請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89695完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生 | zh_TW |
| dc.contributor.advisor | Guey-Sheng Liou | en |
| dc.contributor.author | 杜旻修 | zh_TW |
| dc.contributor.author | Min-Hsiu Tu | en |
| dc.date.accessioned | 2023-09-15T16:17:50Z | - |
| dc.date.available | 2023-09-16 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. D. Parker, J. Bussink, H. T. van de Grampel, G. W. Wheatley, E.-U. Dorf, E. Ostlinning, K. Reinking, F. Schubert, O. Jünger and R. Wagener, Polymers, High-Temperature. In Ullmann's Encyclopedia of Industrial Chemistry, 2011. 2. R. Hill and E. E. Walker, Polymer constitution and fiber properties. Journal of Polymer Science, 1948, 3 (5), 609-630. 3. H. Mera and T. Takata, High-Performance Fibers. In Ullmann's Encyclopedia of Industrial Chemistry, 2000. 4. K. Marchildon, Polyamides – Still Strong After Seventy Years. Macromolecular Reaction Engineering, 2011, 5 (1), 22-54. 5. S. L. Kwolek, P. W. Morgan and W. R. Sorenson, Process of making wholly aromatic polyamides. US3063966A, 1962. 6. S. L. Kwolek, Optically anisotropic aromatic polyamide dopes. US3671542A, 1972. 7. S. L. Kwolek, Wholly aromatic carbocyclic polycarbonamide fiber having orientation angle of less than about 45°. US3819587A, 1974. 8. J. M. García, F. C. García, F. Serna and J. L. de la Peña, High-performance aromatic polyamides. Progress in Polymer Science, 2010, 35 (5), 623-686. 9. J. A. Reglero Ruiz, M. Trigo-López, F. C. García and J. M. García, Functional Aromatic Polyamides. Polymers, 2017, 9 (9), 414. 10. Y. V. Mitin and O. V. Glinskaya, Peptide synthesis using triphenyl phosphite and imidazole. Tetrahedron Letters, 1969, 10 (60), 5267-5270. 11. N. Ogata and H. Tanaka, Synthesis of Polyamides by Phosphoroxidation. II. Reaction Conditions. Polymer Journal, 1972, 3 (3), 365-369. 12. N. Ogata and H. Tanaka, Synthesis of Polyamide by Phosphoroxidation. Polymer Journal, 1971, 2 (5), 672-674. 13. N. Yamazaki, F. Higashi and J. Kawabata, Studies on reactions of the N-phosphonium salts of pyridines. XI. Preparation of polypeptides and polyamides by means of triaryl phosphites in pyridine. Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12 (9), 2149-2154. 14. N. Yamazaki, M. Matsumoto and F. Higashi, Studies on reactions of the N-phosphonium salts of pyridines. XIV. Wholly aromatic polyamides by the direct polycondensation reaction by using phosphites in the presence of metal salts. Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13 (6), 1373-1380. 15. S. H. Hsiao, C. P. Yang and J. C. Fan, Synthesis and properties of polyamides and poly(amideimide)s based on 4,4'-[1,4(or 1,3)-phenylenebis(isopropylidene-1,4-phenyleneoxy)]dianiline. Macromolecular Chemistry and Physics, 1995, 196 (9), 3041-3052. 16. H. Manami, M. Nakazawa, Y. Oishi, M.-A. Kakimoto and Y. Imai, Preparation and properties of aromatic polyamides and aromatic polyesters derived from 4,4'-sulfonyldibenzoic acid. Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28 (3), 465-477. 17. G. S. Liou and S. H. Hsiao, Polyterephthalamides with naphthoxy-pendent groups. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40 (11), 1781-1789. 18. G. S. Liou, S. H. Hsiao, M. Ishida, M. Kakimoto and Y. Imai, Synthesis and characterization of novel soluble triphenylamine-containing aromatic polyamides based on N,N'-bis(4-aminophenyl)-N,N'-diphenyl-1,4-phenylenediamine. Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40 (16), 2810-2818. 