請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89768完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 趙遠宏 | zh_TW |
| dc.contributor.advisor | Yuan-Hung Chao | en |
| dc.contributor.author | 王怡瑄 | zh_TW |
| dc.contributor.author | Yi-Syuan Wang | en |
| dc.date.accessioned | 2023-09-20T16:17:53Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-06-01 | - |
| dc.identifier.citation | Amasay T. Static block jump techniques in volleyball: Upright versus squat starting positions. J Strength Cond Res. 2008;22(4):1242-1248.
Reiser RFI, Rocheford EC, Armstrong CJ. Building a better understanding of basic mechanical principles through analysis of the vertical jump. J Strength Cond Res. 2006;28(4):70-80. Fuchs PX, Fusco A, Bell JW, Duvillard SPv, Cortis C, Wagner H. Movement characteristics of volleyball spike jump performance in females. J Sci Med Sport. 2019;22(7):833-837. Challoumas D, Artemiou A. Predictors of attack performance in high-level male volleyball players. Int J Sports Physiol Perform. 2018;13(9):1230-1236. Berriel GP, Schons P, Costa RR, et al. Correlations between jump performance in block and attack and the performance in official games, squat jumps, and countermovement jumps of professional volleyball players. J Strength Cond Res. 2021;35(2):64-69. Laffaye G, Wagner PP, Tombleson TIL. Countermovement jump height: Gender and sport-specific differences in the force-time variables. J Strength Cond Res. 2014;28(4):1096-1105. Rauch J, Leidersdorf E, Reeves T, Borkan L, Elliott M, Ugrinowitsch C. Different movement strategies in the countermovement jump amongst a large cohort of NBA players. Int J Environ Res Public Health. 2020;17(17):6394. Kipp K, Kiely M, Giordanelli M, Malloy P, Geiser C. Joint- and subject-specific strategies in male basketball players across a range of countermovement jump heights. J Sports Sci. 2020;38(6):652-657. Hubley CL, Wells RP. A work-energy approach to determine individual joint contributions to vertical jump performance. Eur J Appl Physiol Occup Physiol. 1983;50(2):247-254. Vanezis A, Lees A. A biomechanical analysis of good and poor performers of the vertical jump. Ergonomics. 2005;48(11-14):1594-1603. Cleather DJ, Goodwin JE, Bull AM. Intersegmental moment analysis characterizes the partial correspondence of jumping and jerking. J Strength Cond Res. 2013;27(1):89-100. Gheller RG, Pupo JD, Ache-Dias J, Detanico D, Padulo J, Santos SGd. Effect of different knee starting angles on intersegmental coordination and performance in vertical jumps. Hum Mov Sci. 2015;42:71-80. Pérez-Castilla A, Weakley J, García-Pinillos F, Rojas FJ, García-Ramos A. Influence of countermovement depth on the countermovement jump-derived reactive strength index modified. Eur J Sport Sci. 2021;21(12):1606-1616. Jidovtseff B, Quievre J, Nigel H, Cronin J. Influence of jumping strategy on kinetic and kinematic variables. J Sports Med Phys Fitness. 2014;54(2):129-138. Pérez-Castilla A, Rojas FJ, Gómez-Martínez F, García-Ramos A. Vertical jump performance is affected by the velocity and depth of the countermovement. Sports Biomech. 2021;20(8):1015-1030. Sánchez-Sixto A, Harrison AJ, Floría P. Larger countermovement increases the jump height of countermovement jump. Sports (Basel). 2018;6(4):131. Mandic R, Jakovljevic S, Jaric S. Effects of countermovement depth on kinematic and kinetic patterns of maximum vertical jumps. J Electromyogr Kinesiol. 2015;25(2):265-272. Mandic R, Knezevic OM, Mirkov DM, Jaric S. Control strategy of maximum vertical jumps: The preferred countermovement depth may not be fully optimized for jump height. J Hum Kinet. 2016;52:85-94. Bobbert MF, Gerritsen KG, Litjens MC, Soest AJV. Why is countermovement jump height greater than squat jump height? Med Sci Sports Exerc. 1996;28(11):1402-1412. McMahon J, Suchomel T, Lake J, Comfort P. Understanding the key phases of the countermovement jump force-time curve. J Strength Cond Res. 2018;40(4):96-106. Hellmers S, Fudickar S, Elgert L, Heinks A, Bauer J, Hein A. Understanding jump landing as an oscillating system: A model-based approach of balance and strength analyses. presented at: 10th International Joint Conference on Biomedical Engineering Systems and Technologies; February 21-23, 2017; Porto, Portugal. Carolyn Kisner LAC. Therapeutic Exercise: Foundations and Techniques. 