請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林晉玄 | zh_TW |
| dc.contributor.advisor | Ching-Hsuan Lin | en |
| dc.contributor.author | 楊立玄 | zh_TW |
| dc.contributor.author | Li-Hsuan Yang | en |
| dc.date.accessioned | 2023-09-20T16:10:38Z | - |
| dc.date.available | 2025-07-28 | - |
| dc.date.copyright | 2023-09-20 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-31 | - |
| dc.identifier.citation | 1. Poulain, D., Candida albicans, plasticity and pathogenesis. Crit Rev Microbiol, 2015. 41(2): p. 208-17.
2. Vainionpaa, A., et al., Neonatal thrush of newborns: Oral candidiasis? Clin Exp Dent Res, 2019. 5(5): p. 580-582. 3. Kalia, N., J. Singh, and M. Kaur, Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob, 2020. 19(1): p. 5. 4. Ganguly, S. and A.P. Mitchell, Mucosal biofilms of Candida albicans. Curr Opin Microbiol, 2011. 14(4): p. 380-5. 5. Pappas, P.G., et al., Invasive candidiasis. Nat Rev Dis Primers, 2018. 4: p. 18026. 6. Antinori, S., et al., Candidemia and invasive candidiasis in adults: A narrative review. Eur J Intern Med, 2016. 34: p. 21-28. 7. Perlin, D.S., R. Rautemaa-Richardson, and A. Alastruey-Izquierdo, The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis, 2017. 17(12): p. e383-e392. 8. Lee, Y., et al., Antifungal Drug Resistance: Molecular mechanisms in Candida albicans and beyond. Chem Rev, 2021. 121(6): p. 3390-3411. 9. Robbins, N. and L.E. Cowen, Antifungal discovery. Curr Opin Microbiol, 2022. 69: p. 102198. 10. Yonashiro Marcelino, M., et al., Antifungal activity of fluconazole-loaded natural rubber latex against Candida albicans. Future Microbiol, 2018. 13: p. 359-367. 11. Ferreira, M.E., et al., The ergosterol biosynthesis pathway, transporter genes, and azole resistance in Aspergillus fumigatus. Med Mycol, 2005. 43 Suppl 1: p. S313-9. 12. Bhattacharya, S., S. Sae-Tia, and B.C. Fries, Candidiasis and mechanisms of antifungal resistance. Antibiotics (Basel), 2020. 9(6). 13. Baghirova, A.A. and K.M. Kasumov, Antifungal macrocycle antibiotic amphotericin B-Its present and future. Multidisciplinary Perspective for the Use in the Medical Practice. Biochem Mosc Suppl B Biomed Chem, 2022. 16(1): p. 1-12. 14. Silva, L.N., et al., Unmasking the amphotericin B resistance mechanisms in Candida haemulonii species complex. ACS Infect Dis, 2020. 6(5): p. 1273-1282. 15. Minematsu, A., et al., Vacuolar proton-translocating ATPase is required for antifungal resistance and virulence of Candida glabrata. PLoS One, 2019. 14(1): p. e0210883. 16. Costa, C., et al., New mechanisms of flucytosine resistance in C. glabrata unveiled by a chemogenomics analysis in S. cerevisiae. PLoS One, 2015. 10(8): p. e0135110. 17. Szymanski, M., et al., Echinocandins - structure, mechanism of action and use in antifungal therapy. J Enzyme Inhib Med Chem, 2022. 37(1): p. 876-894. 18. Taudorf, E.H., et al., Cutaneous candidiasis - an evidence-based review of topical and systemic treatments to inform clinical practice. J Eur Acad Dermatol Venereol, 2019. 33(10): p. 1863-1873. 19. Pichard, D.C., A.F. Freeman, and E.W. Cowen, Primary immunodeficiency update: Part II. Syndromes associated with mucocutaneous candidiasis and noninfectious cutaneous manifestations. J Am Acad Dermatol, 2015. 73(3): p. 367-81; quiz 381-2. 20. Salusti-Simpson, M., et al., Congenital cutaneous candidiasis in a full-term neonate. Pediatr Dermatol, 2022. 39(6): p. 952-954. 21. Penate, Y., et al., Dermatologists in hospital wards: an 8-year study of dermatology consultations. Dermatology, 2009. 219(3): p. 225-31. 22. Del Rosso, J.Q. and L.H. Kircik, Optimizing topical antifungal therapy for superficial cutaneous fungal infections: focus on topical naftifine for cutaneous dermatophytosis. J Drugs Dermatol, 2013. 12(11 Suppl): p. s165-71. 23. Shahbaz, U., Chitin, characteristic, sources, and biomedical application. Curr Pharm Biotechnol, 2020. 21(14): p. 1433-1443. 