Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 微生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89781
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陶秘華zh_TW
dc.contributor.advisorMi-Hua Taoen
dc.contributor.author宗思沂zh_TW
dc.contributor.authorSzu-I Tsungen
dc.date.accessioned2023-09-20T16:21:14Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-20-
dc.date.issued2023-
dc.date.submitted2023-08-09-
dc.identifier.citation1. Huang, C., et al., Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet, 2020. 395(10223): p. 497-506.
2. Zhu, N., et al., A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 2020. 382(8): p. 727-733.
3. Wang, M.Y., et al., SARS-CoV-2: Structure, Biology, and Structure-Based Therapeutics Development. Front Cell Infect Microbiol, 2020. 10: p. 587269.
4. Kakavandi, S., et al., Structural and non-structural proteins in SARS-CoV-2: potential aspects to COVID-19 treatment or prevention of progression of related diseases. Cell Communication and Signaling, 2023. 21(1): p. 110.
5. Castagnoli, R., et al., Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection in Children and Adolescents: A Systematic Review. JAMA Pediatr, 2020. 174(9): p. 882-889.
6. Xu, Y., et al., Characteristics of pediatric SARS-CoV-2 infection and potential evidence for persistent fecal viral shedding. Nature Medicine, 2020. 26(4): p. 502-505.
7. Garcia-Beltran, W.F., et al., Multiple SARS-CoV-2 variants escape neutralization by vaccine-induced humoral immunity. Cell, 2021. 184(9): p. 2372-2383.e9.
8. Kumar, S., A. Chandele, and A. Sharma, Current status of therapeutic monoclonal antibodies against SARS-CoV-2. PLOS Pathogens, 2021. 17(9): p. e1009885.
9. Letko, M., A. Marzi, and V. Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol, 2020. 5(4): p. 562-569.
10. Kuba, K., et al., A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nature Medicine, 2005. 11(8): p. 875-879.
11. Wang, Q., et al., Structural and Functional Basis of SARS-CoV-2 Entry by Using Human ACE2. Cell, 2020. 181(4): p. 894-904.e9.
12. Dong, M., et al., ACE2, TMPRSS2 distribution and extrapulmonary organ injury in patients with COVID-19. Biomed Pharmacother, 2020. 131: p. 110678.
13. Donoghue, M., et al., A novel angiotensin-converting enzyme–related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circulation research, 2000. 87(5): p. e1-e9.
14. Tipnis, S.R., et al., A human homolog of angiotensin-converting enzyme: cloning and functional expression as a captopril-insensitive carboxypeptidase. Journal of Biological Chemistry, 2000. 275(43): p. 33238-33243.
15. Santos, R.A.S., et al., The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev, 2018. 98(1): p. 505-553.
16. Jackson, C.B., et al., Mechanisms of SARS-CoV-2 entry into cells. Nature Reviews Molecular Cell Biology, 2022. 23(1): p. 3-20.
17. Daly, J.L., et al., Neuropilin-1 is a host factor for SARS-CoV-2 infection. Science, 2020. 370(6518): p. 861-865.
18. Walls, A.C., et al., Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 2020. 181(2): p. 281-292.e6.
19. Hoffmann, M., et al., SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, 2020. 181(2): p. 271-280.e8.
20. Lan, J., et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 2020. 581(7807): p. 215-220.
21. Baden, L.R., et al., Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. New England Journal of Medicine, 2020. 384(5): p. 403-416.
22. Cohen, M.S., et al., Effect of Bamlanivimab vs Placebo on Incidence of COVID-19 Among Residents and Staff of Skilled Nursing and Assisted Living Facilities: A Randomized Clinical Trial. Jama, 2021. 326(1): p. 46-55.
23. Weinreich, D.M., et al., REGN-COV2, a Neutralizing Antibody Cocktail, in Outpatients with Covid-19. New England Journal of Medicine, 2020. 384(3): p. 238-251.
24. Dingens, A.S., et al., An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity, 2019. 50(2): p. 520-532.e3.
25. Xu, C., et al., Immune Escape Adaptive Mutations in Hemagglutinin Are Responsible for the Antigenic Drift of Eurasian Avian-Like H1N1 Swine Influenza Viruses. J Virol, 2022. 96(16): p. e0097122.