19. H. S. Liu, B. C. Pan, D. C. Huang, Y. R. Kung, C.M. Leu and G. S. Liou, Highly transparent to truly black electrochromic devices based on an ambipolar system of polyamides and viologen. NPG Asia Materials, 2017, 9 (6), e388-e388. 20. M. Kusama, T. Matsumoto and T. Kurosaki, Soluble Polyimides with Polyalicyclic Structure.3. Polyimides from (4arH,8acH)-Decahydro-1t,4t:5c,8c-dimethanonaphthalene -2t,3t,6c,7c-tetracarboxylic 2,3:6,7-Dianhydride. Macromolecules, 1994, 27 (5), 1117-1123. 21. H. J. Yen, K. Y. Lin and G. S. Liou, Transmissive to black electrochromic aramids with high near-infrared and multicolor electrochromism based on electroactive tetraphenylbenzidine units. Journal of Materials Chemistry, 2011, 21 (17), 6230-6237. 22. C. L. Tsai, H. J. Yen and G. S. Liou, Highly transparent polyimide hybrids for optoelectronic applications. Reactive and Functional Polymers, 2016, 108, 2-30. 23. Z. Lan, C. Li, Y. Yu and J. Wei, Colorless Semi-Alicyclic Copolyimides with High Thermal Stability and Solubility. Polymers, 2019, 11 (8), 1319. 24. Y. Zhuang, R. Orita, E. Fujiwara, Y. Zhang and S. Ando, Colorless Partially Alicyclic Polyimides Based on Tröger’s Base Exhibiting Good Solubility and Dual Fluorescence/Phosphorescence Emission. Macromolecules, 2019, 52 (10), 3813-3824. 25. P. Monk, R. Mortimer and D. Rosseinsky, Electrochromism and Electrochromic Devices. Cambridge University Press: Cambridge, 2007. 26. R. J. Mortimer, Electrochromic Materials. Annual Review of Materials Research, 2011, 41 (1), 241-268. 27. J. R. Platt, Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field. The Journal of Chemical Physics, 1961, 34 (3), 862-863. 28. S. K. Deb, A Novel Electrophotographic System. Appl. Opt., 1969, 8 (S1), 192-195. 29. S. Gottesfeld, J. D. E. McIntyre, G. Beni and J. L. Shay, Electrochromism in anodic iridium oxide films. Applied Physics Letters, 1978, 33 (2), 208-210. 30. V. Rai, R. S. Singh, D. J. Blackwood and D. Zhili, A Review on Recent Advances in Electrochromic Devices: A Material Approach. Advanced Engineering Materials, 2020, 22 (8), 2000082. 31. R. Baetens, B. P. Jelle and A. Gustavsen, Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: A state-of-the-art review. Solar Energy Materials and Solar Cells, 2010, 94 (2), 87-105. 32. M. Aparicio, A. Jitianu and L. Klein, Sol-Gel Processing for Conventional and Alternative Energy. 2012. 33. C. G. Granqvist, Electrochromic Metal Oxides: An Introduction to Materials and Devices. In Electrochromic Materials and Devices, 2013; pp 1-40. 34. R. Yu, Z. H. Meng, M. D. Ye, Y. H. Lin, N. B. Lin, X. Y. Liu, W. D. Yu and X. Y. Liu, Electrochromic performance of WO3 films: optimization by crystal network topology modification. CrystEngComm, 2015, 17 (34), 6583-6590. 35. D. Ma, T. Li, Z. Xu, L. Wang and J. Wang, Electrochromic devices based on tungsten oxide films with honeycomb-like nanostructures and nanoribbons array. Solar Energy Materials and Solar Cells, 2018, 177, 51-56. 36. M. Weil and W. Schubert In The Beautiful Colours of Tungsten Oxides, 2013. 37. K. Itaya, H. Akahoshi and S. Toshima, Electrochemistry of Prussian Blue Modified Electrodes: An Electrochemical Preparation Method. Journal of The Electrochemical Society, 1982, 129 (7), 1498-1500. 38. K. Itaya, T. Ataka and S. Toshima, Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes. Journal of the American Chemical Society, 1982, 104 (18), 4767-4772. 