24. Satitsri, S. and C. Muanprasat, Chitin and chitosan derivatives as biomaterial resources for biological and biomedical applications. Molecules, 2020. 25(24). 25. Badwan, A.A., et al., Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs, 2015. 13(3): p. 1519-47. 26. Matalqah, S.M., et al., Preparation of modified chitosan-based nanoparticles for efficient delivery of doxorubicin and/or cisplatin to breast cancer cells. Curr Cancer Drug Targets, 2022. 22(2): p. 133-141. 27. Matalqah, S.M., et al., Chitosan nanoparticles as a novel drug delivery system: A review article. Curr Drug Targets, 2020. 21(15): p. 1613-1624. 28. Xu, X., et al., An injectable and thermosensitive hydrogel: Promoting periodontal regeneration by controlled-release of aspirin and erythropoietin. Acta Biomater, 2019. 86: p. 235-246. 29. Patrulea, V., et al., Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm, 2015. 97(Pt B): p. 417-26. 30. Wang, C.H., et al., Procoagulant and antimicrobial effects of chitosan in wound healing. Int J Mol Sci, 2021. 22(13). 31. Ebhodaghe, S.O., A short review on chitosan and gelatin-based hydrogel composite polymers for wound healing. J Biomater Sci Polym Ed, 2022. 33(12): p. 1595-1622. 32. Zakhireh, S., et al., Bioactive chitosan-based organometallic scaffolds for tissue engineering and regeneration. Top Curr Chem (Cham), 2022. 380(2): p. 13. 33. Venkatesan, J., et al., Chitin and chitosan composites for bone tissue regeneration. Adv Food Nutr Res, 2014. 73: p. 59-81. 34. Matica, M.A., et al., Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. Int J Mol Sci, 2019. 20(23). 35. Peng, W., et al., Recent progress of collagen, chitosan, alginate and other hydrogels in skin repair and wound dressing applications. Int J Biol Macromol, 2022. 208: p. 400-408. 36. Ma, S., et al., Asymmetric collagen/chitosan membrane containing minocycline-loaded chitosan nanoparticles for guided bone regeneration. Sci Rep, 2016. 6: p. 31822. 37. Becerra, J., et al., Chitosan-collagen-hydroxyapatite membranes for tissue engineering. J Mater Sci Mater Med, 2022. 33(2): p. 18. 38. Lo, W.H., et al., Synergistic antifungal activity of chitosan with fluconazole against Candida albicans, Candida tropicalis, and fluconazole-resistant strains. Molecules, 2020. 25(21). 39. Marquez, I.G., et al., Disruption of protein synthesis as antifungal mode of action by chitosan. International Journal of Food Microbiology, 2013. 164(1): p. 108-112. 40. Tayel, A.A., et al., Anticandidal action of fungal chitosan against Candida albicans. Int J Biol Macromol, 2010. 47(4): p. 454-7. 41. Matica, M.A., et al., Chitosan as a wound dressing starting material: antimicrobial properties and mode of action. International Journal of Molecular Sciences, 2019. 20(23). 42. Verlee, A., S. Mincke, and C.V. Stevens, Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr Polym, 2017. 164: p. 268-283. 43. Jia, R.X., et al., Pyridine-grafted chitosan derivative as an antifungal agent. Food Chemistry, 2016. 196: p. 381-387. 44. Liu, H., et al., Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology Letters, 2012. 34(12): p. 2291-2298. 45. Rashki, S., et al., Chitosan-based nanoparticles against bacterial infections. Carbohydr Polym, 2021. 251: p. 117108. 46. Lopez-Moya, F., M. Suarez-Fernandez, and L.V. Lopez-Llorca, Molecular mechanisms of chitosan interactions with fungi and plants. Int J Mol Sci, 2019. 20(2). 47. Zheng, L.Y. and J.A.F. Zhu, Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 2003. 54(4): p. 527-530. 48. Kong, Y.H., et al., Asymmetric wettable polycaprolactone-chitosan/chitosan oligosaccharide nanofibrous membrane as antibacterial dressings. Carbohydrate Polymers, 2023. 304. 49. Chambers, E.S. and M. Vukmanovic-Stejic, Skin barrier immunity and ageing. Immunology, 2020. 160(2): p. 116-125. 50. Fore, J., A review of skin and the effects of aging on skin structure and function. Ostomy Wound Manage, 2006. 