26. Volz, E., et al., Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity. Cell, 2021. 184(1): p. 64-75.e11.
27. Tegally, H., et al., Detection of a SARS-CoV-2 variant of concern in South Africa. Nature, 2021. 592(7854): p. 438-443.
28. Davies, N.G., et al., Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science, 2021. 372(6538).
29. Han, P., et al., Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2. Cell, 2022. 185(4): p. 630-640.e10.
30. Li, L., et al., Structural basis of human ACE2 higher binding affinity to currently circulating Omicron SARS-CoV-2 sub-variants BA.2 and BA.1.1. Cell, 2022. 185(16): p. 2952-2960.e10.
31. Collier, D.A., et al., Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature, 2021. 593(7857): p. 136-141.
32. Hoffmann, M., et al., SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell, 2021. 184(9): p. 2384-2393.e12.
33. Wang, P., et al., Increased resistance of SARS-CoV-2 variant P.1 to antibody neutralization. Cell Host Microbe, 2021. 29(5): p. 747-751.e4.
34. Liu, C., et al., Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent serum. Cell, 2021. 184(16): p. 4220-4236.e13.
35. Planas, D., et al., Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature, 2021. 596(7871): p. 276-280.
36. VanBlargan, L.A., et al., An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat Med, 2022. 28(3): p. 490-495.
37. Ding, J., et al., Characteristics and Prognosis of Antibody Non-responders With Coronavirus Disease 2019. Frontiers in Medicine, 2022. 9.
38. Zeng, Q., et al., Immunological Findings in a Group of Individuals Who Were Poor or Non-Responders to Standard Two-Dose SARS-CoV-2 Vaccines. Vaccines, 2023. 11(2): p. 461.
39. Grupper, A., et al., Humoral Response to the Pfizer BNT162b2 Vaccine in Patients Undergoing Maintenance Hemodialysis. Clin J Am Soc Nephrol, 2021. 16(7): p. 1037-1042.
40. Blair, H.A., Ibalizumab: A Review in Multidrug-Resistant HIV-1 Infection. Drugs, 2020. 80(2): p. 189-196.
41. Emu, B., et al., Phase 3 Study of Ibalizumab for Multidrug-Resistant HIV-1. New England Journal of Medicine, 2018. 379(7): p. 645-654.
42. Connaris, H., et al., Prevention of influenza by targeting host receptors using engineered proteins. Proceedings of the National Academy of Sciences, 2014. 111(17): p. 6401-6406.
43. Chang, Y.J., et al., Potent sialic acid inhibitors that target influenza A virus hemagglutinin. Sci Rep, 2021. 11(1): p. 8637.
44. Heida, R., et al., Advances in the development of entry inhibitors for sialic-acid-targeting viruses. Drug Discovery Today, 2021. 26(1): p. 122-137.
45. Chen, Y., et al., ACE2-targeting monoclonal antibody as potent and broad-spectrum coronavirus blocker. Signal Transduction and Targeted Therapy, 2021. 6(1): p. 315.
46. Du, Y., et al., A broadly neutralizing humanized ACE2-targeting antibody against SARS-CoV-2 variants. Nature Communications, 2021. 12(1): p. 5000.
47. Zhang, F., et al., Pan-sarbecovirus prophylaxis with human anti-ACE2 monoclonal antibodies. Nature Microbiology, 2023. 8(6): p. 1051-1063.
48. Neutra, M.R. and P.A. Kozlowski, Mucosal vaccines: the promise and the challenge. Nat Rev Immunol, 2006. 6(2): p. 148-58.
49. Holt, P.G., et al., Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol, 2008. 8(2): p. 142-52.
50. Woof, J.M. and M.W. Russell, Structure and function relationships in IgA. Mucosal Immunology, 2011. 4(6): p. 590-597.
51. Kumar Bharathkar, S., et al., The structures of secretory and dimeric immunoglobulin A. eLife, 2020. 9: p. e56098.
52. Cerutti, A., K. Chen, and A. Chorny, Immunoglobulin responses at the mucosal interface. Annu Rev Immunol, 2011. 29: p. 273-93.
53. Wei, H. and J.Y. Wang, Role of Polymeric Immunoglobulin Receptor in IgA and IgM Transcytosis. Int J Mol Sci, 2021. 22(5).
