請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89796完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王姻麟 | zh_TW |
| dc.contributor.advisor | Yin-Lin Wang | en |
| dc.contributor.author | 林文心 | zh_TW |
| dc.contributor.author | Wen-Hsin Lin | en |
| dc.date.accessioned | 2023-09-22T16:09:08Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-22 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-20 | - |
| dc.identifier.citation | 1.Camp JH. Diagnosis dilemmas in vital pulp therapy: treatment for the toothache is changing, especially in young, immature teeth. Pediatr Dent. 2008 MayJun;30(3):197-205. PMID: 18615984.
2.El Hachem C, Kaloustian MK, Nehme W, Ghosn N, Abou Chedid JC. Three-dimensional modeling and measurements of root canal anatomy in second primary mandibular molars: a case series micro CT study. Eur Arch Paediatr Dent. 2019 Oct;20(5):457-465. doi: 10.1007/s40368-019-00426-8. Epub 2019 Mar 4. PMID: 30830644. 3.Ahmed HMA, Musale PK, El Shahawy OI, Dummer PMH. Application of a new system for classifying tooth, root and canal morphology in the primary dentition. Int Endod J. 2020 Jan;53(1):27-35. doi: 10.1111/iej.13199. Epub 2019 Oct 1. PMID: 31390075. 4.Szczepanska J, Poplawski T, Synowiec E, Pawlowska E, Chojnacki CJ, Chojnacki J, Blasiak J. 2-hydroxylethyl methacrylate (HEMA), a tooth restoration component, exerts its genotoxic effects in human gingival fibroblasts trough methacrylic acid, an immediate product of its degradation. Mol Biol Rep. 2012 Feb;39(2):1561-74. doi: 10.1007/s11033-011-0895-y. Epub 2011 May 27. PMID: 21617943; PMCID: PMC3249584. 5.Lanzalaco, Sonia, et al. "Recent Advances in Poly (N‐isopropylacrylamide) Hydrogels and Derivatives as Promising Materials for Biomedical and Engineering Emerging Applications." Advanced Engineering Materials 25.4 (2023): 2201303. 6.Rifkin A. The root canal treatment of abscessed primary teeth--a three to four year follow-up. ASDC J Dent Child. 1982 Nov-Dec;49(6):428-31. PMID: 6960030. 7.Primosch RE, Ahmadi A, Setzer B, Guelmann M. A retrospective assessment of zinc oxide-eugenol pulpectomies in vital maxillary primary incisors successfully restored with composite resin crowns. Pediatr Dent. 2005 Nov-Dec;27(6):470-7. PMID: 16532887. 8.Coll JA, Josell S, Nassof S, Shelton P, Richards MA. An evaluation of pulpal therapy in primary incisors. Pediatr Dent. 1988 Sep;10(3):178-84. PMID: 3268802. 9.Nadkarni U, Damle SG. Comparative evaluation of calcium hydroxide and zinc oxide eugenol as root canal filling materials for primary molars: a clinical and radiographic study. J Indian Soc Pedod Prev Dent. 2000 Mar;18(1):1-10. PMID: 11323998. 10.Coll JA, Sadrian R. Predicting pulpectomy success and its relationship to exfoliation and succedaneous dentition. Pediatr Dent. 1996 Jan-Feb;18(1):57-63. PMID: 8668572. 11.Woods RL, Kildea PM, Gabriel SA, Freilich LS. A histologic comparison of Hydron and zinc oxide-eugenol as endodontic filling materials in the primary teeth of dogs. Oral Surg Oral Med OralPathol. 