52(9): p. 24-35; quiz 36-7. 51. Arda, O., N. Goksugur, and Y. Tuzun, Basic histological structure and functions of facial skin. Clin Dermatol, 2014. 32(1): p. 3-13. 52. Reinke, J.M. and H. Sorg, Wound repair and regeneration. Eur Surg Res, 2012. 49(1): p. 35-43. 53. Eming, S.A., P. Martin, and M. Tomic-Canic, Wound repair and regeneration: mechanisms, signaling, and translation. Sci Transl Med, 2014. 6(265): p. 265sr6. 54. Piipponen, M., D. Li, and N.X. Landen, The immune functions of keratinocytes in skin wound healing. Int J Mol Sci, 2020. 21(22). 55. Werner, S. and R. Grose, Regulation of wound healing by growth factors and cytokines. Physiol Rev, 2003. 83(3): p. 835-70. 56. Sabat, R., et al., T cell pathology in skin inflammation. Semin Immunopathol, 2019. 41(3): p. 359-377. 57. Talbott, H.E., et al., Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell, 2022. 29(8): p. 1161-1180. 58. Tonnesen, M.G., X. Feng, and R.A. Clark, Angiogenesis in wound healing. J Investig Dermatol Symp Proc, 2000. 5(1): p. 40-6. 59. Sorg, H., et al., Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res, 2017. 58(1-2): p. 81-94. 60. Wang, P.H., et al., Wound healing. J Chin Med Assoc, 2018. 81(2): p. 94-101. 61. Chaushu, L., et al., Palatal wound healing with primary intention in a rat model-histology and immunohistomorphometry. Medicina (Kaunas), 2020. 56(4). 62. McCaughan, D., et al., Patients' perceptions and experiences of living with a surgical wound healing by secondary intention: A qualitative study. Int J Nurs Stud, 2018. 77: p. 29-38. 63. Norman, G., J.C. Dumville, and E.J. Crosbie, Antiseptics and antibiotics for surgical wounds healing by secondary intention: Summary of a Cochrane Review. JAMA Dermatol, 2016. 152(11): p. 1266-1268. 64. Woo, K.Y., et al., Topical agents and dressings for pilonidal sinus wound healing by secondary intention: A scoping review. Surg Technol Int, 2015. 26: p. 57-63. 65. Broussard, K.C. and J.G. Powers, Wound dressings: selecting the most appropriate type. Am J Clin Dermatol, 2013. 14(6): p. 449-59. 66. Dhivya, S., V.V. Padma, and E. Santhini, Wound dressings - a review. Biomedicine (Taipei), 2015. 5(4): p. 22. 67. Boateng, J.S., et al., Wound healing dressings and drug delivery systems: a review. J Pharm Sci, 2008. 97(8): p. 2892-923. 68. Ao, F., et al., Multifunctional electrospun membranes with hydrophilic and hydrophobic gradients property for wound dressing. Colloids Surf B Biointerfaces, 2023. 225: p. 113276. 69. Kim, J.S., et al., Influence of hydrophilic polymers on mechanical property and wound recovery of hybrid bilayer wound dressing system for delivering thermally unstable probiotic. Mater Sci Eng C Mater Biol Appl, 2022. 135: p. 112696. 70. Zhang, S., et al., Recent advances in responsive hydrogels for diabetic wound healing. Mater Today Bio, 2023. 18: p. 100508. 71. Xue, C., et al., Self-healing/pH-responsive/inherently antibacterial polysaccharide-based hydrogel for a photothermal strengthened wound dressing. Colloids Surf B Biointerfaces, 2022. 218: p. 112738. 72. Li, H., et al., Generation of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing. Biomater Adv, 2022. 140: p. 213055. 73. Xia, G., et al., Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydr Polym, 2016. 136: p. 860-6. 74. Xie, C., et al., Bi-layered disulfiram-loaded fiber membranes with antibacterial properties for wound dressing. Appl Biochem Biotechnol, 2022. 194(3): p. 1359-1372. 75. Almaieli, L.M.A., et al., Fabrication of bio-based film comprising metal oxide nanoparticles loaded chitosan for wound dressing applications. Polymers (Basel), 2022. 15(1). 76. Cheng, H., et al., Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater, 2021. 124: p. 219-232. 77. Liang, Y.Z., et al., Ultrastiff, tough, and healable ionic-hydrogen bond cross-linked hydrogels and their uses as building blocks to construct complex hydrogel structures. Acs Applied Materials & Interfaces, 2019. 