54. Keyt, B.A., et al., Structure, Function, and Therapeutic Use of IgM Antibodies. Antibodies, 2020. 9(4): p. 53.
55. Fröberg, J. and D.A. Diavatopoulos, Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection. Current Opinion in Infectious Diseases, 2021. 34(3): p. 181-186.
56. Vabret, N., et al., Immunology of COVID-19: Current State of the Science. Immunity, 2020. 52(6): p. 910-941.
57. Fröberg, J., et al., SARS-CoV-2 mucosal antibody development and persistence and their relation to viral load and COVID-19 symptoms. Nature Communications, 2021. 12(1): p. 5621.
58. Sterlin, D., et al., IgA dominates the early neutralizing antibody response to SARS-CoV-2. Sci Transl Med, 2021. 13(577).
59. DeFrancesco, L., COVID-19 antibodies on trial. Nat Biotechnol, 2020. 38(11): p. 1242-1252.
60. Ejemel, M., et al., A cross-reactive human IgA monoclonal antibody blocks SARS-CoV-2 spike-ACE2 interaction. Nature Communications, 2020. 11(1): p. 4198.
61. Wang, Z., et al., Enhanced SARS-CoV-2 neutralization by dimeric IgA. Science Translational Medicine, 2021. 13(577): p. eabf1555.
62. Ku, Z., et al., Nasal delivery of an IgM offers broad protection from SARS-CoV-2 variants. Nature, 2021. 595(7869): p. 718-723.
63. Moore, A.R., et al., Vaccinia virus as a subhelper for AAV replication and packaging. Mol Ther Methods Clin Dev, 2015. 2: p. 15044.
64. Ronzitti, G., D.-A. Gross, and F. Mingozzi, Human Immune Responses to Adeno-Associated Virus (AAV) Vectors. Frontiers in Immunology, 2020. 11.
65. Naso, M.F., et al., Adeno-Associated Virus (AAV) as a Vector for Gene Therapy. BioDrugs, 2017. 31(4): p. 317-334.
66. Halbert, C.L., J.M. Allen, and A.D. Miller, Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors. J Virol, 2001. 75(14): p. 6615-24.
67. Sun, C.-P., et al., Rapid generation of mouse model for emerging infectious disease with the case of severe COVID-19. PLOS Pathogens, 2021. 17(8): p. e1009758.
68. Amira, D.R., et al., Safety and Tolerability of the Adeno-Associated Virus Vector, AAV6.2FF, Expressing a Monoclonal Antibody in Murine and Ovine Animal Models. Biomedicines, 2021.
69. Seiler, M.P., et al., Adeno-associated virus types 5 and 6 use distinct receptors for cell entry. Hum Gene Ther, 2006. 17(1): p. 10-9.
70. Balazs, A.B., et al., Antibody-based protection against HIV infection by vectored immunoprophylaxis. Nature, 2012. 481(7379): p. 81-84.
71. Balazs, A.B., et al., Vectored immunoprophylaxis protects humanized mice from mucosal HIV transmission. Nat Med, 2014. 20(3): p. 296-300.
72. Johnson, P.R., et al., Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat Med, 2009. 15(8): p. 901-6.
73. Martinez-Navio, J.M., et al., Adeno-Associated Virus Delivery of Anti-HIV Monoclonal Antibodies Can Drive Long-Term Virologic Suppression. Immunity, 2019. 50(3): p. 567-575.e5.
74. Casazza, J.P., et al., Safety and tolerability of AAV8 delivery of a broadly neutralizing antibody in adults living with HIV: a phase 1, dose-escalation trial. Nature Medicine, 2022. 28(5): p. 1022-1030.
75. Balazs, A.B., et al., Broad protection against influenza infection by vectored immunoprophylaxis in mice. Nature Biotechnology, 2013. 31(7): p. 647-652.
76. de Jong, Y.P., et al., Broadly neutralizing antibodies abrogate established hepatitis C virus infection. Sci Transl Med, 2014. 6(254): p. 254ra129.
77. Deal, C., et al., Vectored antibody gene delivery protects against Plasmodium falciparum sporozoite challenge in mice. Proc Natl Acad Sci U S A, 2014. 111(34): p. 12528-32.
78. Guilleman, M.M., et al., AAV-mediated delivery of actoxumab and bezlotoxumab results in serum and mucosal antibody concentrations that provide protection from C. difficile toxin challenge. Gene Ther, 2023. 30(5): p. 455-462.
