請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89674完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁文傑 | zh_TW |
| dc.contributor.advisor | Man-kit Leung | en |
| dc.contributor.author | 黃怡茹 | zh_TW |
| dc.contributor.author | Yi-Ru Huang | en |
| dc.date.accessioned | 2023-09-15T16:12:02Z | - |
| dc.date.available | 2023-09-16 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Round, H. J., Light-emitting diodes hit the centenary milestone. World 1907, 19, 309. 2. Destriau, G., Recherches sur les scintillations des sulfures de zinc aux rayons α. Journal de Chimie Physique 1936, 33, 587-625. 3. Holonyak Jr, N.; Bevacqua, S. F., Coherent (visible) light emission from Ga (As1− x P x) junctions. Applied Physics Letters 1962, 1 (4), 82-83. 4. Bernanose, A.; Comte, M.; Vouaux, P., A new method of emission of light by certain organic compounds. J. Chim. Phys 1953, 50, 64-68. 5. Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043. 6. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied physics letters 1987, 51 (12), 913-915. 7. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Journal of applied physics 1989, 65 (9), 3610-3616. 8. Burroughes, J. H.; Bradley, D. D.; Brown, A.; Marks, R.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. nature 1990, 347 (6293), 539-541. 9. Kido, J.; Kimura, M.; Nagai, K., Multilayer white light-emitting organic electroluminescent device. Science 1995, 267 (5202), 1332-1334. 10. Di, D.; Yang, L.; Richter, J. M.; Meraldi, L.; Altamimi, R. M.; Alyamani, A. Y.; Credgington, D.; Musselman, K. P.; MacManus‐Driscoll, J. L.; Friend, R. H., Efficient triplet exciton fusion in molecularly doped polymer light‐emitting diodes. Advanced Materials 2017, 29 (13), 1605987. 11. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151-154. 12. Baldo, M.; Lamansky, S.; Burrows, P.; Thompson, M.; Forrest, S., Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters 1999, 75 (1), 4-6. 13. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967. 14. Baluschev, S.; Yakutkin, V.; Miteva, T.; Avlasevich, Y.; Chernov, S.; Aleshchenkov, S.; Nelles, G.; Cheprakov, A.; Yasuda, A.; Müllen, K., Blue‐green up‐conversion: noncoherent excitation by NIR light. Angewandte Chemie International Edition 2007, 46 (40), 7693-7696. 15. Kondakov, D., Characterization of triplet-triplet annihilation in organic light-emitting diodes based on anthracene derivatives. Journal of Applied Physics 2007, 102 (11), 114504. 16. Mahato, P.; Monguzzi, A.; Yanai, N.; Yamada, T.; Kimizuka, N., Fast and long-range triplet exciton diffusion in metal-organic frameworks for photon upconversion at ultralow excitation power. Nat Mater 2015, 14 (9), 924-30. 17. Tierce, N. T.; Chen, C.-H.; Chiu, T.-L.; Lin, C.-F.; Bardeen, C. J.; Lee, J.-H., Exciton dynamics in heterojunction thin-film devices based on exciplex-sensitized triplet–triplet annihilation. Physical Chemistry Chemical Physics 2018, 20 (43), 27449-27455. 18. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-238. 19. Nakanotani, H.; Higuchi, T.; Furukawa, T.; Masui, K.; Morimoto, K.; Numata, M.; Tanaka, H.; Sagara, Y.; Yasuda, T.; Adachi, C., High-efficiency organic light-emitting diodes with fluorescent emitters. Nature communications 2014, 5 (1), 1-7. 20. Li, W.; Liu, D.; Shen, F.; Ma, D.; Wang, Z.; Feng, T.; Xu, Y.; Yang, B.; Ma, Y., A Twisting Donor-Acceptor Molecule with an Intercrossed Excited State for Highly Efficient, Deep-Blue Electroluminescence. Advanced Functional Materials 2012, 22 (13), 2797-2803. 