1984 Jul;58(1):82-93. doi: 10.1016/0030-4220(84)90369-4. PMID: 6589582. 12.Estrela C, Holland R. Calcium hydroxide: study based on scientific evidences. J Appl Oral Sci. 2003 Dec;11(4):269-82. doi: 10.1590/s1678-77572003000400002. PMID: 21394401. 13.Chawla HS, Mathur VP, Gauba K, Goyal A. A mixture of Ca(OH)2 paste and ZnO powder as a root canal filling material for primary teeth: a preliminary study. J Indian Soc Pedod Prev Dent. 2001 Sep;19(3):107-9. PMID: 11817794. 14.Chawla HS, Setia S, Gupta N, Gauba K, Goyal A. Evaluation of a mixture of zinc oxide, calcium hydroxide, and sodium fluoride as a new root canal filling material for primary teeth. J Indian Soc Pedod Prev Dent. 2008 Jun;26(2):53-8. doi: 10.4103/0970-4388.41616. PMID: 18603728. 15.Erausquin J, Muruzábal M. Tissue reaction to root canal fillings with absorbable pastes. Oral Surg Oral Med Oral Pathol. 1969 Oct;28(4):567-78. doi: 10.1016/0030-4220(69)90266-7. PMID: 5259039. 16.Nurko C, Garcia-Godoy F. Evaluation of a calcium hydroxide/iodoform paste (Vitapex) in root canal therapy for primary teeth. J Clin Pediatr Dent. 1999 Summer;23(4):289-94. PMID: 10551129. 17.Mortazavi M, Mesbahi M. Comparison of zinc oxide and eugenol, and Vitapex for root canal treatment of necrotic primary teeth. Int J Paediatr Dent. 2004 Nov;14(6):417-24. doi: 10.1111/j.1365-263X.2004.00544.x. PMID: 15525310. 18.Pabla T, Gulati MS, Mohan U. Evaluation of antimicrobial efficacy of various root canal filling materials for primary teeth. J Indian Soc Pedod Prev Dent. 1997 Dec;15(4):134-40. PMID: 10635127. 19.Amorim Lde F, Toledo OA, Estrela CR, Decurcio Dde A, Estrela C. Antimicrobial analysis of different root canal filling pastes used in pediatric dentistry by two experimental methods. Braz Dent J. 2006;17(4):317-22. doi: 10.1590/s0103-64402006000400010. PMID: 17262146. 20.Goel H, Mathur S, Sachdev V. Evaluation of a mixture of zinc oxide-10% sodium fluoride as novel root canal filling material: A pilot study!! J Indian Soc Pedod Prev Dent. 2019 Oct-Dec;37(4):392-398. doi: 10.4103/JISPPD.JISPPD_124_18. PMID: 31710015. 21.Chawla HS, Setia S, Gupta N, Gauba K, Goyal A. Evaluation of a mixture of zinc oxide, calcium hydroxide, and sodium fluoride as a new root canal filling material for primary teeth. J Indian Soc Pedod Prev Dent. 2008 Jun;26(2):53-8. doi: 10.4103/0970-4388.41616. PMID: 18603728. 22.Jeeva PP, Retnakumari N. In-vitro comparision of cytotoxicity and anti-microbial activity of three pulpectomy medicaments-Zinc oxide euginol,Metapex and Chitra HAP – Fill . IOSR J Dent Med Sci. 2014;13:40-47. 23.Pilownic KJ, Gomes APN, Wang ZJ, Almeida LHS, Romano AR, Shen Y, Felix AOC, Haapasalo M, Pappen FG. Physicochemical and Biological Evaluation of Endodontic Filling Materials for Primary Teeth. Braz Dent J. 2017 Sep-Oct;28(5):578-586. doi: 10.1590/0103-6440201701573. PMID: 29215682. 