79. Tycko, J., et al., Adeno-Associated Virus Vector-Mediated Expression of Antirespiratory Syncytial Virus Antibody Prevents Infection in Mouse Airways. Hum Gene Ther, 2021. 32(23-24): p. 1450-1456.
80. Limberis, M.P., et al., Intranasal Antibody Gene Transfer in Mice and Ferrets Elicits Broad Protection Against Pandemic Influenza. Science Translational Medicine, 2013. 5(187): p. 187ra72-187ra72.
81. Adam, V.S., et al., Adeno-Associated Virus 9-Mediated Airway Expression of Antibody Protects Old and Immunodeficient Mice against Influenza Virus. Clinical and Vaccine Immunology, 2014. 21(11): p. 1528-1533.
82. Goddard, T.D., et al., UCSF ChimeraX: Meeting modern challenges in visualization and analysis. Protein Sci, 2018. 27(1): p. 14-25.
83. Pettersen, E.F., et al., UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci, 2021. 30(1): p. 70-82.
84. Santry, L.A., et al., AAV vector distribution in the mouse respiratory tract following four different methods of administration. BMC Biotechnology, 2017. 17(1): p. 43.
85. Liu, L., et al., Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight, 2019. 4(4).
86. Jiang, R.D., et al., Pathogenesis of SARS-CoV-2 in Transgenic Mice Expressing Human Angiotensin-Converting Enzyme 2. Cell, 2020. 182(1): p. 50-58.e8.
87. Bao, L., et al., The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature, 2020. 583(7818): p. 830-833.
88. Chen, C.C., et al., Comparative study of anti-hepatitis B virus RNA interference by double-stranded adeno-associated virus serotypes 7, 8, and 9. Mol Ther, 2009. 17(2): p. 352-9.
89. Su, Q., M. Sena-Esteves, and G. Gao, Purification of Recombinant Adeno-Associated Viruses (rAAVs) by Cesium Chloride Gradient Sedimentation. Cold Spring Harb Protoc, 2020. 2020(8): p. 095604.
90. Yang, T.-J., et al., Effect of SARS-CoV-2 B.1.1.7 mutations on spike protein structure and function. Nature Structural & Molecular Biology, 2021. 28(9): p. 731-739.
91. Fang, J., et al., Stable antibody expression at therapeutic levels using the 2A peptide. Nature Biotechnology, 2005. 23(5): p. 584-590.
92. Liu, Z., et al., Systematic comparison of 2A peptides for cloning multi-genes in a polycistronic vector. Scientific Reports, 2017. 7(1): p. 2193.
93. Zincarelli, C., et al., Analysis of AAV Serotypes 1–9 Mediated Gene Expression and Tropism in Mice After Systemic Injection. Molecular Therapy, 2008. 16(6): p. 1073-1080.
94. Kurosaki, F., et al., Optimization of adeno-associated virus vector-mediated gene transfer to the respiratory tract. Gene Therapy, 2017. 24(5): p. 290-297.
95. Limberis, M.P. and J.M. Wilson, Adeno-associated virus serotype 9 vectors transduce murine alveolar and nasal epithelia and can be readministered. Proceedings of the National Academy of Sciences, 2006. 103(35): p. 12993-12998.
96. Shaimardanova, A.A., et al., Production and Application of Multicistronic Constructs for Various Human Disease Therapies. Pharmaceutics, 2019. 11(11).
97. Szymczak, A.L., et al., Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol, 2004. 22(5): p. 589-94.
98. Szymczak-Workman, A.L., K.M. Vignali, and D.A. Vignali, Design and construction of 2A peptide-linked multicistronic vectors. Cold Spring Harb Protoc, 2012. 2012(2): p. 199-204.
99. Lee, S., et al., Real-Time Temporal Dynamics of Bicistronic Expression Mediated by Internal Ribosome Entry Site and 2A Cleaving Sequence. Mol Cells, 2019. 42(5): p. 418-425.
100. Kim, J.H., et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One, 2011. 6(4): p. e18556.
101. Yang, S., et al., Development of optimal bicistronic lentiviral vectors facilitates high-level TCR gene expression and robust tumor cell recognition. Gene therapy, 2008. 15(21): p. 1411-1423.