4th ed. F. A. Davis; 2007. Davies G, Riemann BL, Manske R. Current concepts of plyometric exercise. Int J Sports Phys Ther. 2015;10(6):760-786. Bobbert MF, Casius LJ. Is the effect of a countermovement on jump height due to active state development? Med Sci Sports Exerc. 2005;37(3):440-446. Ravn S, Voigt M, Simonsen EB, Alkjaer T, Bojsen-Møller F, Klausen K. Choice of jumping strategy in two standard jumps, squat and countermovement jump-effect of training background or inherited preference? Scand J Med Sci Sports. 1999;9(4):201-208. McGuigan MR, Doyle TL, Newton M, Edwards DJ, Nimphius S, Newton RU. Eccentric utilization ratio: Effect of sport and phase of training. J Strength Cond Res. 2006;20(4):992-995. Häkkinen K, Komi PV, Kauhanen H. Electromyographic and force production characteristics of leg extensor muscles of elite weight lifters during isometric, concentric, and various stretch-shortening cycle exercises. Int J Sports Med. 1986;7(3):144-151. Hooren BV, Zolotarjova J. The difference between countermovement and squat jump performances: A review of underlying mechanisms with practical applications. J Strength Cond Res. 2017;31(7):2011-2020. Ives JC. Motor Behavior: Connecting Mind and Body for Optimal Performance. Lippincott Williams & Wilkins; 2009. Cavagna GA, Citterio G. Effect of stretching on the elastic characteristics and the contractile component of frog striated muscle. J Physiol. 1974;239(1):1-14. Hooren BV, Bosch F. Influence of muscle slack on high-intensity sport performance: A review. Strength Cond J. 2016;38(5):75-87. Ruiter CJd, Leeuwen DV, Heijblom A, Bobbert MF, Haan Ad. Fast unilateral isometric knee extension torque development and bilateral jump height. Med Sci Sports Exerc. 2006;38(10):1843-1852. Konrad A, Reiner MM, Bernsteiner D, Glashüttner C, Thaller S, Tilp M. Joint flexibility and isometric strength parameters are not relevant determinants for countermovement jump performance. Int J Environ Res Public Health. 2021;18(5):2510. Fuchs PX, Mitteregger J, Hoelbling D, et al. Relationship between general jump types and spike jump performance in elite female and male volleyball players. Appl Sci (Basel). 2021;11(3):1105. Ortega DR, Berral-Aguilar AJ, Rosa FJBdl. Kinetic variables and vertical stiffness of female volleyball players during a vertical jump. J Phys Educ Sport. 2021;21(1):201-207. McMahon J, Murphy S, Rej S, Comfort P. Countermovement-jump-phase characteristics of senior and academy rugby league players. Int J Sports Physiol Perform. 2017;12(6):803-811. Till K, Cobley S, O'Hara J, Chapman C, Cooke C. A longitudinal evaluation of anthropometric and fitness characteristics in junior rugby league players considering playing position and selection level. J Sci Med Sport. 2013;16(5):438-443. Beckham G, Suchomel T, Mizuguchi S. Force plate use in performance monitoring and sport science testing. New Stud Athlet. 2014;29(3):25-37. Guess TM, Gray AD, Willis BW, et al. Force-time waveform shape reveals countermovement jump strategies of collegiate athletes. Sports (Basel). 2020;8(12):159. Hay JG, Reid JG. Anatomy, Mechanics, and Human Motion. Prentice Hall; 1988. Ham DJ, Knez WL, Young WB. A deterministic model of the vertical jump: Implications for training. J Strength Cond Res. 2007;21(3):967-972. Sarvestan J, Cheraghi M, Sebyani M, Shirzad E, Svoboda Z. Relationships between force-time curve variables and jump height during countermovement jumps in young elite volleyball players. Acta Gymnica. 2018;48(1):9-14. Barker LA, Harry JR, Mercer JA. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J Strength Cond Res. 2018;32(1):248-254. McErlain-Naylor S, King M, Pain MTG. Determinants of countermovement jump performance: A kinetic and kinematic analysis. J Sports Sci. 2014;32(19):1805-1812. Linthorne NP. Analysis of standing vertical jumps using a force platform. Am J Phys. 2001;69(11):1198-1204. Neumann DA. Kinesiology of The Musculoskeletal System: Foundations for Physicla Rehabilitation. Mosby; 2016. Montalvo S, Gonzalez MP, Dietze-Hermosa MS, Eggleston JD, Dorgo S. Common vertical jump and reactive strength index measuring devices: A validity and reliability analysis. J Strength Cond Res. 2021;35(5):1234-1243. Knihs DA, Detanico D, Silva DRd, Pupo JD. Reliability and sensitivity of countermovement jump-derived variables in detecting different fatigue levels. J Phys Educ. 2022;32:e3232. Aragón-Vargas L. Evaluation of four vertical jump tests: Methodology, reliability, validity, and accuracy. Meas Phys Educ Exerc Sc. 2000;4(4):215-228. Lindberg K, Solberg P, Bjørnsen T, et al. Force-velocity profiling in athletes: Reliability and agreement across methods. PLoS One. 2021;16(2):e0245791. Lake J, Mundy P, Comfort P, McMahon JJ, Suchomel TJ, Carden P. Concurrent validity of a portable force plate using vertical jump force-time characteristics. J Appl Biomech. 2018;34(5):410-413. Kawamori N, Rossi S, Justice B, et al. Peak force and rate of force development during isometric and dynamic mid-thigh clean pulls performed at various intensities. J Strength Cond Res. 2006;20(3):483-491. Pizzolato C, Reggiani M, Modenese L, Lloyd D. Real-time inverse kinematics and inverse dynamics for lower limb applications using OpenSim. Comput Methods Biomech Biomed Engin. 2016;20(4):436-445. Schmidt B. Volleyball: Steps to Success. Human Kinetics; 2015. Kenny BJ, Gregory CR. Volleyball: Steps to Success. Human Kinetics; 2015. Seminati E, Minetti AE. Overuse in volleyball training/practice: A review on shoulder and spine-related injuries. Eur J Sport Sci. 2013;13(6):732-743. Lidor R, Ziv G. Physical and physiological attributes of female volleyball players: A review. J Strength Cond Res. 2010;24(7):1963-1973. Sattler T, Sekulic D, Hadzic V, Uljevic O, Dervisevic E. Vertical jumping tests in volleyball: Reliability, validity, and playing-position specifics. J Strength Cond Res. 2012;26(6):1532-1538. Sheppard JM, Cronin JB, Gabbett TJ, McGuigan MR, Etxebarria N, Newton RU. Relative importance of strength, power, and anthropometric measures to jump performance of elite volleyball players. J Strength Cond Res. 2008;22(3):758-765. Sattler T, Hadžic V, Derviševic E, Markovic G. Vertical jump performance of professional male and female volleyball players: Effects of playing position and competition level. J Strength Cond Res. 2015;29(6):1486-1493. Carroll KM, Wagle JP, Sole CJ, Stone MH. Intrasession and intersession reliability of countermovement jump testing in division-I volleyball athletes. J Strength Cond Res. 2019;33(11):2932-2935. Smith DJ, Roberts D, Watson B. Physical, physiological and performance differences between Canadian national team and universiade volleyball players. J Sports Sci. 1992;10(2):131-138. Gabbett T, Georgieff B. Physiological and anthropometric characteristics of Australian junior national, state, and novice volleyball players. J Strength Cond Res. 2007;21(3):902-908. Forthomme B, Croisier JL, Ciccarone G, Crielaard JM, Cloes M. Factors correlated with volleyball spike velocity. Am J Sports Med. 2005;33(10):1513-1519. Häyrinen M, Hoivala T, Blomqvist M. Differences between winning and losing teams in men’s European top-level volleyball. presented at: World Congress of Performance Analysis of Sport VI; June 22-25, 2004; Belfast, Northern Ireland. Marcelino R, Isabel M. Associations between performance indicators and set's result on male volleyball. presented at: 5th International Scientific Conference on Kinesiology; September 21-30, 2008; Zagreb, Croatia. Patel R. Performance of A Two-Foot Vertical Jump: What Is More Important Hip or Knee Dominance? Thesis. University of Waterloo; 2010. http://hdl.handle.net/10012/5689 Fukashiro S, Komi PV. Joint moment and mechanical power flow of the lower limb during vertical jump. Int J Sports Med. 1987;8(Suppl. 