21. Li, W.; Pan, Y.; Yao, L.; Liu, H.; Zhang, S.; Wang, C.; Shen, F.; Lu, P.; Yang, B.; Ma, Y., A Hybridized Local and Charge-Transfer Excited State for Highly Efficient Fluorescent OLEDs: Molecular Design, Spectral Character, and Full Exciton Utilization. Advanced Optical Materials 2014, 2 (9), 892-901. 22. Shi, J.; Tang, C. W., Doped organic electroluminescent devices with improved stability. Applied physics letters 1997, 70 (13), 1665-1667. 23. Holmes, R.; Forrest, S.; Tung, Y.-J.; Kwong, R.; Brown, J.; Garon, S.; Thompson, M., Blue organic electrophosphorescence using exothermic host–guest energy transfer. Applied Physics Letters 2003, 82 (15), 2422-2424. 24. Jeon, W. S.; Park, T. J.; Kim, S. Y.; Pode, R.; Jang, J.; Kwon, J. H., Ideal host and guest system in phosphorescent OLEDs. Organic Electronics 2009, 10 (2), 240-246. 25. Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J., Electrophosphorescence from a polymer guest–host system with an Iridium complex as guest: Förster energy transfer and charge trapping. Advanced Functional Materials 2003, 13 (6), 439-444. 26. Főrster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27, 7-17. 27. Forster, T., Intermolecular energy transfer and fluorescence. Ann. Phys. Leipzig. 1948, 2, 55-75. 28. Klessinger, M.; Michl, J., Excited states and photochemistry of organic molecules. VCH publishers: 1995. 29. Dexter, D. L., A theory of sensitized luminescence in solids. The journal of chemical physics 1953, 21 (5), 836-850. 30. Uchida, M.; Adachi, C.; Koyama, T.; Taniguchi, Y., Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes. Journal of Applied Physics 1999, 86 (3), 1680-1687. 31. Suzuki, H.; Hoshino, S., Effects of doping dyes on the electroluminescent characteristics of multilayer organic light‐emitting diodes. Journal of applied physics 1996, 79 (11), 8816-8822. 32. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E., Ultrahigh energy gap hosts in deep blue organic electrophosphorescent devices. Chemistry of materials 2004, 16 (23), 4743-4747. 33. Parker, I. D., Carrier tunneling and device characteristics in polymer light‐emitting diodes. Journal of Applied Physics 1994, 75 (3), 1656-1666. 34. Balasubramanian, N.; Subrahmanyam, A., Studies on evaporated indium tin oxide (ITO)/silicon junctions and an estimation of ITO work function. Journal of The Electrochemical Society 1991, 138 (1), 322. 35. Kim, J.-S.; Granström, M.; Friend, R. H.; Johansson, N.; Salaneck, W.; Daik, R.; Feast, W. J.; Cacialli, F., Indium–tin oxide treatments for single-and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of applied physics 1998, 84 (12), 6859-6870. 36. So, S.; Choi, W.; Cheng, C.; Leung, L.; Kwong, C., Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics A 1999, 68 (4), 447-450. 37. Mason, M. G.; Hung, L. S.; Tang, C. W.; Lee, S.; Wong, K. W.; Wang, M., Characterization of treated indium–tin–oxide surfaces used in electroluminescent devices. Journal of Applied Physics 1999, 86 (3), 1688-1692. 38. Hung, L.; Chen, C., Recent progress of molecular organic electroluminescent materials and devices. Materials Science and Engineering: R: Reports 2002, 39 (5-6), 143-222. 39. Van Slyke, S. A.; Chen, C.; Tang, C. W., Organic electroluminescent devices with improved stability. Applied physics letters 1996, 69 (15), 2160-2162. 40. Yu, W.-L.; Pei, J.; Cao, Y.; Huang, W., Hole-injection enhancement by copper phthalocyanine (CuPc) in blue polymer light-emitting diodes. Journal of Applied Physics 2001, 89 (4), 2343-2350. 