 10.6342/NTU202303298 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2023-08-08 | - |
dc.contributor.author-college | 公共衛生學院 | - |
dc.contributor.author-dept | 環境與職業健康科學研究所 | - |
顯示於系所單位: | 環境與職業健康科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 5.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。