24.Takushige T, Cruz EV, Asgor Moral A, Hoshino E. Endodontic treatment of primary teeth using a combination of antibacterial drugs. Int Endod J. 2004 Feb;37(2):132-8. doi: 10.1111/j.0143-2885.2004.00771.x. PMID: 14871180. 25.Hosseinnejad M, Jafari SM. Evaluation of different factors affecting antimicrobial properties of chitosan. Int J Biol Macromol. 2016 Apr;85:467-75. doi: 10.1016/j.ijbiomac.2016.01.022. Epub 2016 Jan 11. PMID: 26780706. 26.Fernandez-Saiz, P., J.M. Lagaron, M. Ocio. Optimization of the biocide properties of chitosan for its application in the design of active films of interest in the food area. Food Hydrocolloids, 2009. 23: 913-921. 27.Kulikov SN, Lisovskaya SA, Zelenikhin PV, Bezrodnykh EA, Shakirova DR, Blagodatskikh IV, Tikhonov VE. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship. Eur J Med Chem. 2014 Mar 3;74:169-78. doi: 10.1016/j.ejmech.2013.12.017. Epub 2013 Dec 28. PMID: 24462847. 28.Ye M, Neetoo H, Chen H. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films. Food Microbiol. 2008 Apr;25(2):260-8. doi: 10.1016/j.fm.2007.10.014. Epub 2007 Nov 7. PMID: 18206768. 29.Chung YC, Su YP, Chen CC, Jia G, Wang HL, Wu JC, Lin JG. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sin. 2004 Jul;25(7):932-6. PMID: 15210068. 30.Husain S, Al-Samadani KH, Najeeb S, Zafar MS, Khurshid Z, Zohaib S, Qasim SB. Chitosan Biomaterials for Current and Potential Dental Applications. Materials (Basel). 2017 May 31;10(6):602.doi: 10.3390/ma10060602. PMID: 28772963; PMCID: PMC5553419. 31.Gómez-Estaca J, López de Lacey A, López-Caballero ME, Gómez-Guillén MC, Montero P.Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010 Oct;27(7):889-96. doi: 10.1016/j.fm.2010.05.012. Epub 2010 May 15.PMID: 20688230. 32.Sanpui P, Murugadoss A, Prasad PV, Ghosh SS, Chattopadhyay A. The antibacterial properties of a novelchitosan-Ag-nanoparticle composite. Int J Food Microbiol. 2008 May 31;124(2):142-6. doi:10.1016/j.ijfoodmicro.2008.03.004. Epub 2008 Mar 14. PMID: 18433906. 33.Yang, Huqing, et al. "Effects of combined aqueous chlorine dioxide and chitosan coatings on microbial growth and quality maintenance of fresh-cut bamboo shoots (Phyllostachys praecox f. prevernalis.) during storage." Food and Bioprocess Technology 8 (2015): 1011-1019. 34.Van Landuyt KL, Snauwaert J, De Munck J, Peumans M, Yoshida Y, Poitevin A, Coutinho E, Suzuki K, Lambrechts P, Van Meerbeek B. Systematic review of the chemical composition of contemporary dental adhesives. Biomaterials. 2007 Sep;28(26):3757-85. doi: 10.1016/j.biomaterials.2007.04.044. Epub 2007 May 7. PMID: 17543382. 35.Luo, Zheng, et al. "Thermogelling chitosan-based polymers for the treatment of oral mucosa ulcers." Biomaterials science 8.5 (2020): 1364-1379. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89796 | - |
| dc.description.abstract | 此研究乃利用UV光接枝技術,合成以幾丁聚醣為基底的高分子聚合材料,應用於乳牙根管治療中,形成一種具有抗菌與良好生物相容性的乳牙根管治療封填材料。