41. Heithecker, D.; Kammoun, A.; Dobbertin, T.; Riedl, T.; Becker, E.; Metzdorf, D.; Schneider, D.; Johannes, H.-H.; Kowalsky, W., Low-voltage organic electroluminescence device with an ultrathin, hybrid structure. Applied physics letters 2003, 82 (23), 4178-4180. 42. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule, 4, 4’, 4 ‘‐tris (3‐methylphenylphenylamino) triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807-809. 43. Okumoto, K.; Shirota, Y., Development of high-performance blue–violet-emitting organic electroluminescent devices. Applied Physics Letters 2001, 79 (9), 1231-1233. 44. Maglione, M. G.; Minarini, C.; Miscioscia, R.; Nenna, G.; Romanelli, E.; Tassini, P. In Efficiency and Aging Comparison Between N, N′‐Bis (3‐methylphenyl)‐N, N′‐diphenylbenzidine (TPD) and N, N′‐Di‐[(1‐naphthalenyl)‐N, N′‐diphenyl]‐1, 1′‐biphenyl‐4, 4′‐diamine (NPD) Based OLED Devices, Macromolecular Symposia, Wiley Online Library: 2007; pp 311-317. 45. Lüssem, G.; Wendorff, J., Liquid crystalline materials for light‐emitting diodes. Polymers for Advanced Technologies 1998, 9 (7), 443-460. 46. Shirota, Y.; Noda, T.; Ogawa, H. In Organic light-emitting diodes using novel emitting amorphous molecular materials, Organic Light-Emitting Materials and Devices III, International Society for Optics and Photonics: 1999; pp 158-169. 47. Baldo, M. A.; Forrest, S. R., Transient analysis of organic electrophosphorescence: I. Transient analysis of triplet energy transfer. Physical Review B 2000, 62 (16), 10958. 48. Shirota, Y., Organic materials for electronic and optoelectronic devicesBasis of a presentation given at Materials Chemistry Discussion No. 2, 13–15 September 1999, University of Nottingham, UK. J Mater Chem 2000, 10 (1), 1-25. 49. Agarwala, P.; Kabra, D., A review on triphenylamine (TPA) based organic hole transport materials (HTMs) for dye sensitized solar cells (DSSCs) and perovskite solar cells (PSCs): evolution and molecular engineering. Journal of Materials Chemistry A 2017, 5 (4), 1348-1373. 50. Salbeck, J., Electroluminescence with organic compounds. Berichte der Bunsengesellschaft für physikalische Chemie 1996, 100 (10), 1667-1677. 51. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied physics letters 1989, 55 (15), 1489-1491. 52. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bässler, H.; Porsch, M.; Daub, J., Efficient two layer leds on a polymer blend basis. Advanced Materials 1995, 7 (6), 551-554. 53. Schulz, B.; Stiller, B.; Zetzsche, T.; Knochenhauer, G.; Dietel, R.; Brehmer, L., Characterization of 2, 5-di-p-tolyl-1, 3, 4-oxadiazole crystals by atomic force microscopy. Chemistry of materials 1995, 7 (5), 1041-1044. 54. Kido, J.; Ohtaki, C.; Hongawa, K.; Okuyama, K.; Nagai, K. N. K., 1, 2, 4-triazole derivative as an electron transport layer in organic electroluminescent devices. Japanese journal of applied physics 1993, 32 (7A), L917. 55. Anthopoulos, T. D.; Markham, J. P.; Namdas, E. B.; Samuel, I. D.; Lo, S.-C.; Burn, P. L., Highly efficient single-layer dendrimer light-emitting diodes with balanced charge transport. Applied physics letters 2003, 82 (26), 4824-4826. 56. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084. 57. Lee, J.-H.; Huang, C.-L.; Hsiao, C.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 140. 58. Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K., White organic light-emitting diodes with fluorescent tube efficiency. Nature 2009, 459 (7244), 234-238. 