39. T. C. Liao, W. H. Chen, H. Y. Liao and L. C. Chen, Multicolor electrochromic thin films and devices based on the Prussian blue family nanoparticles. Solar Energy Materials and Solar Cells, 2016, 145, 26-34. 40. A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni, A. Guerfi, A. Vijh, M. Armand and K. Zaghib, A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives. Journal of Materials Chemistry A, 2017, 5 (36), 18919-18932. 41. V. D. Neff, Electrochemical Oxidation and Reduction of Thin Films of Prussian Blue. Journal of The Electrochemical Society, 1978, 125 (6), 886-887. 42. P. M. S. Monk, D. R. Rosseinsky and R. J. Mortimer, Electrochromic Materials and Devices Based on Viologens. In Electrochromic Materials and Devices, 2013; pp 57-90. 43. L. Michaelis and E. S. Hill THE VIOLOGEN INDICATORS. Journal of General Physiology, 1933, 16 (6), 859-873. 44. C. J. Schoot, J. J. Ponjee, H. T. v. Dam, R. A. v. Doorn and P. T. Bolwijn, New electrochromic memory display. Applied Physics Letters, 1973, 23 (2), 64-65. 45. A. L. Dyer, A. M. Österholm, D. E. Shen, K. E. Johnson and J. R. Reynolds, Conjugated Electrochromic Polymers: Structure-Driven Colour and Processing Control. In Electrochromic Materials and Devices, 2013; pp 113-184. 46. P. M. Beaujuge and J. R. Reynolds, Color Control in π-Conjugated Organic Polymers for Use in Electrochromic Devices. Chemical Reviews, 2010, 110 (1), 268-320. 47. G. Gunbas and L. Toppare, Electrochromic conjugated polyheterocycles and derivatives—highlights from the last decade towards realization of long lived aspirations. Chemical Communications, 2012, 48 (8), 1083-1101. 48. G. Sonmez, H. B. Sonmez, C. K. F. Shen and F. Wudl, Red, Green, and Blue Colors in Polymeric Electrochromics. Advanced Materials, 2004, 16 (21), 1905-1908. 49. H. J. Yen, Y. R. Kung, S. H. Hsiao and G. S. Liou, Chapter 11 Arylamine-based High Performance Polymers for Electrochromic Applications. In Electrochromic Smart Materials: Fabrication and Applications, The Royal Society of Chemistry: 2019; pp 323-371. 50. H. J. Yen and G. S. Liou, Design and preparation of triphenylamine-based polymeric materials towards emergent optoelectronic applications. Progress in Polymer Science, 2019, 89, 250-287. 51. H. J. Yen and G. S. Liou, Recent advances in triphenylamine-based electrochromic derivatives and polymers. Polymer Chemistry, 2018, 9 (22), 3001-3018. 52. H. J. Yen and G. S. Liou, Solution-Processable Novel Near-Infrared Electrochromic Aromatic Polyamides Based on Electroactive Tetraphenyl-p-Phenylenediamine Moieties. Chemistry of Materials, 2009, 21 (17), 4062-4070. 53. H. J. Yen and G. S. Liou, Solution-processable triarylamine-based electroactive high performance polymers for anodically electrochromic applications. Polymer Chemistry, 2012, 3 (2), 255-264. 54. C. W. Chang, G. S. Liou and S. H. Hsiao, Highly stable anodic green electrochromic aromatic polyamides: synthesis and electrochromic properties. Journal of Materials Chemistry, 2007, 17 (10), 1007-1015. 55. G. S. Liou and H. Y. Lin, Synthesis and Electrochemical Properties of Novel Aromatic Poly(amine−amide)s with Anodically Highly Stable Yellow and Blue Electrochromic Behaviors. Macromolecules, 2009, 42 (1), 125-134. 56. H. J. Yen, H. Y. Lin and G. S. Liou, Novel Starburst Triarylamine-Containing Electroactive Aramids with Highly Stable Electrochromism in Near-Infrared and Visible Light Regions. Chemistry of Materials, 2011, 23 (7), 1874-1882. 57. J. Tröger, Ueber einige mittelst nascirenden Formaldehydes entstehende Basen. Journal für Praktische Chemie, 1887, 36 (1), 225-245. 