請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴飛羆 | zh_TW |
| dc.contributor.advisor | Fei-Pei Lai | en |
| dc.contributor.author | 林聖哲 | zh_TW |
| dc.contributor.author | Sheng-Che Lin | en |
| dc.date.accessioned | 2023-09-15T16:20:55Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] Wang, Ssu-Ming et al., “Using Deep Learning for Automatic Icd-10 Classification from Free-Text Data,” (2020). [2] R. Farkas, G. Szarvas, “Automatic construction of rule-based ICD-9- CM coding systems,” BMC bioinformatics, vol. 9, no. 3, pp.1–9, 2008. [3] P.-F. Chen et al., “Automatic ICD-10 coding and training system: Deep neural network based on supervised learning,” JMIR Med. Inform., vol. 9, no. 8, p. e23230, 2021. [4] Shi, H., Xie, P., Hu, Z., Zhang, M., & Xing, E. P. (2017). Towards automated ICD coding using deep learning. arXiv preprint arXiv:1711.04075. [5] Sammani, A., Bagheri, A., van der Heijden, P.G.M. et al., “Automatic multilabel detection of ICD10 codes in Dutch cardiology discharge letters using neural networks,” npj Digit. Med. 4, 37 (2021). [6] X. Wang, J. Han, B. Li, X. Pan and H. Xu, "Automatic ICD-10 Coding Based on Multi-Head Attention Mechanism and Gated Residual Network," 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2021, pp. 536-543, doi: 10.1109/BIBM52615.2021.9669625. [7] Makohon and Y. Li, "Multi-Label Classification of ICD-10 Coding & Clinical Notes Using MIMIC & CodiEsp," 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), 2021, pp. 1-4, doi: 10.1109/BHI50953.2021.9508541. [8] Dianbo Liu, Dmitriy Dligach, and Timothy Miller. 2019. Two-stage Federated Phenotyping and Patient Representation Learning. In Proceedings of the 18th BioNLP Workshop and Shared Task, pages 283–291, Florence, Italy. Association for Computational Linguistics. [9] Silva, S., Gutman, B. A., Romero, E., Thompson, P. M., Altmann, A., & Lorenzi, M. (2019). Federated learning in distributed medical databases: meta-analysis of large- scale subcortical brain data. In 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019) (pp. 270–274). [10] Gao, D., Ju, C., Wei, X., Liu, Y., Chen, T., & Yang, Q. (2019). HHHFL: Hierarchical heterogeneous horizontal federated learning for electroencephalography. ArXiv: 1909.05784 [Cs, Eess]. [11] WHO, "ICD-10-CM Official Guidelines for Coding and Reporting," (2014) [12] L. Xu, Z. Wang, Z. Shen, Y. Wang and E. Chen, "Learning Low-Rank Label Correlations for Multi-label Classification with Missing Labels," 2014 IEEE International Conference on Data Mining, 2014, pp. 1067-1072, doi: 10.1109/ICDM.2014.125. [13] Nguyen, Q., Valizadegan, H., & Hauskrecht, M. (2014). Learning classification models with soft-label information. Journal of the American Medical Informatics Association: JAMIA, 21(3), 501–508. [14] Rafael Müller, Simon Kornblith, and Geoffrey Hinton. 2019. When does label smoothing help? Proceedings of the 33rd International Conference on Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY, USA, Article 422, 4694–4703. [15] Devlin, Jacob, et al., "Bert: Pre-training of deep bidirectional transformers for language understanding," arXiv preprint arXiv:1810.04805 (2018). [16] Lee, Jinhyuk, et al., "BioBERT: a pre-trained biomedical language representation model for biomedical text mining," Bioinformatics 36.4 (2020): 1234-1240. [17] Y. Gu et al., “Domain-specific language model pretraining for biomedical natural language processing,” ACM Trans. Comput. Healthcare, vol. 3, no. 1, pp. 1–23, 2022. [18] McMahan, H. Brendan, et al. "Federated learning of deep networks using model averaging." arXiv preprint arXiv:1602.05629 2 (2016). [19] Beutel, Daniel J., et al., "Flower: A friendly federated learning research framework," arXiv preprint arXiv:2007.14390 (2020). [20] Rodolfo Stoffel Antunes, Cristiano André da Costa, Arne Küderle, Imrana Abdullahi Yari, and Björn Eskofier. 2022. Federated Learning for Healthcare: Systematic Review and Architecture Proposal. ACM Trans. Intell. Syst. Technol. 13, 4, Article 54 (August 2022), 23 pages. [21] Imteaj, U. Thakker, S. Wang, J. Li, and M. H. Amini, “A Survey on Federated Learning for Resource-Constrained IoT Devices,” IEEE Internet of Things Journal, 2021. [22] L. Li, Y. Fan, M. Tse, and K.-Y. Lin, “A review of applications in federated learning,” Computers & Industrial Engineering, p. 106854, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89706 | - |