59. Sun, Y.; Giebink, N. C.; Kanno, H.; Ma, B.; Thompson, M. E.; Forrest, S. R., Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature 2006, 440 (7086), 908-912. 60. Lee, J.; Jeong, C.; Batagoda, T.; Coburn, C.; Thompson, M. E.; Forrest, S. R., Hot excited state management for long-lived blue phosphorescent organic light-emitting diodes. Nature communications 2017, 8 (1), 1-9. 61. Chi, Y.; Chou, P.-T., Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chemical Society Reviews 2010, 39 (2), 638-655. 62. Chan, C. Y.; Cui, L. S.; Kim, J. U.; Nakanotani, H.; Adachi, C., Rational molecular design for deep‐blue thermally activated delayed fluorescence emitters. Advanced Functional Materials 2018, 28 (11), 1706023. 63. Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T., Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid. Advanced Materials 2016, 28 (32), 6976-6983. 64. Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Lin, B.-Y.; Leung, M.-k.; Chiu, T.-L.; Lee, J.-H., Hyper triplet-triplet fusion blue fluorescent organic light-emitting diode. 2022. 65. Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.-k.; Chiu, T.-L.; Lin, C.-F., Blue organic light-emitting diodes: current status, challenges, and future outlook. Journal of Materials Chemistry C 2019, 7 (20), 5874-5888. 66. Lo, M. Y.; Zhen, C.; Lauters, M.; Jabbour, G. E.; Sellinger, A., Organic− inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. Journal of the American Chemical Society 2007, 129 (18), 5808-5809. 67. Tao, S.; Peng, Z.; Zhang, X.; Wang, P.; Lee, C. S.; Lee, S. T., Highly efficient non‐doped blue organic light‐emitting diodes based on fluorene derivatives with high thermal stability. Advanced Functional Materials 2005, 15 (10), 1716-1721. 68. Tang, C.; Liu, F.; Xia, Y.-J.; Xie, L.-H.; Wei, A.; Li, S.-B.; Fan, Q.-L.; Huang, W., Efficient 9-alkylphenyl-9-pyrenylfluorene substituted pyrene derivatives with improved hole injection for blue light-emitting diodes. J Mater Chem 2006, 16 (41), 4074-4080. 69. Förster, T.; Kasper, K., Ein konzentrationsumschlag der fluoreszenz des pyrens. Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 1955, 59 (10), 976-980. 70. Winnik, F. M., Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chemical reviews 1993, 93 (2), 587-614. 71. Feng, X.; Hu, J. Y.; Redshaw, C.; Yamato, T., Functionalization of pyrene to prepare luminescent materials—typical examples of synthetic methodology. Chemistry–A European Journal 2016, 22 (34), 11898-11916. 72. Wu, K. C.; Ku, P. J.; Lin, C. S.; Shih, H. T.; Wu, F. I.; Huang, M. J.; Lin, J. J.; Chen, I. C.; Cheng, C. H., The Photophysical Properties of Dipyrenylbenzenes and Their Application as Exceedingly Efficient Blue Emitters for Electroluminescent Devices. Advanced Functional Materials 2008, 18 (1), 67-75. 73. Gu, J.-F.; Xie, G.-H.; Zhang, L.; Chen, S.-F.; Lin, Z.-Q.; Zhang, Z.-S.; Zhao, J.-F.; Xie, L.-H.; Tang, C.; Zhao, Y.; Liu, S.-Y.; Huang, W., Dumbbell-Shaped Spirocyclic Aromatic Hydrocarbon to Control Intermolecular π−π Stacking Interaction for High-Performance Nondoped Deep-Blue Organic Light-Emitting Devices. The Journal of Physical Chemistry Letters 2010, 1 (19), 2849-2853. 74. Chan, K. L.; Lim, J. P.; Yang, X.; Dodabalapur, A.; Jabbour, G. E.; Sellinger, A., High-efficiency pyrene-based blue light emitting diodes: aggregation suppression using a calixarene 3D-scaffold. Chem Commun (Camb) 2012, 48 (42), 5106-8. 75. Chercka, D.; Yoo, S.