請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89795
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 童怡靖 | zh_TW |
dc.contributor.advisor | Yi-Ching Tung | en |
dc.contributor.author | 卓芷伊 | zh_TW |
dc.contributor.author | Chih-Yi Cho | en |
dc.date.accessioned | 2023-09-22T16:08:52Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-22 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-18 | - |
dc.identifier.citation | 1.Bianco SD, Kaiser UB. The genetic and molecular basis of idiopathic hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2009;5(10):569-576. doi:10.1038/nrendo.2009.177
2.Cho HJ, Shan Y, Whittington NC, Wray S. Nasal Placode Development, GnRH Neuronal Migration and Kallmann Syndrome. Front Cell Dev Biol. 2019;7:121. Published 2019 Jul 11. doi:10.3389/fcell.2019.00121 3.Pitteloud N, Quinton R, Pearce S, et al. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J Clin Invest. 2007;117(2):457-463. doi:10.1172/JCI29884 4.Zhou C, Niu Y, Xu H, et al. Mutation profiles and clinical characteristics of Chinese males with isolated hypogonadotropic hypogonadism. Fertil Steril. 2018;110(3):486-495.e5. doi:10.1016/j.fertnstert.2018.04.010 5.Maione L, Dwyer AA, Francou B, et al. Genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol. 2018;178(3):R55-R80. doi:10.1530/EJE-17-0749 6.Cassatella D, Howard SR, Acierno JS, et al. Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur J Endocrinol. 2018;178(4):377-388. doi:10.1530/EJE-17-0568 7.Raivio T, Falardeau J, Dwyer A, et al. Reversal of idiopathic hypogonadotropic hypogonadism. N Engl J Med. 2007;357(9):863-873. doi:10.1056/NEJMoa066494 8.Lee HS, Shim YS, Hwang JS. Treatment of congenital hypogonadotropic hypogonadism in male patients. Ann Pediatr Endocrinol Metab. 2022;27(3):176-182. doi:10.6065/apem.2244208.104 9.Young J, Xu C, Papadakis GE, et al. Clinical Management of Congenital Hypogonadotropic Hypogonadism. Endocr Rev. 2019;40(2):669-710. doi:10.1210/er.2018-00116 10.Hsu NI, Lai JT, Shen PH. Development of Taiwan Smell Identification Test: a quick office-based smell screening test for Taiwanese. Am J Rhinol Allergy. 2015;29(2):e50-e54. doi:10.2500/ajra.2015.29.4174 11.Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. Stanford University Press; 1959. 12.Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25(14):1754-1760. doi:10.1093/bioinformatics/btp324 13.McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. Published 2016 Jun 6. doi:10.1186/s13059-016-0974-4 14.Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38(16):e164. doi:10.1093/nar/gkq603 15.Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635 16.Topaloğlu AK. Update on the Genetics of Idiopathic Hypogonadotropic Hypogonadism. J Clin Res Pediatr Endocrinol. 2017;9(Suppl 2):113-122. doi:10.4274/jcrpe.2017.S010 17.Butz H, Nyírő G, Kurucz PA, Likó I, Patócs A. Molecular genetic diagnostics of hypogonadotropic hypogonadism: from panel design towards result interpretation in clinical practice. Hum Genet. 2021;140(1):113-134. doi:10.1007/s00439-020-02148-0 18.Quaynor SD, Bosley ME, Duckworth CG, et al. Targeted next generation sequencing approach identifies eighteen new candidate genes in normosmic hypogonadotropic hypogonadism and Kallmann syndrome. Mol Cell Endocrinol. 2016;437:86-96. doi:10.1016/j.mce.2016.08.007 19.Roberts SA, Kaiser UB. Genetic etiologies of central precocious puberty and the role of imprinted genes. Eur J Endocrinol. 2020;183(4):R107-R117. doi:10.1530/EJE-20-0103 20.Renaux A, Papadimitriou S, Versbraegen N, et al. ORVAL: a novel platform for the prediction and exploration of disease-causing oligogenic variant combinations. Nucleic Acids Res. 2019;47(W1):W93-W98. doi:10.1093/nar/gkz437 21.Dodé C, Levilliers J, Dupont JM, et al. Loss-of-function mutations in FGFR1 cause autosomal dominant Kallmann syndrome. Nat Genet. 2003;33(4):463-465. doi:10.1038/ng1122 22.Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet. 2022;13:920390. Published 2022 Jul 25. doi:10.3389/fgene.2022.920390 23.Mitchell AL, Dwyer A, Pitteloud N, Quinton R. Genetic basis and variable phenotypic expression of Kallmann syndrome: towards a unifying theory. Trends Endocrinol Metab. 