11(5): p. 5441-5454. 78. Ho, T.C., et al., Hydrogels: properties and applications in biomedicine. Molecules, 2022. 27(9). 79. Yang, Z., et al., Highly stretchable, adhesive, biocompatible, and antibacterial hydrogel dressings for wound healing. Adv Sci (Weinh), 2021. 8(8): p. 2003627. 80. Wick, M.R., The hematoxylin and eosin stain in anatomic pathology-An often-neglected focus of quality assurance in the laboratory. Semin Diagn Pathol, 2019. 36(5): p. 303-311. 81. Chan, J.K., The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int J Surg Pathol, 2014. 22(1): p. 12-32. 82. Wittekind, D., Traditional staining for routine diagnostic pathology including the role of tannic acid. 1. Value and limitations of the hematoxylin-eosin stain. Biotech Histochem, 2003. 78(5): p. 261-70. 83. Im, K., et al., An introduction to performing immunofluorescence staining. Methods Mol Biol, 2019. 1897: p. 299-311. 84. Evilsizor, M.N., et al., Primer for immunohistochemistry on cryosectioned rat brain tissue: example staining for microglia and neurons. J Vis Exp, 2015(99): p. e52293. 85. Flinner, N., et al., Deep learning based on hematoxylin-eosin staining outperforms immunohistochemistry in predicting molecular subtypes of gastric adenocarcinoma. J Pathol, 2022. 257(2): p. 218-226. 86. Broadwater, D.R., et al., Development and validation of ultra-rapid periodic acid-schiff stain for use in identifying fungus on frozen section. Arch Pathol Lab Med, 2022. 146(10): p. 1268-1272. 87. Pena-Romero, A.G., S. Toussaint-Caire, and J. Dominguez-Cherit, Periodic Acid-Schiff stain in circumscribed hypokeratosis. Am J Dermatopathol, 2017. 39(9): p. 709-711. 88. Margo, C.E. and J. Guffey Johnson, Infectious crystalline keratopathy: the clinical utility of periodic acid-Schiff stain. Pathology, 2021. 53(7): p. 942-944. 89. Perez-Bueno, F., et al., Bayesian K-SVD for H and E blind color deconvolution. Applications to stain normalization, data augmentation and cancer classification. Comput Med Imaging Graph, 2022. 97: p. 102048. 90. Chen, B., et al., Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg(2+)/curcumin from injectable self-healing hydrogels. Theranostics, 2021. 11(12): p. 5911-5925. 91. da Silva, J.T., et al., HPLC Method validated for quantification of fluconazole co-encapsulated with propolis within chitosan nanoparticles. Indian Journal of Microbiology, 2021. 61(3): p. 364-369. 92. Miao, Q., et al., Determination of chitosan content with ratio coefficient method and HPLC. International Journal of Biological Macromolecules, 2020. 164: p. 384-388. 93. Buranaamnuay, K., The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Veterinary Journal, 2021. 11(2): p. 251-269. 94. Arslan, M.E., et al., Structural, biocompatibility, and antibacterial properties of Ge-DLC nanocomposite for biomedical applications. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2022. 110(7): p. 1667-1674. 95. Jonsson, B., et al., Cytotoxic activity of calcein acetoxymethyl ester (Calcein/AM) on primary cultures of human haematological and solid tumours. Eur J Cancer, 1996. 32A(5): p. 883-7. 96. Conti, H.R., et al., Animal models for candidiasis. Curr Protoc Immunol, 2014. 105: p. 19 6 1-19 6 17. 97. Choi, K.Y., et al., Treatment of fungal-infected diabetic wounds with low temperature plasma. Biomedicines, 2021. 10(1). 98. Mei, Y.X., et al., Antifungal activity of chitooligosaccharides against the dermatophyte Trichophyton rubrum. Int J Biol Macromol, 2015. 77: p. 330-5. 99. Palmeira-de-Oliveira, A., et al., The relationship between Candida species charge density and chitosan activity evaluated by ion-exchange chromatography. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 2011. 879(31): p. 3749-3751. 100. Palacios, D.S., et al., Synthesis-enabled functional group deletions reveal key underpinnings of amphotericin B ion channel and antifungal activities. Proc Natl Acad Sci U S A, 2011. 