-J.; Baumgarten, M.; Kim, J.-J.; Müllen, K., Pyrene based materials for exceptionally deep blue OLEDs. J. Mater. Chem. C 2014, 2 (43), 9083-9086. 76. Sohn, S.; Wu, X.; Park, K. H.; Ahn, H.; Jung, S.; Kwon, S.-K.; Kim, Y.-H., Highly-twisted pyrene derivative for pure-blue organic light emitting diodes. Journal of Industrial and Engineering Chemistry 2019, 78, 239-245. 77. Liu, Y.; Yang, L.; Bai, Q.; Li, W.; Zhang, Y.; Fu, Y.; Ye, F., Highly efficient nondoped blue electroluminescence based on hybridized local and charge-transfer emitter bearing pyrene-imidazole and pyrene. Chemical Engineering Journal 2021, 420. 78. Parker, C.; Hatchard, C., Delayed fluorescence from solutions of anthracene and phenanthrene. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 1962, 269 (1339), 574-584. 79. Kepler, R.; Caris, J.; Avakian, P.; Abramson, E., Triplet excitons and delayed fluorescence in anthracene crystals. Physical Review Letters 1963, 10 (9), 400. 80. Zhao, W.; Castellano, F. N., Upconverted emission from pyrene and di-tert-butylpyrene using Ir (ppy) 3 as triplet sensitizer. The Journal of Physical Chemistry A 2006, 110 (40), 11440-11445. 81. Kido, J.; Iizumi, Y., Fabrication of highly efficient organic electroluminescent devices. Applied physics letters 1998, 73 (19), 2721-2723. 82. Suzuki, T.; Nonaka, Y.; Watabe, T.; Nakashima, H.; Seo, S.; Shitagaki, S.; Yamazaki, S., Highly efficient long-life blue fluorescent organic light-emitting diode exhibiting triplet–triplet annihilation effects enhanced by a novel hole-transporting material. Japanese journal of applied physics 2014, 53 (5), 052102. 83. Chou, P.-Y.; Chou, H.-H.; Chen, Y.-H.; Su, T.-H.; Liao, C.-Y.; Lin, H.-W.; Lin, W.-C.; Yen, H.-Y.; Chen, I.-C.; Cheng, C.-H., Efficient delayed fluorescence via triplet–triplet annihilation for deep-blue electroluminescence. Chemical communications 2014, 50 (52), 6869-6871. 84. Pu, Y. J.; Nakata, G.; Satoh, F.; Sasabe, H.; Yokoyama, D.; Kido, J., Optimizing the charge balance of fluorescent organic light‐emitting devices to achieve high external quantum efficiency beyond the conventional upper limit. Advanced Materials 2012, 24 (13), 1765-1770. 85. Kukhta, N. A.; Matulaitis, T.; Volyniuk, D.; Ivaniuk, K.; Turyk, P.; Stakhira, P.; Grazulevicius, J. V.; Monkman, A. P., Deep-blue high-efficiency TTA OLED using para-and meta-conjugated cyanotriphenylbenzene and carbazole derivatives as emitter and host. The journal of physical chemistry letters 2017, 8 (24), 6199-6205. 86. Chen, C. H.; Tierce, N. T.; Leung, M. K.; Chiu, T. L.; Lin, C. F.; Bardeen, C. J.; Lee, J. H., Efficient Triplet-Triplet Annihilation Upconversion in an Electroluminescence Device with a Fluorescent Sensitizer and a Triplet-Diffusion Singlet-Blocking Layer. Adv Mater 2018, 30 (50), e1804850. 87. Ledwon, P., Recent advances of donor-acceptor type carbazole-based molecules for light emitting applications. Organic Electronics 2019, 75, 105422. 88. Seo, T.; Ishiyama, T.; Kubota, K.; Ito, H., Solid-state Suzuki-Miyaura cross-coupling reactions: olefin-accelerated C-C coupling using mechanochemistry. Chem Sci 2019, 10 (35), 8202-8210. 89. Galanin, M.; Kutyonkov, A.; Smorchkov, V.; Timofeev, Y. P.; Chizhikova, Z., Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Optics and Spectroscopy 1982, 53 (4), 405-409. 90. Kim, C. W.; Park, S. N.; Lee, S. B.; Kim, J. J.; Lee, H. W.; Kim, Y. K.; Yoon, S. S., Blue Emitters Based on Aryl End-Capped Pyrene Groups for OLEDs. J Nanosci Nanotechnol 2016, 16 (3), 2912-5. 