102. Chng, J., et al. Cleavage efficient 2A peptides for high level monoclonal antibody expression in CHO cells. in MAbs. 2015. Taylor & Francis.
103. Wang, Y., et al., 2A self-cleaving peptide-based multi-gene expression system in the silkworm Bombyx mori. Scientific reports, 2015. 5(1): p. 16273.
104. Hofacre, A., et al., Efficient therapeutic protein expression using retroviral replicating vector with 2A peptide in cancer models. Human Gene Therapy, 2018. 29(4): p. 437-451.
105. Borrok, M.J., et al., Enhancing IgG distribution to lung mucosal tissue improves protective effect of anti–Pseudomonas aeruginosa antibodies. JCI Insight, 2018. 3(12).
106. Vieira, P. and K. Rajewsky, The half-lives of serum immunoglobulins in adult mice. European Journal of Immunology, 1988. 18(2): p. 313-316.
107. Moore, M.J., et al., Retroviruses pseudotyped with the severe acute respiratory syndrome coronavirus spike protein efficiently infect cells expressing angiotensin-converting enzyme 2. J Virol, 2004. 78(19): p. 10628-35.
108. Towler, P., et al., ACE2 X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem, 2004. 279(17): p. 17996-8007.
109. Yan, R., et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science, 2020. 367(6485): p. 1444-1448.
110. Li, F., et al., Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science, 2005. 309(5742): p. 1864-8.
111. Wu, K., et al., Crystal structure of NL63 respiratory coronavirus receptor-binding domain complexed with its human receptor. Proc Natl Acad Sci U S A, 2009. 106(47): p. 19970-4.
112. Epelman, S., et al., Detection of soluble angiotensin-converting enzyme 2 in heart failure: insights into the endogenous counter-regulatory pathway of the renin-angiotensin-aldosterone system. J Am Coll Cardiol, 2008. 52(9): p. 750-4.
113. Crackower, M.A., et al., Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature, 2002. 417(6891): p. 822-8.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89781-
dc.description.abstract2019年底出現的新冠病毒因病毒持續突變產生突變株令疫情至今仍無法趨緩。現有的SARS-CoV-2疫苗和單株抗體藥物是以病毒的棘蛋白為目標,防止病毒和血管收縮素轉換酶II(hACE2)結合進入人體感染。但是被WHO列為高度關注的突變株,包含alpha、beta、gamma、delta和omicron等,在棘蛋白上都有不少突變位點。研究顯示這些突變位點除了增加病毒和hACE2的結合能力外,更大幅降低現有疫苗和抗體的保護效果。因此,我們迫切需要研發能夠廣泛預防和治療COVID-19的方法。先前我們實驗室利用融合瘤技術分離出一株和hACE2高度結合的單株抗體,命名為2H2,並將其可變區接到human IgG骨架產生嵌合抗體ch2H2-IgG。
於本篇論文中我們首先利用HDX-MS、Cryo-EM與Biolayer Interferometry實驗分析,證實ch2H2-IgG和hACE2的結合位點與SARS-CoV-2和hACE2的結合位點有所重疊,且抗體與受體間的親和力大於病毒與受體間的親和力,因此能夠阻止病毒與hACE2的結合,達到預防SARS-CoV-2感染的效果。接著我們以腺相關病毒(AAV)作為載體在K18轉基因小鼠中表現ch2H2-IgG,攻毒結果顯示ch2H2-IgG可以保護小鼠對抗omicron BA.5感染,降低肺臟中病毒感染量及肺部組織損傷程度。為了更進一步增加ch2H2抗體在呼吸道黏膜預防SARS-CoV-2感染的效果,我們將ch2H2抗體的可變區接到human IgA1的骨架上,並使用peptide M 來純化CHO cell產生的ch2H2-IgA抗體。之後先以西方墨點法確認抗體在輕鏈、重鏈以及J chain的表現符合預期,再以偽病毒中和試驗證實ch2H2-IgA對不同突變株皆具有中和效果。但在動物實驗我們以AAV6表現ch2H2-IgA,無論是氣管注射(i.t.)、鼻腔注射(i.n.)或靜脈注射(i.v.)都無法在血清、肺部沖洗液或鼻腔沖洗液以ELISA測得ch2H2-IgA的表現。
本篇論文證明會辨認hACE2的ch2H2-IgG與ch2H2-IgA抗體確實可以中和SARS-CoV-2的不同突變株,小鼠攻毒試驗則證明以AAV6作為載體遞送抗體可以有效保護小鼠免於病毒感染。目前正在研究ch2H2-IgA無法在小鼠體內被正常表現的原因,但本研究成果仍對SARS-CoV-2突變株以及未來新興病毒提供另一種預防策略。
zh_TW