2011;22(7):249-258. doi:10.1016/j.tem.2011.03.002 24.Millar AC, Faghfoury H, Bieniek JM. Genetics of hypogonadotropic hypogonadism. Transl Androl Urol. 2021;10(3):1401-1409. doi:10.21037/tau.2020.03.33 25.Wang Y, Gong C, Qin M, Liu Y, Tian Y. Clinical and genetic features of 64 young male paediatric patients with congenital hypogonadotropic hypogonadism. Clin Endocrinol (Oxf). 2017;87(6):757-766. doi:10.1111/cen.13451 26.Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism--pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11(9):547-564. doi:10.1038/nrendo.2015.112 27.Gach A, Pinkier I, Sałacińska K, et al. Identification of gene variants in a cohort of hypogonadotropic hypogonadism: Diagnostic utility of custom NGS panel and WES in unravelling genetic complexity of the disease. Mol Cell Endocrinol. 2020;517:110968. doi:10.1016/j.mce.2020.110968 28.González-Martínez D, Kim SH, Hu Y, et al. Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism. J Neurosci. 2004;24(46):10384-10392. doi:10.1523/JNEUROSCI.3400-04.2004 29.Pitteloud N, Meysing A, Quinton R, et al. Mutations in fibroblast growth factor receptor 1 cause Kallmann syndrome with a wide spectrum of reproductive phenotypes. Mol Cell Endocrinol. 2006;254-255:60-69. doi:10.1016/j.mce.2006.04.021 30.Kim HG, Kurth I, Lan F, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83(4):511-519. doi:10.1016/j.ajhg.2008.09.005 31.Dodé C, Teixeira L, Levilliers J, et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006;2(10):e175. doi:10.1371/journal.pgen.0020175 32.Falardeau J, Chung WC, Beenken A, et al. Decreased FGF8 signaling causes deficiency of gonadotropin-releasing hormone in humans and mice. J Clin Invest. 2008;118(8):2822-2831. doi:10.1172/JCI34538 33.Kim HD, Choe HK, Chung S, et al. Class-C SOX transcription factors control GnRH gene expression via the intronic transcriptional enhancer. Mol Endocrinol. 2011;25(7):1184-1196. doi:10.1210/me.2010-0332 34.Hempel A, Pagnamenta AT, Blyth M, et al. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome. J Med Genet. 2016;53(3):152-162. doi:10.1136/jmedgenet-2015-103393 35.Turro E, Astle WJ, Megy K, et al. Whole-genome sequencing of patients with rare diseases in a national health system. Nature. 2020;583(7814):96-102. doi:10.1038/s41586-020-2434-2 36.Saeidian AH, Youssefian L, Vahidnezhad H, Uitto J. Research Techniques Made Simple: Whole-Transcriptome Sequencing by RNA-Seq for Diagnosis of Monogenic Disorders. J Invest Dermatol. 2020;140(6):1117-1126.e1. doi:10.1016/j.jid.2020.02.032 37.Ahmed K, LaPierre MP, Gasser E, et al. Loss of microRNA-7a2 induces hypogonadotropic hypogonadism and infertility. J Clin Invest. 2017;127(3):1061-1074. doi:10.1172/JCI90031 38.Marco EJ, Skuse DH. Autism-lessons from the X chromosome. Soc Cogn Affect Neurosci. 2006;1(3):183-193. doi:10.1093/scan/nsl028 39.Wakim V, Nair P, Delague V, et al. SOX11-related syndrome: report on a new case and review. Clin Dysmorphol. 2021;30(1):44-49. 40.Prior M, Stewart J, McEleny K, Dwyer AA, Quinton R. Fertility induction in hypogonadotropic hypogonadal men. Clin Endocrinol (Oxf). 2018;89(6):712-718. doi:10.1111/cen.13850 41.Zhang CM, Zhang H, Yang R, et al. The Reproductive Outcome of Women with Hypogonadotropic Hypogonadism in IVF. Front Endocrinol (Lausanne). 2022;13:850126. Published 2022 Jun 6. doi:10.3389/fendo.2022.850126 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89795 | - |
dc.description.abstract | <簡介>
特發性低促性腺激素性腺功能低下症(Idiopathic hypogonadotropic hypogonadism, IHH)是指下視丘至腦垂體結構正常,病患除促性腺激素低下,其他腦垂體賀爾蒙功能正常,導致其第二性徵發育不全,性腺功能低下。這類病人臨床表現通常有出生時陰莖短小、隱睪、青春期延遲或缺失,例如:女性沒有乳房發育或者無月經等。而根據有無合併嗅覺異常與否分成兩類:嗅覺喪失的卡門氏症候群(Kallmann syndrome)和嗅覺正常特發性低促性腺激素性腺功能低下症(normosmic IHH,nIHH)。 <實驗方法> 我們收集了33位診斷IHH病人,並分析其表徵、性腺賀爾蒙、骨齡和身高等臨床相關參數和實驗數據,並且利用全外顯子定序(whole exome sequencing)技術分析這些病人基因變異,以美國醫學遺傳學暨基因體學學會(ACMG)遺傳變異分類標準與指南尋找病患致病或可能致病基因。若未找出致病原因之病患,我們先探討寡基因變異(oligogenic variants)可能性和嘗試以拷貝數變異 (copy number variants)偵測基因的局部缺失或增加等分析工具,期找出可能的致病基因。仍找不到任何不明確的變異 (variants of uncertain significance)則納入全基因定序(whole genome sequencing)和RNA定序(RNA sequencing)來進一步確認病人可能的致病點位。 <結果> 本研究33位病人之中,20位找到致病或可能致病變異相關基因,其檢出率達60 %,其中FGFR1(n=6)、CHD7 (n=5)、ANOS1(n=4) 是找到最常見的致病基因之一。4位病人有不確定的致病基因,進一步分析後,其中3位可能存在雙基因或者寡基因變異。9位病人在外顯子定序檢測後未找到可能的基因變異者,其中4位進一步接受全基因及RNA定序檢查,1位病人在全基因定序中發現一個VUS點位。 <結論> 完整的基因分析可以幫助我們更及早診斷IHH病人,而且經由其致病基因相關綜合症IHH(syndromic IHH)協助病人做更完整的身體評估和檢查。另外,可以藉由一些基因檢測工具來彌補全外顯子分析的缺點來更加準確知道可能的致病基因。此項實驗有助於IHH相關基因的發現及了解其調控機制與致病機轉,甚至提供往後更完整檢驗和可能有效的治療方針。 | zh_TW |