58. M. A. Spielman, The Structure of Troeger's Base. Journal of the American Chemical Society, 1935, 57 (3), 583-585. 59. E. C. Wagner, Condensations of Aromatic Amines with Formaldehyde in Media Containing Acid. III. The Formation of Tröger's Base. Journal of the American Chemical Society, 1935, 57 (7), 1296-1298. 60. M. Valík, R. M. Strongin and V. Král, Tröger's Base Derivatives—New Life for Old Compounds. Supramolecular Chemistry, 2005, 17 (5), 347-367. 61. B. Dolenský, J. Elguero, V. Král, C. Pardo and M. Valík, Current Tröger's Base Chemistry. In Advances in Heterocyclic Chemistry, Katritzky, A. R., Ed. Academic Press: 2007; Vol. 93, pp 1-56. 62. C. X. Yuan, X. T. Tao, Y. Ren, Y. Li, J. X. Yang, W. T. Yu, L. Wang and M. H. Jiang, Synthesis, Structure, and Aggregation-Induced Emission of a Novel Lambda (Λ)-Shaped Pyridinium Salt Based on Tröger's Base. The Journal of Physical Chemistry C, 2007, 111 (34), 12811-12816. 63. C. X. Yuan, X. T. Tao, L. Wang, J. X. Yang and M. H. Jiang, Fluorescent Turn-On Detection and Assay of Protein Based on Lambda (Λ)-Shaped Pyridinium Salts with Aggregation-Induced Emission Characteristics. The Journal of Physical Chemistry C, 2009, 113 (16), 6809-6814. 64. Y. H. Chu, Y. Wan, Z. T. Liu, X. E. Han and H. Wu, Synthesis and aggregation-induced emission properties of dicyanovinyl substituted Tröger’s bases. Tetrahedron Letters, 2015, 56 (50), 7046-7052. 65. M. Carta, R. Malpass-Evans, M. Croad, Y. Rogan, J. C. Jansen, P. Bernardo, F. Bazzarelli and N. B. McKeown, An Efficient Polymer Molecular Sieve for Membrane Gas Separations. Science, 2013, 339 (6117), 303-307. 66. Z. Wang, D. Wang, F. Zhang and J. Jin, Tröger’s Base-Based Microporous Polyimide Membranes for High-Performance Gas Separation. ACS Macro Letters, 2014, 3 (7), 597-601. 67. M. Lee, C. G. Bezzu, M. Carta, P. Bernardo, G. Clarizia, J. C. Jansen and N. B. McKeown, Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity. Macromolecules, 2016, 49 (11), 4147-4154. 68. Y. Zhuang, J. G. Seong, Y. S. Do, W. H. Lee, M. J. Lee, M. D. Guiver and Y. M. Lee, High-strength, soluble polyimide membranes incorporating Tröger’s Base for gas separation. Journal of Membrane Science, 2016, 504, 55-65. 69. I. Neogi, S. Jhulki, A. Ghosh, T. J. Chow and J. N. Moorthy, Amorphous Host Materials Based on Tröger’s Base Scaffold for Application in Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2015, 7 (5), 3298-3305. 70. T. Braukyla, R. Xia, M. Daskeviciene, T. Malinauskas, A. Gruodis, V. Jankauskas, Z. Fei, C. Momblona, C. Roldán-Carmona, P. J. Dyson, V. Getautis and M. K. Nazeeruddin, Inexpensive Hole-Transporting Materials Derived from Tröger's Base Afford Efficient and Stable Perovskite Solar Cells. Angewandte Chemie International Edition, 2019, 58 (33), 11266-11272. 71. T. Braukyla, R. Xia, T. Malinauskas, M. Daskeviciene, A. Magomedov, E. Kamarauskas, V. Jankauskas, Z. Fei, C. Roldán-Carmona, C. Momblona, M. K. Nazeeruddin, P. J. Dyson and V. Getautis, Application of a Tetra-TPD-Type Hole-Transporting Material Fused by a Tröger's Base Core in Perovskite Solar Cells. Solar RRL, 2019, 3 (9), 1900224. 72. M. H. Chua, T. Tang, K. H. Ong, W. T. Neo and J. W. Xu, Chapter 1 Introduction to Electrochromism. In Electrochromic Smart Materials: Fabrication and Applications, The Royal Society of Chemistry: 2019; pp 1-21. 