dc.description.abstractSince the emergence of the novel coronavirus in late 2019, it has sparked a global pandemic. Current interventions against SARS-CoV-2 include vaccines and monoclonal antibody therapies targeting the viral spike protein, which prevents the virus from binding to the angiotensin-converting enzyme II (hACE2) and infecting human cells. However, variants of concern, such as alpha, beta, gamma, delta, and omicron, harboring numerous mutations in the spike protein have enhanced the binding affinity between the virus and hACE2 and diminished the protective efficacy of existing vaccines and antibodies. Consequently, there is an urgent need to develop new interventions that can provide broad protectivity to limit the transmission of continuously emerging SARS-CoV-2 variants in the future. In our previous study, we isolated a high-affinity anti-hACE2 monoclonal antibody, named 2H2, using hybridoma technology, and further engineered a chimeric antibody, ch2H2-IgG, by grafting its variable regions onto the human IgG framework.
In this study, we investigated the binding mechanism of ch2H2-IgG and its efficacy in preventing SARS-CoV-2 infection. The HDX-MS and Cryo-EM results revealed that ch2H2-IgG binds to a site on hACE2 that overlaps with the SARS-CoV-2 RBD binding site, thus blocking the virus from interacting with hACE2. We further utilized adeno-associated virus (AAV) as a vector to express ch2H2-IgG in K18-hACE2 transgenic mice and demonstrated its protective effect against omicron BA.5 infections. To further enhance the efficacy of the ch2H2 antibody in preventing SARS-CoV-2 infection in the respiratory mucosa, we generated ch2H2-IgA by grafting the variable regions of 2H2 onto the human IgA1 framework and purified the antibody produced by CHO cells using peptide M. Subsequently, we confirmed the expression of the antibody through Western blot analysis. Pseudovirus neutralization assays confirmed the neutralizing activity of ch2H2-IgA against different SARS-CoV-2 variants. In animal experiments, however, we found that the expression of ch2H2-IgA could not be detected in serum, lung lavage fluid, or nasal lavage fluid by ELISA, regardless of whether it was administered via intratracheal (i.t.), intranasal (i.n.), or intravenous (i.v.) routes. Currently, we are investigating the underlying reasons why ch2H2-IgA fails to express normally in mice.
This study demonstrated that both ch2H2-IgG and ch2H2-IgA antibodies, which recognized hACE2, effectively neutralize different variants of SARS-CoV-2 and that rAAV-mediated antibody delivery protects mice from viral infection. In conclusion, our study provides a promising approach for developing broad-spectrum antivirals against SARS-CoV-2 and other hACE2-dependent pathogens that may emerge in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:21:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-20T16:21:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書 i
致謝 ii
中文摘要 iii
Abstract v
Table of Contents vii
List of Figures xi
List of Tables xiii
1. Introduction 1
1.1 A need for an alternative strategy to prevent SARS-CoV-2 infection 1
1.1.1 SARS-CoV-2 and the COVID-19 pandemic 1
1.1.2 SARS-CoV-2 utilizes human ACE2 as receptor for cell entry 2
1.1.3 Challenges of current vaccines and monoclonal antibody treatment 3
1.1.4 Targeting the receptor to prevent SARS-CoV-2 infection 4
1.2 Mucosal Immunity 5
1.2.1 Composition of mucosal immunity 5
1.2.2 The importance of mucosal immunity in SARS-CoV-2 infection 7
1.3 Adeno-associated Virus (AAV) as a delivery vector 8
1.3.1 Adeno-associated virus 8
1.3.2 Adeno-associated virus delivered therapeutic antibodies 9