本研究包括四個部分,第一個部分為使用兩種低分子量的幾丁聚醣粉末(Chitosan, Mw=15kDa, 100kDa),經不同時間研磨後製備出次微米化的幾丁聚醣樣品,並進行表面形貌與粒徑分析,發現粒徑大小於研磨60分鐘開始有大幅的下降。第二部分為根據不同分子量及研磨時間之幾丁聚醣樣品,依重量比例分別與甲基丙烯酸羥乙酯(2-Hydroxyethyl methacrylate, HEMA)、N-異丙基丙烯醯胺(N-isopropylacrylamide, NIPAAm)進行UV光接枝聚合,製成含幾丁聚醣之根管封填材料,並分析樣品接枝聚合後的物化特性。於SEM觀察下發現,幾丁聚醣研磨時間越長,與HEMA單體聚合後樣品會呈現沒有什麼孔隙的片狀;而研磨後粒徑較小的幾丁聚醣較容易被包覆在NIPAAm的結構網絡之內。在膨潤率測試的部分,發現樣品皆在測試1小時後為最飽和狀態。於黏度測試部分,發現研磨10分鐘的低分子量(Mw=15kDa)幾丁聚醣與HEMA聚合之樣品組別,無論是25℃、37℃溫度下,皆可以得到較高的黏度;高分子量(Mw=100kDa)幾丁聚醣,於研磨時間達30分鐘以上的樣品組別,在25℃、37℃溫度下,皆顯示較高的黏度。在第三部分為進行各組樣品之體外細胞毒性,培養老鼠纖維母細胞(NIH-3T3),觀察不同組別之樣品與市售材料的生物相容性,以細胞存活率(cell viability)來表示試驗結果,由觀察結果發現,本實驗合成之乳牙根管封填材料基質,皆沒有細胞毒性的產生。第四部分為培養糞腸球菌(Enterococcus faecalis, ATCC 29212),以Kirby-Bauer試驗進行抑菌效果的觀察,測試不同樣品以及市售材料的抗菌能力,結果顯示chitosan-pHEMA,隨著幾丁聚醣研磨時間越長其抗菌效果越好;但chitosan-pNIPAAm,只有在研磨時間0、10、20、30分鐘,有看到抑菌圈而研磨60分鐘後就沒辦法測得,推測有可能是因為經研磨後粒徑變小,幾丁聚醣與NIPAAm聚合程度較佳,以致於具有抗菌能力的幾丁聚醣被包覆在網絡結構之內,而無法達成抗菌的效果。本實驗測試市售材料Vitapex®的抗菌結果則顯示無明顯的抑菌圈出現。 藉由以上的研究結果發現,經改質後的幾丁聚醣樣品,觀察到有抗菌能力、生物相容性、良好的流動性質,具有成為根管治療封填材料的潛力。 | zh_TW |
| dc.description.abstract | The purpose of this study was to develop materials containing chitosan as root canal filling material for pediatric patients. Using UV-radiation grafting techniques to synthesize polymer materials based on chitosan for root canal treatment of deciduous teeth, forming root canal filling materials that are both antibacterial and biocompatible.
The study had four parts. First, using two low-molecular-weight chitosan powders (Chitosan, Mw=15kDa, 100kDa) that were ground for different periods to prepare submicron-sized chitosan samples and analyzed for structure and particle size. Second, we used chitosan samples with different molecular weights and grinding times to graft 2-Hydroxyethyl methacrylate (HEMA) and N-isopropylacrylamide (NIPAAm) via UV-graft polymerization to create root canal filling materials, and we analyzed the physical and chemical properties of the samples. The swelling rate test showed that the samples reached their saturation point after one hour of testing. The viscosity test showed that chitosan with a molecular weight of 15kDa ground for 10 minutes and polymerized with HEMA had higher viscosity at both 25℃ and 37℃. Chitosan with a molecular-weight of 100kDa ground for over 30 minutes and polymerized with HEMA showed higher viscosity at both temperatures. In the third part, in vitro cell cytotoxicity was conducted on cultured mouse fibroblast cells (NIH-3T3) to assess the biocompatibility of different groups of samples and commercially available material. The cell viability was used to represent the test results. From the observations, it was found that the synthesized matrix of the dental root canal filling material in this experiment did not exhibit any cytotoxicity. The fourth part, we used Enterococcus faecalis (ATCC 29212) and conducted Kirby-Bauer tests to observe the antibacterial ability of the different samples and commercially available materials. The chitosan-pHEMA filling material had better antibacterial effects with longer chitosan grinding