73. T. H. Su, S. H. Hsiao and G. S. Liou, Novel family of triphenylamine-containing, hole-transporting, amorphous, aromatic polyamides with stable electrochromic properties. Journal of Polymer Science Part A: Polymer Chemistry, 2005, 43 (10), 2085-2098. 74. C. W. Chang, C. H. Chung and G. S. Liou, Novel Anodic Polyelectrochromic Aromatic Polyamides Containing Pendent Dimethyltriphenylamine Moieties. Macromolecules, 2008, 41 (22), 8441-8451. 75. M. H. Pai, C. C. Hu and G. S. Liou, Enhancement of Electrochromic Switching Properties with Tröger’s Base-Derived Intrinsic Microporous Polyamide Films. Macromolecular Rapid Communications, 2021, 42 (23), 2100492. 76. M. H. Pai, C. C. Hu, W. S. Tan, J.-S. Yang and G.-S. Liou, Preparation and Characterization of Intrinsic Porous Polyamides Based on Redox-Active Aromatic Diamines with Pentiptycene Scaffolds. ACS Macro Letters, 2021, 10 (10), 1210-1215. 77. Y. W. Chiu, W. S. Tan, J. S. Yang, M. H. Pai and G. S. Liou, Electrochromic Response Capability Enhancement with Pentiptycene-Incorporated Intrinsic Porous Polyamide Films. Macromolecular Rapid Communications, 2020, 41 (12), 2000186. 78. K. Y. Chiu, T. X. Su, J. H. Li, T. H. Lin, G. S. Liou and S. H. Cheng, Novel trends of electrochemical oxidation of amino-substituted triphenylamine derivatives. Journal of Electroanalytical Chemistry, 2005, 575 (1), 95-101. 79. K. Y. Chiu, T. H. Su, C. W. Huang, G. S. Liou and S. H. Cheng, Substituent effects on the electrochemical and spectral characteristics of N,N,N',N'-tetraaryl-p-phenylenediamine derivatives. Journal of Electroanalytical Chemistry, 2005, 578 (2), 283-287. 80. D. C. Huang, J. T. Wu, Y. Z. Fan and G. S. Liou, Preparation and optoelectronic behaviours of novel electrochromic devices based on triphenylamine-containing ambipolar materials. Journal of Materials Chemistry C, 2017, 5 (36), 9370-9375. 81. J. T. Wu, T. L. Hsiang and G. S. Liou, Synthesis and optical properties of redox-active triphenylamine-based derivatives with methoxy protecting groups. Journal of Materials Chemistry C, 2018, 6 (48), 13345-13351. 82. H. T. Lin, C. L. Huang and G. S. Liou, Design, Synthesis, and Electrofluorochromism of New Triphenylamine Derivatives with AIE-Active Pendent Groups. ACS Applied Materials & Interfaces, 2019, 11 (12), 11684-11690. 83. J. T. Wu, H. T. Lin and G. S. Liou, Synthesis and Characterization of Novel Triarylamine Derivatives with Dimethylamino Substituents for Application in Optoelectronic Devices. ACS Applied Materials & Interfaces, 2019, 11 (16), 14902-14908. 84. J. K. Jensen and K. Wärnmark, Synthesis of Halogen Substituted Analogues of Tröge’ s Base. Synthesis, 2001, 2001, 1873-1877. 85. C. H. Chen, F. Fei, N. W. Sun, X. G. Zhao, S. Y. Meng and D.M. Wang, Diamine monomer containing 4-dimethylamine-substituted tetraphenyl-p-phenylenediamine structure and preparation method and application of diamine monomer containing 4-dimethylamine-substituted tetraphenyl-p-phenylenediamine structure. CN105924361, 2016. 86. J. Jensen and K. Wärnmark, Synthesis of Halogen Substituted Analogues of Tröger’s Base. Synthesis, 2001, 2001 (12), 1873-1877. 87. Organic Chemistry Data. https://organicchemistrydata.org/hansreich/resources/nmr/?index=nmr_index%2F1H_shift#hdata38. 88. G. S. Liou and C. W. Chang, Highly Stable Anodic Electrochromic Aromatic Polyamides Containing N,N,N',N'-Tetraphenyl-p-Phenylenediamine Moieties: Synthesis, Electrochemical, and Electrochromic Properties. Macromolecules, 2008, 41 (5), 1667-1674. 