108(17): p. 6733-8. 101. Kumar, P., A. Nagarajan, and P.D. Uchil, Analysis of cell viability by the MTT Assay. Cold Spring Harb Protoc, 2018. 2018(6). 102. Ersoz, M. and A. Allahverdiyev, Investigation of polyacrylic acid toxicity in human breast cancer (MCF-7) and mouse fibroblast (L-929) cell lines. Eurobiotech Journal, 2021. 5(3): p. 123-129. 103. Yeo, Y., et al., Peritoneal application of chitosan and UV-cross-linkable chitosan. J Biomed Mater Res A, 2006. 78(4): p. 668-75. 104. Kruse, C.R., et al., The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair Regen, 2017. 25(2): p. 260-269. 105. Choi, K.Y., et al., Treatment of fungal-infected diabetic wounds with low temperature plasma. Biomedicines, 2022. 10(1). 106. Dekoninck, S. and C. Blanpain, Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol, 2019. 21(1): p. 18-24. 107. Wang, W.Q., et al., Chitosan derivatives and their application in biomedicine. International Journal of Molecular Sciences, 2020. 21(2). 108. Liu, Z., et al., Electrostimulation of fibroblast proliferation by an electrospun poly (lactide-co-glycolide)/polydopamine/chitosan membrane in a humid environment. Colloids Surf B Biointerfaces, 2022. 220: p. 112902. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89740 | - |
| dc.description.abstract | 念珠菌屬的真菌中約有二十種會造成感染,其中最常見的是白色念珠菌。當宿主免疫力低下時,在口腔、皮膚、生殖道等部位易產生念珠菌症。過去實驗室研究發現以幾丁聚醣(chitosan)和抗真菌藥物氟康唑(fluconazole)兩者結合的水膠,對於白色念珠菌有良好的協同抑菌效果。因此本研究著重於將此水膠以實用性為目的進行測試,包括進行水膠藥物釋放、細胞毒性測試及動物實驗等。延續實驗室先前的研究,為了了解以幾丁聚醣(chitosan)和抗真菌藥物氟康唑(fluconazole)兩者結合的水膠是否對於白色念珠菌、熱念念珠菌及其個別的抗藥性菌株具有顯著抑菌效果,本研究以水膠紙錠擴散實驗(hydrogel disk diffusion assay)對白色念珠菌、熱念念珠菌及其個別的抗藥性菌株進行測試,結果顯示加入fluconazole的水膠對白色念珠標準菌株具有顯著的抑菌效果。以人類成纖維母細胞(HDFa) 進行細胞毒性試驗,Calcein AM測試結果顯示,水膠100%浸泡液對細胞具有毒性,50% 水膠浸泡液處理後,則能降低細胞毒性。此外,考慮到細胞微環境和水膠用作傷口敷料實際使用情形遠比體外測試來得複雜許多,以及實際使用上水膠並僅有局部接觸到傷口,無法直接將體外細胞毒性測試結果直接連結至傷口癒合表現。將水膠利用高效液相層析(High Performance Liquid Chromatography; HPLC)進行藥物釋放率測量,針對水膠作用時間長短來預測此水膠中fluconazole的藥物釋放量。最後,利用大鼠背部開創性皮膚傷口感染白色念珠菌,結果顯示相較於紗布與不含fluconazole水膠,含有fluconazole的水膠在第十二天時具有顯著修復能力。綜合以上結果,本研究開發外用水膠敷料能夠有較佳的傷口感染修復效果,未來希望能夠進一步改良水膠功能與特性,期望能為皮膚真菌感染提供另一有效的治療方式。 | zh_TW |
| dc.description.abstract | Approximately twenty species of fungi in the Candida genus can cause infections, with Candida albicans being the most common. Candidiasis, caused by Candida fungi, commonly occurs in areas such as the mouth, skin, and genital tract when the host's immune system is weakened. Previous laboratory studies have discovered that a hydrogel combining chitosan and the antifungal drug fluconazole exhibits a synergistic antimicrobial effect against C. albicans. Therefore, this study focuses on testing the practicality of this hydrogel, including drug release, cytotoxicity testing, and animal experiments. Continuing from previous research in the laboratory, this study aims to determine whether the chitosan-fluconazole hydrogel demonstrates significant inhibitory effects on C. albicans, C. tropicalis, and their drug-resistant strains. Hydrogel disk diffusion assays were conducted to test the hydrogel's efficacy against C. albicans, C. tropicalis, and their respective drug-resistant strains. The results showed a significant inhibitory effect of the fluconazole-containing hydrogel on C. albicans SC5314. Cell toxicity tests were performed using human dermal fibroblasts (HDFa), and the results obtained from the Calcein AM test indicated that the 100% soaking solution of the hydrogel was toxic to the cells, while treatment with a 50% soaking solution of the hydrogel reduced cell toxicity. Furthermore, considering the complex cellular microenvironment and the practical use of hydrogel as a wound dressing, which involves localized contact with the wound, it is not directly feasible to correlate the results of in vitro cytotoxicity tests with wound healing outcomes. Additionally, High-Performance