91. De Silva, T. P. D.; Youm, S. G.; Tamas, G. G.; Yang, B.; Wang, C. H.; Fronczek, F. R.; Sahasrabudhe, G.; Sterling, S.; Quarels, R. D.; Chhotaray, P. K.; Nesterov, E. E.; Warner, I. M., Pyrenylpyridines: Sky-Blue Emitters for Organic Light-Emitting Diodes. ACS Omega 2019, 4 (16), 16867-16877. 92. Yang, X.; Zhao, Z.; Ran, H.; Zhang, J.; Chen, L.; Han, R.; Duan, X.; Sun, H.; Hu, J.-Y., New pyrene-based butterfly-shaped blue AIEgens: Synthesis, structure, aggregation-induced emission and their nondoped blue OLEDs. Dyes and Pigments 2020, 173. 93. An, B.-K.; Kwon, S.-K.; Jung, S.-D.; Park, S. Y., Enhanced emission and its switching in fluorescent organic nanoparticles. Journal of the American Chemical Society 2002, 124 (48), 14410-14415. 94. Singh-Rachford, T. N.; Castellano, F. N., Photon upconversion based on sensitized triplet–triplet annihilation. Coordination Chemistry Reviews 2010, 254 (21-22), 2560-2573. 95. Huang, J.-J.; Hung, Y.-H.; Ting, P.-L.; Tsai, Y.-N.; Gao, H.-J.; Chiu, T.-L.; Lee, J.-H.; Chen, C.-L.; Chou, P.-T.; Leung, M.-k., Orthogonally substituted benzimidazole-carbazole benzene as universal hosts for phosphorescent organic light-emitting diodes. Organic letters 2016, 18 (4), 672-675. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89674 | - |
| dc.description.abstract | 本篇論文利用簡單且高產率的鈴木反應以及芳香族親核取代反應合成出四個芘基衍生物,在分子中引入具有推電子性的咔唑以及和芘同樣具有TTA-UC特性的蒽,從結構設計上來修飾芘基苯,不僅可以增加分子的電性,同時減少分子間芘基的π-π stacking,避免分子堆疊形成準分子 (Excimer),使材料具有高螢光量子效率並且維持在深藍光的範圍。 從X-ray晶體結構分析可以看到這系列化合物的芘基、咔唑、蒽和中心苯環具有扭曲結構,可以有效減少分子的堆疊,避免螢光紅移;熱性質分析說明這幾個化合物的熱穩定性高,符合元件製作時蒸鍍的需求;光性質分析則可以看到其螢光皆在藍光的範圍,且具有高螢光量子產率;此外也引入PdOEP作為敏料,測試化合物在溶液態中TTA-UC的性質,在此條件下可以觀察到化合物dFPPP、PPA、dmPPA具有TTA-UC的現象。 在有機發光二極體的元件應用上,將化合物作為發光層的材料,應用在非摻混元件以及摻混化合物DPaNIF的元件中,其中非摻混元件以化合物dcPPP的元件表現最好,最大亮度為10120 cd/m2,最大電流效率為8.11 cd/A,最大功率為6.25 lm/W,外部量子效率可達7.24%,CIE座標為 (0.159, 0.148),屬於深藍光的範圍。而摻混元件則以化合物PPA的元件表現最好,最大亮度為27870 cd/m2,最大電流效率為15.01 cd/A,最大功率為11.25 lm/W,外部量子效率更可高達12.94 %,從亮度5000 cd/m2開始,元件生命期為26分鐘,元件各方面效率不僅相較於市售材料DMPPP的摻混元件有所提升,其生命期更可高近兩倍,足以說明其在藍光OLED應用之潛力。 | zh_TW |
| dc.description.abstract | Four blue-light emitting pyrene derivatives have been synthesized by Suzuki coupling reaction and nucleophilic aromatic substitution reaction in high yield. By introducing carbazole and anthracene into pyrenylbenzene, it can not only improve the electrical properties of molecule, but also suppress the π–π stacking of pyrene. Therefore, it can prevent the intermolecular aggregation of pyrene, which tends to show a more red-shifted excimer emission and low fluorescence quantum yields. Due to the highly twisted structure of the pyrenylbenzene and phenylanthracene skeleton, these compounds exhibit a low degree of aggregation that reduces the formation of excimer. According to absorption and emission spectra and thermal analysis, these pyrene derivatives have blue light emission, high fluorescence quantum yields, and high thermal stability. The phenomenon of triplet-triplet annihilation upconversion (TTA-UC) can also be observed by inducing PdOEP as a sensitizer. In the application of non-doped blue OLEDs, the most efficient dcPPP-based device shows a high luminance of 10120 cd/m2, a maximum current efficiency of 8.11 cd/A, and a high external quantum efficiency of 7.24 % with CIE color coordinates (0.159, 0.148). In the application of doped blue OLEDs, the PPA-based device exhibited the best performance with a high luminance of 27870 cd/m2, a maximum current efficiency of 15.01 cd/A, a maximum power efficiency of 11.25 lm/W, and a high external quantum efficiency of 12.94 %. Furthermore, the lifetime of the device from 5000 cd/m2 is 26 minutes, which is about two times longer than the commercially available pyrene-based materials, DMPPP. These pyrene-based compounds have high potential in high efficiency blue OLED. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:12:01Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:12:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 目錄 i 化合物結構與編號命名 iv 摘要 vi Abstract vii 致謝 ix 圖目錄 x 表目錄 xiv 流程目錄 xvi 第一章 緒論 1 1.1 前言 1 1.2 有機發光二極體之發展史 2 1.3 有機分子發光機制 5 1.4 有機發光二極體元件之工作原理 8 1.5 主客發光系統之工作原理 13 1.6 有機發光二極體各層材料介紹 16 1.6.1 陽極 (Anode) 16 1.6.2 陰極 (Cathode) 16 1.6.3 電洞注入層 (Hole injection layer, HIL) 17 1.6.4 電洞傳輸層 (Hole transport layer, HTL) 18 1.6.5 電子注入層 (Electron injection layer, EIL) 20 1.6.6 電子傳輸層 (Electron transport layer, ETL) 20 1.6.7 發光層 (Emissive layer, EML) 21 1.7 藍色有機發光二極體發展現況 23 第二章 研究動機 24 2.1 文獻回顧 24 2.1.1 芘基衍生物在有機發光二極體之應用 24 2.1.2 具有TTA-UC特性材料在有機發光二極體之應用 32 2.2 分子設計 44 2.2.1 改善化合物DiAnBz之合成 (An-Ph-An) 44 2.2.2 新型藍光OLED材料之合成 (Pyr-Ph-Pyr、Pyr-Ph-An) 44 2.3 合成策略與方法 46 第三章 結果與討論 49 3.1 化合物DiAnBz之合成方法改善 49 3.2 X-Ray晶體結構分析 50 3.2.1 化合物dFPPP之晶體解析 51 3.2.2 化合物dcPPP之晶體解析 52 3.2.3 化合物PPA之晶體解析 53 3.2.4 化合物dmPPA之晶體解析 54 3.3 熱性質分析 56 3.4 光物理性質分析 59 3.5 溶液態的TTA-UC現象 64 3.6 電化學分析 67 3.7 有機電致發光元件之表現 72 3.7.1 應用於非摻混藍光OLED 72 3.7.2 應用於摻混藍光OLED 80 第四章 結論 88 第五章 實驗部分 89 5.1 實驗儀器 89 5.1.1 核磁共振光譜儀 (Nuclear magnetic resonance spectrum, NMR) 89 5.1.2 基質輔助雷射脫附游離飛行時間質譜儀 (MALDI-TOF/TOF mass spectrometer) 89 5.1.3 元素分析儀 (Elemental analyzer, EA) 90 5.1.4 X光單晶繞射儀 (Single Crystal X-Ray Diffractometer, SXRD) 90 5.1.5 紫外光-可見光分光光譜儀 (UV-Visible spectrophotometer) 90 5.1.6 螢光光譜儀 (Spectrofluorophotometer) 90 5.1.7 循環伏安儀 (Cyclic voltammetry instrument, CV) 90 5.1.8 熱重分析儀 (Thermogravimetirc analyzer, TGA) 90 5.1.9 示差掃描卡計儀 (Differential scanning calorimeter, DSC) 90 5.2 實驗試劑 91 5.3 合成步驟 92 第六章 參考資料 100 第七章 附錄 108 7.1 化合物之1H與13C核磁共振光譜 108 7.2 化合物之TGA與DSC圖 114 7.3 化合物薄膜態之UV-Vis、FL光譜 116 7.4 摻混藍光OLED之優化過程 117 7.4.1 化合物dFPPP之摻混元件優化過程 117 7.4.2 化合物dcPPP之摻混元件優化過程 120 7.4.3 化合物PPA之摻混元件優化過程 123 7.5 化合物X-ray晶體參數表、鍵長與鍵角數據 126 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 藍色螢光有機發光二極體 | zh_TW |
| dc.subject | 蒽 | zh_TW |
| dc.subject | 三重態-三重態湮滅光子上轉換 | zh_TW |
| dc.subject | 芘 | zh_TW |
| dc.subject | 二芘基苯 | zh_TW |
| dc.subject | Pyrene | en |
| dc.subject | Dipyrenylbenzene | en |
| dc.subject | Anthracene | en |
| dc.subject | Triplet-triplet annihilation photon upconversion | en |
| dc.subject | Blue fluorescent OLED | en |
| dc.title | 芘基衍生物之合成、性質探討及其在藍色有機發光二極體之應用 | zh_TW |
| dc.title | Synthesis and Characterization of Pyrene Derivatives and Their Applications in Blue Fluorescent Organic Light Emitting Diodes | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 邱天隆 | zh_TW |
| dc.contributor.oralexamcommittee | Jiun-Haw Lee;Tien-Lung Chiu | en |
| dc.subject.keyword | 芘,二芘基苯,蒽,三重態-三重態湮滅光子上轉換,藍色螢光有機發光二極體, | zh_TW |
| dc.subject.keyword | Pyrene,Dipyrenylbenzene,Anthracene,Triplet-triplet annihilation photon upconversion,Blue fluorescent OLED, | en |
| dc.relation.page | 172 | - |
| dc.identifier.doi | 10.6342/NTU202203596 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-26 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2027-09-23 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 此日期後於網路公開 2027-09-23 | 6.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