89. S. H. Hsiao, G. S. Liou, Y. C. Kung and H. J. Yen, High Contrast Ratio and Rapid Switching Electrochromic Polymeric Films Based on 4-(Dimethylamino)triphenylamine-Functionalized Aromatic Polyamides. Macromolecules, 2008, 41 (8), 2800-2808. 90. H. J. Yen, S. M. Guo, G. S. Liou, J. C. Chung, Y. C. Liu, Y. F. Lu and Y. Z. Zeng, Mixed-valence class I transition and electrochemistry of bis(triphenylamine)-based aramids containing isolated ether-linkage. Journal of Polymer Science Part A: Polymer Chemistry, 2011, 49 (17), 3805-3816. 91. X. Lv, S. Yan, Y. Dai, M. Ouyang, Y. Yang, P. Yu and C. Zhang, Ion diffusion and electrochromic performance of poly(4,4′,4″-tris[4-(2-bithienyl)phenyl]amine) based on ionic liquid as electrolyte. Electrochimica Acta, 2015, 186, 85-94. 92. H. C. Lu, S. Y. Kao, H. F. Yu, T. H. Chang, C. W. Kung and K. C. Ho, Achieving Low-Energy Driven Viologens-Based Electrochromic Devices Utilizing Polymeric Ionic Liquids. ACS Applied Materials & Interfaces, 2016, 8 (44), 30351-30361. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89695 | - |
| dc.description.abstract | 本論文分為四個章節,第一章為總體緒論,介紹功能性高分子、電致變色之發展與改良,以及Tröger's base的結構與化學特性。接著在第二章的研究中,成功合成並鑑定出了一個新型的含TB單元的三苯胺二胺單體TBTPA-NH2,並利用其醯胺衍生物TBTPA-M作為模型分子,透過循環伏安法(CV)、微分脈衝伏安法(DPV)及能斯特分析以研究此新型電活性分子之電致變色行為表現。此外,我們利用此新型單體製備成自具微孔的聚醯胺高分子PTBTPA,透過量測密度與電化學阻抗圖譜證明其微孔性,並以此研究自具微孔性質對於反應時間與電致變色表現之影響。而在第三章的研究當中,一系列對位胺基取代之三苯胺衍生物展現出低氧化電位與多段變色之特性,透過循環伏安法(CV)與光譜電化學量測,其電化學性質與氧化機制被完整闡述。此外,此一系列分子展現出高度電化學穩定性,所製備之電致變色元件性質已透過多種電化學量測方式記錄,展現出具有高對比度與長時間穩定之成效。最後,第四章總結了實驗結果,我們發現TB單元可形成自具微孔結構,增加了高分子的自由體積,此特性既提高了響應速度也降低了驅動電壓。此外,對位胺基取代的TPA分子在電致變色元件中表現出優異的穩定性與著色效率,提供了一種方式以製造多段變色、高效之電致變色元件。 | zh_TW |
| dc.description.abstract | This study has been divided into four chapters. Firstly, a general introduction was provided in chapter 1, introducing high-performance polymers, the development and enhancement of electrochromism (EC), and Tröger's base (TB) chemistry. Secondly, in chapter 2, a novel electroactive diamine monomer, TBTPA-NH2, was synthesized and characterized. To investigate the electrochemical properties of this molecule, an amide-type model compound, TBTPA-M, was synthesized for the experiments. With cyclic voltammetry (CV), differential pulse voltammetry, and Nernstian analysis, the EC properties of this monomer with TB moiety were recorded. Furthermore, an intrinsic microporous polyamide, PTBTPA, was prepared from this monomer. The porosity was confirmed by film density and electrochemical impedance spectroscopy (EIS). Measurements such as cyclic voltammetry, spectroelectrochemistry, and switching response were taken to evaluate the benefits of intrinsic microporous moieties. The electrochemical parameters of PTBTPA were recorded, showing better results. Then, in chapter 3, the electrochemical properties of a series of para-amino substituted TPA derivatives were investigated. The multi-electrochromic and low-driving-voltage attributes became the advantages for electrochromic applications. Moreover, these amino substituted TPA revealed unexpectedly high stability in long-term measurement. The electroactive TPA chromophores were further fabricated as electrochromic devices (ECDs). The oxidation mechanism and EC properties were clarified by the measurements including cyclic voltammetry, spectroelectrochemistry, and switching response Finally, the experiment results were summarized in chapter 4. We found out that the introduction of TB moiety created micropores which increased the free volume of polymers, enhancing the response speed and reducing the driving voltage. Additionally, the electrochemical properties of para-amino substituted TPA derivatives were thoroughly studied. The ECDs revealed superior stability and coloration efficiency, providing a facile method of fabricating multi-electrochromic, energy-efficient devices. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:17:50Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:17:50Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS 致謝 I ABSTRACT (in English) II 中文摘要 IV TABLE OF CONTENTS V LIST OF TABLES VIII LIST OF FIGURES IX LIST OF SCHEMES XVI CHAPTER 1 General Introduction 1 1.1 High-Performance Polymers 2 1.1.1 Preparation of Aromatic Polyamides 3 1.1.2 Modification of Aromatic Polyamides 6 1.1.3 Semi-aromatic Polyamides 7 1.2 Electrochromism 9 1.2.1 Evolution of Electrochromism 9 1.2.2 Common Electrochromic Materials 10 1.2.3 Triarylamine-based Electrochromic Materials 18 1.3 Tröger's Base Chemistry 21 1.4 Research Motivation 24 CHAPTER 2 Synthesis and Electrochemical Properties of Novel Triarylamine-Based Materials with Tröger’s Base Moiety 25 2.1 Introduction 26 2.2 Experimental Section 28 2.2.1 Materials 28 2.2.2 Synthesis of Monomers 29 2.2.3 Synthesis of Polyamides 34 2.2.4 Preparation of Polyamide Films 37 2.2.5 Measurement 37 2.3 Result and Discussion 39 2.3.1 Synthesis and Characterization 39 2.3.2 Polymer Basic Properties 51 2.3.3 Thermal Properties of polyamides 53 2.3.4 Electrochemical Properties of Model Compounds 55 2.3.4.1 Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) 55 2.3.4.2 Nernstian Analysis of TBTPA-M 59 2.3.5 Electrochemical Properties of Polyamides 62 2.3.5.1 Cyclic Voltammetry (CV) 62 2.3.5.2 Electrochemical Impedance Spectroscopy (EIS) 64 2.3.5.3 Spectroelectrochemical Properties 66 CHAPTER 3 Electrochemical Behaviors of para-Amino Substituted Triphenylamine Derivatives 70 3.1 Introduction 71 3.2 Experimental Section 71 3.2.1 Materials 73 3.2.2 Fabrication of the Liquid-type Electrochromic Devices (ECDs) 73 3.2.3 Measurement 74 3.3 Result and Discussion 75 3.3.1 Electrochemical Properties of para-amino-substituted TPA Derivatives 75 3.3.1.1 Cyclic Voltammetry (CV) and Spectroelectrochemistry 75 3.3.1.2 Differential Pulse Voltammetry (DPV) 81 3.3.1.3 Cyclic Stability 82 3.3.2 Electrochromic Properties of ECDs 85 3.3.2.1 Cyclic Voltammetry (CV) and Spectroelectrochemistry 86 3.3.2.2 Switching Response and Stability 95 CHAPTER 4 Conclusion 100 REFERENCES 104 | - |
| dc.language.iso | en | - |
| dc.subject | 多段變色 | zh_TW |
| dc.subject | 自具微孔 | zh_TW |
| dc.subject | 電致變色聚醯胺 | zh_TW |
| dc.subject | 特羅格鹼 | zh_TW |
| dc.subject | electrochromic polyamide | en |
| dc.subject | intrinsic microporosity | en |
| dc.subject | Tröger's base | en |
| dc.subject | multi-electrochromism | en |
| dc.title | 新型特羅格鹼三芳香胺材料之合成及其電致變色性質探討 | zh_TW |
| dc.title | Synthesis and Electrochromic Properties of Novel Triarylamine-Based Materials with Tröger’s Base Moiety | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張嘉文 | zh_TW |
| dc.contributor.oralexamcommittee | Sheng-Huei Hsiao;Yu-Ruei Kung;Cha-Wen Chang | en |
| dc.subject.keyword | 電致變色聚醯胺,自具微孔,特羅格鹼,多段變色, | zh_TW |
| dc.subject.keyword | electrochromic polyamide,intrinsic microporosity,Tröger's base,multi-electrochromism, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202103009 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-27 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | - |
| dc.date.embargo-lift | 2023-09-26 | - |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