times. However, the chitosan-pNIPAAm filling material only showed antibacterial effects with grinding times of 0, 10, 20, and 30 minutes, but not with above 60 minutes of grinding times. It is speculated that the antibacterial properties of chitosan may be limited to the network-like chitosan-pNIPAAm material, and also due to its smaller particle size after grinding, lead to better polymerization with NIPAAm, making it unable to achieve antibacterial effects. The antibacterial test of the commercially available material Vitapex® in this experiment showed no significant inhibition zone. Based on the above results, it was found that the synthesized materials of chitosan have antibacterial ability, biocompatibility, and good flow properties, which have the potential to become a root canal filling material. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:09:08Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-22T16:09:08Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄
口試委員審定書i 誌謝ii 中文摘要iv Abstractvi 目錄vii 圖目錄x 表目錄xii 第一章 研究動機與重要性1 第二章 文獻分析4 2.1 現今乳牙根管封填材料的性質比較4 2.2 LSTR治療理念8 2.3 幾丁聚醣之抗菌能力9 第三章 研究目的13 第四章 研究假設14 第五章 實驗材料與方法15 5.1 實驗架構15 5.2 實驗材料與儀器16 5.2.1 實驗材料16 5.2.2 實驗儀器17 5.3 實驗方法18 5.3.1 次微米化幾丁聚醣樣品製備18 5.3.2 次微米化幾丁聚醣樣品的結構與粒徑分析18 5.3.3 乳牙根管封填材料製備20 5.3.4 乳牙根管封填材料特性分析20 第六章 結果分析26 6.1 次微米化幾丁聚醣樣品的結構與粒徑分析26 6.1.1 次微米化幾丁聚醣的傅立葉轉換紅外線光譜轉化圖26 6.1.2 次微米化幾丁聚醣的形貌分析26 6.1.3 次微米化幾丁聚醣的粒徑分析27 6.2 乳牙根管封填材料特性分析27 6.2.1 乳牙根管封填材料的傅立葉轉換紅外線光譜轉化圖27 6.2.2 乳牙根管封填材料的形貌分析28 6.2.3 乳牙根管封填材料的粒徑分析28 6.2.4 乳牙根管封填材料的膨潤率分析29 6.2.5 乳牙根管封填材料的黏度特性測試29 6.2.6 乳牙根管封填材料的生物相容性測試30 6.2.7 乳牙根管封填材料的抗菌效果測試31 第七章 討論33 第八章 結論37 第九章 檢討與未來研究方向39 第十章 參考文獻40 附錄41 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 生物相容性 | zh_TW |
| dc.subject | 根管治療 | zh_TW |
| dc.subject | 抗菌特性 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 乳牙根管治療封填材料 | zh_TW |
| dc.subject | root canal therapy | en |
| dc.subject | biocompatibility | en |
| dc.subject | root canal filling materials for deciduous teeth | en |
| dc.subject | chitosan | en |
| dc.subject | antibacterial activity | en |
| dc.title | 研發新型含幾丁聚醣材料應用於乳牙根管治療之封填─細胞毒性與抗菌分析 | zh_TW |
| dc.title | Development of Novel Materials Containing Chitosan for Root Canal Obturation of Primary Teeth─Cytotoxicity and Antibacterial Analysis | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林俊彬;廖淑娟 | zh_TW |
| dc.contributor.oralexamcommittee | Chun-Pin Lin;Shu-Chuan Liao | en |
| dc.subject.keyword | 乳牙根管治療封填材料,幾丁聚醣,抗菌特性,生物相容性,根管治療, | zh_TW |
| dc.subject.keyword | root canal filling materials for deciduous teeth,chitosan,antibacterial activity,biocompatibility,root canal therapy, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202301812 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-07-21 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 臨床牙醫學研究所 | - |
| dc.date.embargo-lift | 2028-07-20 | - |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 3.54 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