dc.description.abstract | Backgrounds: IHH is a rare condition characterized by gonadal failure due to deficiencies in the production, secretion, and activity of GnRH, with normal levels of other pituitary hormones and no anatomical abnormalities in the hypothalamus-pituitary axis. IHH is further divided into two subcategories: Kallmann syndrome (KS) and normosmic IHH (nIHH). Notably, there is currently no published clinical or genetic data on IHH patients in Taiwan.
Methods: We applied whole exome sequencing (WES) to analysis our 33 IHH patients. Additionally, we categorized the phenotype of these patients, along with their hormone data and height outcomes after undergoing hormone replacement therapy. We also do further whole genome sequencing (WGS) and RNA-sequencing (RNA-seq) for those with uncertain variants and unknown variants. Results: The study revealed that 20 of them exhibited pathogenic/likely pathogenic (P/LP) variants of IHH-associated genes, yielding a mutation detection rate of 60%. Among these patients, FGFR1(n=6), CHD7(n=5) and ANOS1 (n=4) were the most frequent genetic causes of IHH. Nonetheless, we still encountered 13 patients who did not exhibit possible variants of the genes, including a group with variants of uncertain significance and variants (n=4) and a genetically unresolved group (n=9). Additionally, we remain committed to expanding our understanding of this condition and analysis them by cutting-edge tools and techniques, such as digenic/oligogenic variant prediction, copy number variant analysis, RNA-Seq, and WGS. Only four patients were included in our RNA-seq and WGS data collection, and among them, 1 patient was identified with a variant of uncertain significance (VUS). Conclusion: To sum up, this study effectively determined the genetic origins of the majority (60%) of IHH cases, with a greater occurrence found among male patients. Utilizing exome sequencing combined with targeted analysis of IHH-related genes was a successful approach to uncovering the genes for the disease, both known and unknown. Further cases are needed to provide additional evidence for the effectiveness of RNA-seq and WGS in IHH patients. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-22T16:08:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-22T16:08:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | i 誌謝.............................................................P.i
ii 中文摘要.........................................................P.ii-iii iii 英文摘要........................................................P.iv-v 第一章 內文.........................................................P.1-20 1.1 Introduction..................................................P.1-3 1.2 Materials and Methods.........................................P.4-7 1.3 Results.......................................................P.8-12 1.4 Discussion....................................................P.13-19 1.5 Conclusion....................................................P.20 第二章 表格和圖表....................................................P.21-37 2.1 Tables........................................................P.21-31 2.2 Figures.......................................................P.32-37 參考文獻............................................................P.38-42 | - |
dc.language.iso | en | - |
dc.title | 特發性低促性腺激素性腺功能低下症 臨床和基因方面探討 | zh_TW |
dc.title | The clinical and genetic landscape of idiopathic hypogonadotropic hypogonadism | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 李妮鍾 | zh_TW |
dc.contributor.coadvisor | Ni-Chung Lee | en |
dc.contributor.oralexamcommittee | 楊偉勛 ;施翔蓉 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Shiung Yang;Shyang-Rong Shih | en |
dc.subject.keyword | 特發性低促性腺激素性腺功能低下症,卡門氏症候群,全外顯子定序,全基因定序,RNA定序, | zh_TW |
dc.subject.keyword | Idiopathic hypogonadotropic hypogonadism,Kallmann syndrome,Whole exome sequencing,Whole genome sequencing,RNA sequencing, | en |
dc.relation.page | 42 | - |
dc.identifier.doi | 10.6342/NTU202301017 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-18 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床醫學研究所 | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 1.68 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。