| dc.description.abstract | 世界衛生組織為了整合全世界疾病、損傷以及死亡的分類,訂定了世界通用的國際疾病分類標準International Classification of Disease (ICD),使病人在醫院或診所產生的醫療相關資訊,如疾病診斷、手術方法等文字敘述,轉換成電腦可處理的字元,而能做統計分析及其他有價值的應用。 本篇研究的目的即是觀察ICD-10編碼系統在醫院使用情況,以及持續改善優化模型系統,以利減少在疾病分類的時間成本。此外醫療資料是非常隱私的,如果想要有更通用的模型,以傳統的方法需要搜集每間醫院的資料混合做訓練,要將這些資料聚集並不容易。但是聯邦學習能夠在資料不共享的情況下,利用傳遞模型權重的方法,將這些資料一起訓練。 在實驗結果中,使用聯邦學習在ICD-10-CM的編碼上,聯邦學習的模型在台大及亞東兩間醫院測試資料集的結果 (F1-measure 0.7465與0.6813)。而台大及亞東在本地端使用自己資料訓練的模型測試彼此的資料集的結果 (F1-measure 0.5583與0.5116);而在本地端使用自己資料訓練的模型測試自己醫院的資料集的結果 (F1-measure 0.7710與0.7412)。此外在台大、亞東及北榮三間醫院上,結果亦顯示使用聯邦學習的結果在跨院的表現上比本地端模型要好。 | zh_TW |
| dc.description.abstract | In order to integrate the classification of diseases, injuries and deaths around the world, the World Health Organization has established the International Classification of Disease (ICD). The medical-related information generated by patients in hospitals or clinics, such as disease diagnosis, surgical methods and other text descriptions, can be converted into specific characters that can be processed by computers and ICD can be used for statistical analysis and other valuable applications. The thesis aims at observing the real world usage of the ICD-10 coding system and continuously improving the coding system to reduce the time cost of disease classification. In addition, medical data are very private. If we want to have a general model, traditional methods mix the data from different hospitals and then do the training. However, it is not easy to aggregate these data because of privacy issue. But federated learning can train these data together without sharing data with each other. In the experimental results, using federated learning (FL) technique to predict ICD-10-CM can achieve F1-measure 0.7465 and 0.6813 on National Taiwan University Hospital and Far Eastern Memorial Hospital dataset respectively, the results of local training by testing their own data can achieve F1-measure 0.7710 and 0.7412, respectively. When evaluating each other’s dataset, local training model can achieve F1-measure 0.5583 and 0.5116, respectively. In addition, we also conduct the FL experiment of three hospitals including NTUH, FEMH, and VGHTPE. The results of FL model are better than local training models when testing the dataset of other hospitals. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:20:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:20:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 # ACKNOWLEDGEMENTS iii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES ix LIST OF TABLES x Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Contribution 1 1.3 Thesis Structure 2 Chapter 2 Background 3 2.1 ICD-10 3 2.2 Related Work 5 Chapter 3 Methods 7 3.1 Problem Definition 7 3.2 Data Description 7 3.3 Data Processing 9 3.4 Model for Multi-label Classification 10 3.5 Federated Learning 11 3.6 Evaluation Metrics 13 3.6.1 F1-Score, Recall and Precision 13 Chapter 4 Results and Discussion 14 4.1 ICD-10-CM Label Classification 15 4.2 ICD-10-PCS Label Classification 17 Chapter 5 Conclusions and Future work 20 REFERENCE 21 | - |
| dc.language.iso | en | - |
| dc.subject | 自然語言處理 | zh_TW |
| dc.subject | 國際疾病分類標準 | zh_TW |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 多標籤分類 | zh_TW |
| dc.subject | 聯邦學習 | zh_TW |
| dc.subject | Deep Learning | en |
| dc.subject | ICD-10 | en |
| dc.subject | Multi-label Classification | en |
| dc.subject | Natural Language Processing | en |
| dc.subject | Federated Learning | en |
| dc.title | ICD-10編碼系統及多標籤分類問題 | zh_TW |
| dc.title | ICD-10 Coding System and Multi-label Classification Problem | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 趙坤茂;徐讚昇;陳縕儂;陳弘明 | zh_TW |
| dc.contributor.oralexamcommittee | Kun-Mao Chao;Tsan-Sheng Hsu;Yun-Nung Chen;Hung-Ming Chen | en |
| dc.subject.keyword | 自然語言處理,深度學習,國際疾病分類標準,多標籤分類,聯邦學習, | zh_TW |
| dc.subject.keyword | Natural Language Processing,Deep Learning,ICD-10,Multi-label Classification,Federated Learning, | en |
| dc.relation.page | 22 | - |
| dc.identifier.doi | 10.6342/NTU202202972 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 1.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