1):15-21. Kopper B, Ureczky D, Tihanyi J. Trunk position influences joint activation pattern and physical performance during vertical jumping. Acta Physiol Hung. 2012;99(2):194-205. Clansey A, Lees A. Changes in lower limb joint range of motion on countermovement vertical jumping. presented at: 28 International Conference on Biomechanics in Sports; July 19-23, 2010; Marquette, Michigan, USA. Domire ZJ, Challis JH. The influence of squat depth on maximal vertical jump performance. J Sports Sci. 2007;25(2):193-200. Bobbert MF, Casius LJ, Sijpkens IW, Jaspers RT. Humans adjust control to initial squat depth in vertical squat jumping. J Appl Physiol. 2008;105(5):1428-1440. Kopper B, Csende Z, Sáfár S, Hortobágyi T, Tihanyi J. Muscle activation history at different vertical jumps and its influence on vertical velocity. J Electromyogr Kinesiol. 2013;23(1):132-139. Kopper B, Csende Z, Trzaskoma L, Tihanyi J. Stretch-shortening cycle characteristics during vertical jumps carried out with small and large range of motion. J Electromyogr Kinesiol. 2014;24(2):233-239. Plug-In Gait Reference Guide. Vicon Motion Systems Limited. Updated March 29, 2021. Accessed August 16, 2022. https://docs.vicon.com/dashboard.action Owen NJ, Watkins J, Kilduff LP, Bevan HR, Bennett MA. Development of a criterion method to determine peak mechanical power output in a countermovement jump. J Strength Cond Res. 2014;28(6):1552-1558. Magee DJ. Orthopedic Physical Assessment. 5th ed. Elsevier; 2008. Demers E, Pendenza J, Radevich V, Preuss R. The effect of stance width and anthropometrics on joint range of motion in the lower extremities during a back squat. Int J Exerc Sci. 2018;11(1):764-775. Vaughan CL, Davis BL, O'Connor JC. Dynamics of Human Gait. Human Kinetics Publishers; 1992. Leard JS, Cirillo MA, Katsnelson E, et al. Validity of two alternative systems for measuring vertical jump height. J Strength Cond Res. 2007;21(4):1296. Dias JA, Pupo JD, Reis DC, et al. Validity of two methods for estimation of vertical jump height. J Strength Cond Res. 2011;25(7):2034-2039. Dancey CP, Reidy J. Statistics Without Maths for Psychology. Pearson London; 2017. Schmidt RA, Lee TD, Winstein C, Wulf G, Zelaznik HN. Motor Control and Learning: A Behavioral Emphasis. Human Kinetics; 2018. Ganesh G, Haruno M, Kawato M, Burdet E. Motor memory and local minimization of error and effort, not global optimization, determine motor behavior. J Neurophysiol. 2010;104(1):382-390. Fry AC, Smith JC, Schilling BK. Effect of knee position on hip and knee torques during the barbell squat. J Strength Cond Res. 2003;17(4):629-633. Aragón-Vargas LF, Gross MM. Kinesiological factors in vertical jump performance: Differences among individuals. J Appl Biomech. 1997;13(1):24-44. Hahn D, Olvermann M, Richtberg J, Seiberl W, Schwirtz A. Knee and ankle joint torque-angle relationships of multi-joint leg extension. J Biomech. 2011;44(11):2059-2065. Coleman SG, Benham AS, Northcott SR. A three-dimensional cinematographical analysis of the volleyball spike. J Sports Sci. 1993;11(4):295-302. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89768 | - |
| dc.description.abstract | 背景:反向跳跳躍高度對排球選手來說至關重要,不同選手在執行反向跳過程中會使用不同動作策略,可能偏好髖關節策略或膝關節策略。藉由了解不同動作策略在反向跳時的機制和貢獻將有助於排球選手之個別化訓練。故本研究旨在比較排球選手於反向跳時,使用偏好策略、髖關節策略或膝關節策略時,對於跳躍高度之影響。
方法:共納入19位大學層級男性排球選手 (20.26 ± 1.37歲)。藉由兩天的實驗讓受試者分別以偏好策略、髖關節策略和膝關節策略來練習和執行反向跳。 結果:使用偏好策略具有顯著較高之跳躍高度 (p < .000),但使用髖關節和膝關節策略之間並無顯著差異 (p = .23)。髖關節策略可提升髖關節活動度和力矩占比,而膝關節策略則提升膝關節活動度占比。偏好策略之活動度比大多落在0.6至1.0,和跳躍高度無顯著相關 (rs = -.019, p = .937),但和大腿小腿比有顯著中度負相關 (rs = -.561, p = .012)。 結論:使用髖關節策略或膝關節策略會影響關節動作機制,但並不影響反向跳跳躍高度。大多數排球選手使用膝關節策略來跳躍可能和排球運動特性和選手的肢段比例有關。 臨床意義:應依據選手目前所使用之動作策略,強化髖或膝關節肌群訓練。然而使用關節運動學和動力學所辨別出的動作策略可能有所不同,建議不可只看單一參數來決定。排球選手或是大腿長較長之運動選手可考慮強調使用膝關節策略來執行跳躍動作。 | zh_TW |
| dc.description.abstract | Background: The jump height (JH) of the countermovement jump (CMJ) is quite important for volleyball players. However, different players will use different movement strategies during CMJ and may prefer a hip strategy or a knee strategy. Exploring the mechanism and contribution of different movement strategies will benefit the individual training of volleyball players. Therefore, our objective is to compare the effects of using different movement strategies on JH during CMJ in volleyball players.
Methods: A total of 19 male collegiate volleyball players (20.26 ± 1.37 y/o) were enrolled. Through the two-day experiment, the subjects practiced and performed CMJ with preferred strategy, hip strategy, and knee strategy respectively. Result: The preferred strategy had a significantly higher jump height (p < .000), but there was no significant difference between the hip and knee strategies (p = .23). Using the hip strategy increased the hip’s contribution to the range of motion (ROM) and moment while using the knee strategy increased knee’s contribution to ROM. The ROM ratios of the preferred strategy mostly fell between 0.6 and 1.0. Although the ROM ratio wasn’t correlated with the jump height (rs = -.019, p = .937), it had a moderate negative correlation with the thigh-shank ratio (rs = -.561, p = .012). Conclusion: Emphasis on using hips or knees to perform CMJ makes no difference in the jump height, but does affect the joint mechanics. Most volleyball players use more knee flexion to jump may be related to the nature of the sport and their segment lengths. Clinical relevance: According to the present strategy, emphasis should be placed on hip or knee training. However, using joint kinematics and kinetics to identify may differ. It is not recommended to only look at a single parameter. Volleyball players or athletes with longer thighs may be suited for knee strategy training. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:17:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-20T16:17:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
中文摘要 iii Abstract v 目錄 vii 表目錄 xi 圖目錄 xiii 第1章 緒論 1 1.1 研究背景 1 1.2 研究問題 3 1.3 研究目的 4 1.4 研究假設 5 第2章 文獻回顧 7 2.1 反向跳之介紹 7 2.1.1 定義和分期 7 2.1.2 牽張縮短循環之機制 8 2.1.3 運動學和動力學參數 10 2.1.4 量測工具 12 2.2 反向跳於排球之重要性 15 2.2.1 排球之基礎動作技巧 15 2.2.2 跳躍高度於排球之重要性 16 2.3 不同動作策略對反向跳之影響 18 2.3.1 反向跳之動作策略 18 2.3.2 膝和髖關節角度對於反向跳之影響 20 2.3.3 下蹲深度對反向跳之影響 22 2.3.4 不同動作策略之可能機制 24 第3章 方法 27 3.1 受試者 27 3.2 儀器 28 3.3 實驗流程 29 3.4 數據分析 34 3.5 統計分析 37 第4章 結果 39 4.1 人口學資料 39 4.2 不同動作策略之跳躍高度 40 4.3 不同動作策略之全身運動學、動力學參數 41 4.4 不同動作策略之關節運動學、動力學參數 42 4.5 關節貢獻比和跳躍高度之關聯性 45 4.6 關節貢獻比和選手特性之關聯性 46 第5章 討論 47 5.1 不同動作策略對跳躍高度之影響 47 5.2 運動學和動力學關節貢獻比之關連性 50 5.3 關節貢獻比和選手特性之關聯性 53 5.4 實驗限制 55 第6章 結論 57 參考文獻 59 表 73 圖 81 附錄 91 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 跳躍高度 | zh_TW |
| dc.subject | 動作策略 | zh_TW |
| dc.subject | 反向跳 | zh_TW |
| dc.subject | 排球選手 | zh_TW |
| dc.subject | volleyball player | en |
| dc.subject | countermovement jump | en |
| dc.subject | movement strategy | en |
| dc.subject | jump height | en |
| dc.title | 使用不同動作策略對排球選手反向跳跳躍高度之影響 | zh_TW |
| dc.title | Effects of Different Movement Strategies on Countermovement Jump Height in Volleyball Players | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐瑋勵;陳譽仁 | zh_TW |
| dc.contributor.oralexamcommittee | Wei-Li Hsu;Yu-Jen Chen | en |
| dc.subject.keyword | 反向跳,排球選手,動作策略,跳躍高度, | zh_TW |
| dc.subject.keyword | countermovement jump,volleyball player,movement strategy,jump height, | en |
| dc.relation.page | 92 | - |
| dc.identifier.doi | 10.6342/NTU202300906 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-06-01 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 物理治療學研究所 | - |
| 顯示於系所單位: | 物理治療學系所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