Liquid Chromatography (HPLC) was utilized to measure the drug release rate from the hydrogel and predict the amount of fluconazole released based on the duration of hydrogel action. Finally, an experimental model using rats with dorsal skin wounds infected with C. albicans showed that the fluconazole-containing hydrogel exhibited significant reparative capability on the twelfth day compared to gauze and fluconazole-free hydrogel. Considering the overall results, this study demonstrates the potential of developing a topical hydrogel dressing that improves efficacy in repairing wound infections caused by Candida fungi. Future efforts aim to further enhance the functionality and characteristics of the hydrogel, with the hope of providing an alternative promising treatment approach for cutaneous fungal infections. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-20T16:10:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-20T16:10:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 中文摘要------------------------------------------------------------------i
Abstract-------------------------------------------------------------------ii 目錄----------------------------------------------------------------------iv 圖目錄-------------------------------------------------------------------vi 第一章 文獻回顧---------------------------------------------------------1 第一節 白色念珠菌與其臨床威脅性-------------------------------------1 第二節 臨床抗真菌藥物的使用------------------------------------------1 第三節 皮膚念珠菌症---------------------------------------------------2 第四節 幾丁聚醣的抗菌機制--------------------------------------------3 第五節 皮膚傷口及修復 ------------------------------------------------4 第六節 傷口癒合及使用敷料--------------------------------------------5 第七節 組織學測定-----------------------------------------------------8 第二章 實驗目的---------------------------------------------------------9 第三章 實驗材料--------------------------------------------------------10 第四章 實驗方法--------------------------------------------------------11 第五章 實驗結果--------------------------------------------------------19 第一節 PAA/ chitosan/ fluconazole水膠對白色念珠菌標準菌株有明顯的抑菌效果-------------------------------------------19 第二節 水膠中fluconazole釋放趨勢隨著水膠浸泡時間增加而增加-------19 第三節 稀釋後的水膠萃取液對人類纖維母細胞(HDFa)相較100%萃取液有比較好的細胞存活-----------------------------------20 第四節 PAA/ chitosan/ fluconazole水膠對皮膚念珠菌感染具有 顯著的傷口修復能力-------------------------------------------21 第六章 討論-------------------------------------------------------------25 第七章 結論-------------------------------------------------------------31 第八章 未來研究方向---------------------------------------------------32 第九章 圖表-------------------------------------------------------------34 第十章 參考文獻--------------------------------------------------------46 第十一章 附錄-----------------------------------------------------------54 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 傷口敷料 | zh_TW |
| dc.subject | 白色念珠菌 | zh_TW |
| dc.subject | 水膠 | zh_TW |
| dc.subject | 高效液相層析 | zh_TW |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 氟康唑 | zh_TW |
| dc.subject | chitosan | en |
| dc.subject | hydrogel | en |
| dc.subject | HPLC | en |
| dc.subject | fluconazole | en |
| dc.subject | Candida species | en |
| dc.subject | wound dressing | en |
| dc.title | 評估含有抗真菌藥物氟康唑的幾丁聚醣水膠對抗念珠菌的效果 | zh_TW |
| dc.title | Evaluation of a chitosan-based hydrogel with fluconazole against Candida species | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 羅秀容;孫培倫;葉伊純;吳亘承 | zh_TW |
| dc.contributor.oralexamcommittee | Siou-Rong Luo;Pei-Lun Sun;Yi-Cheun Ye;Hsuan-Chen Wu | en |
| dc.subject.keyword | 白色念珠菌,水膠,高效液相層析,幾丁聚醣,氟康唑,傷口敷料, | zh_TW |
| dc.subject.keyword | Candida species,hydrogel,HPLC,chitosan,fluconazole,wound dressing, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202302158 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-02 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 11.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