1.4 Previous study 10
1.5 Aim of this study 11
2. Materials and Methods 12
2.1 HDX-MS 12
2.2 Cryo-EM 13
2.3 Biolayer interferometry (BLI) 14
2.4 Cell lines and viruses 14
2.5 Pseudovirus neutralization assay 15
2.6 Authentic virus neutralization assay 16
2.7 Animal 17
2.8 AAV delivery routes 17
2.8.1 Intratracheal (i.t.) 17
2.8.2 Intranasal (i.n.) 18
2.9 Detection of human Ig by ELISA 18
2.10 BA.5 virus challenge 19
2.11 RNA extraction and RT-QPCR 19
2.11.1 Quantification of SARS-CoV-2 N gene 19
2.11.2 Quantification of anti-hACE2 IgG or anti-hACE2 IgA gene 20
2.12 Quantification of viral titer by the tissue cell culture infectious assay 21
2.13 Histopathological examination of the tissue 21
2.14 AAV6/ch2H2-IgA production 22
2.14.1 Construction of pAAV/ch2H2-IgA 22
2.14.2 recombinant AAV production and titer quantification 23
2.15 AAV transduction 23
2.16 SDS-PAGE and Western Blot 24
2.17 Flow Cytometry 24
2.18 IgA purification by peptide M 25
2.19 Collection of BALF and NLF 26
2.20 in vivo imaging system (IVIS) 26
2.21 hACE2 enzymatic activity assay 27
2.22 Statistics 27
3. Results 28
3.1 Structure of ch2H2-IgG 28
3.1.1 Epitope mapping and Cryo-EM analysis of ch2H2-IgG 28
3.1.2 The binding kinetics of ch2H2-IgG to hACE2 30
3.2 in vitro protection ability of ch2H2-IgG 31
3.2.1 Pseudovirus neutralization assay 31
3.2.2 Authentic virus neutralization assay 32
3.3 AAV6/ch2H2-IgG induced prolonged IgG expression 32
3.4 AAV6/ch2H2-IgG protects K18-hACE2 transgenic mice against BA.5 challenge 33
3.5 Construction of pAAV/ch2H2-IgA 35
3.6 Production of AAV6/ch2H2-IgA 37
3.6.1 Production of AAV6/ch2H2-IgA 37
3.6.2 AAV6/ch2H2-IgA in vitro transduction and expression 37
3.7 Production and in vitro protection ability of ch2H2-IgA 39
3.7.1 Production of ch2H2-IgA by CHO 39
3.7.2 in vitro protection ability of ch2H2-IgA 40
3.8 Comparison of protein expression of AAV6/ch2H2-IgG and AAV6/ch2H2-IgA in K18-hACE2 via i.t. delivery 41
3.9 Protein expression of AAV6/ch2H2-IgA in K18-hACE2 transgenic mice via i.v. or i.n. delivery 42
3.10 RNA expression of AAV6/ch2H2-IgA in K18-hACE2 transgenic mice via i.v. or i.n. delivery 44
3.11 Expression of Luciferase in murine nasal by different AAV serotypes 45
4. Discussion 47
4.1 ch2H2-IgA has a better neutralizing effect than ch2H2-IgG 47
4.2 Utilizing 2A peptide for multicistronic expression 47
4.3 Factors that may influence detection of human IgA in mice samples 48
4.4 The safety of anti-hACE2 antibodies in vivo 49
4.5 Advantages of AAV6/ch2H2-Ig in clinical use 51
4.6 Conclusion 52
5. References 53
-
dc.language.isoen-
dc.title利用腺相關病毒載體表現對新冠病毒突變株有廣泛保護效果的抗人類ACE2黏膜抗體zh_TW
dc.titleDevelopment of AAV-delivered anti-human ACE2 mucosal antibody with broad protectivity against SARS-CoV-2 variantsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王宜萱;楊宏志;葉秀慧zh_TW
dc.contributor.oralexamcommitteeI-Hsuan Wang;Hung-Chih Yang;Shiou-Hwei Yehen
dc.subject.keyword新冠病毒,抗hACE2抗體,黏膜抗體,腺相關病毒,zh_TW
dc.subject.keywordSARS-CoV-2,anti-human ACE2 antibody,mucosal antibody,Adeno-associated virus (AAV),en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202302501-
dc.rights.note未授權-
dc.date.accepted2023-08-10-
dc.contributor.author-college醫學院-
dc.contributor.author-dept微生物學研究所-
顯示於系所單位:微生物學科所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
4.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved