請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89664
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 許鶴瀚 | zh_TW |
dc.contributor.advisor | Ho-Han Hsu | en |
dc.contributor.author | 華智祥 | zh_TW |
dc.contributor.author | Chih-Hsiang Hua | en |
dc.date.accessioned | 2023-09-15T16:09:01Z | - |
dc.date.available | 2023-09-16 | - |
dc.date.copyright | 2023-09-15 | - |
dc.date.issued | 2022 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Barry-Macaulay, D., Bouazza, A., Singh, R. M., Wang, B., & Ranjith, P. (2013). Thermal conductivity of soils and rocks from the Melbourne (Australia) region. Engineering Geology, 164, 131-138, doi: 10.1016/j.enggeo.2013.06.014.
Beardsmore, G. R., Cull, J. P., & Cull, J. P. (2001). Crustal heat flow: a guide to measurement and modelling. Cambridge University Press. Blackwell, D. D., & Steele, J. L. (1989). Thermal conductivity of sedimentary rocks: measurement and significance. In Thermal history of sedimentary basins (pp. 13-36). Springer, New York, NY. Blázquez, C. S., Martín, A. F., Nieto, I. M., García, P. C., Pérez, L. S. S., & Aguilera, D. G. (2017). Thermal conductivity map of the Avila region (Spain) based on thermal conductivity measurements of different rock and soil samples. Geothermics, 65, 60-71, doi: 10.1016/j.geothermics.2016.09.001. Chen, W.-S., Huang, Y.-C., Liu, C.-H., Feng, H.-T., Chung, S.-L., & Lee, Y.-H. (2016). U-Pb zircon geochronology constraints on the ages of the Tananao Schist Belt and timing of orogenic events in Taiwan: Implications for a new tectonic evolution of the South China Block during the Mesozoic. Tectonophysics, 686, 68-81, doi: 10.1016/j.tecto.2016.07.021. Chen, W.-S. & Wang, Y. (1990). The Plio-Pleistocene basin development in the Coastal Range of Taiwan. Acta Gelological Taiwanica(26), 37-56. Chou, T.H., & L.H. Lin. (1984). Application of interval velocity and related information in kerogen maturation prediction, Mining & Metallurgy, Vol.28, No.2, 89-101. Clauser, C., & Huenges, E. (1995). Thermal conductivity of rocks and minerals. Rock physics and phase relations: a handbook of physical constants, 3, 105-126. Horai, K.-I., & Simmons, G. (1969). Thermal conductivity of rock-forming minerals. Earth and planetary science letters, 6(5), 359-368. Jahn, B. M., & Cuvellier, H. (1994). Pb - Pb and U - Pb geochronology of carbonate rocks: an assessment. Chemical Geology, 115(1-2), 125-151. Jones, M. Q. W. (2003). Thermal properties of stratified rocks from Witwatersrand gold mining areas. Journal of the Southern African Institute of Mining and Metallurgy, 103(3), 173-185. Krogh, J., Banks, D., Midtgård, A. K., Frengstad, B., Lind, B., & Strand, T. (1998). Utjevningsbassengs innvirkning på radoninnholdet i grunnvann fra fast fjell. The Geological Survey of Norway, NGU-report 98.097. Lee, C. R., & W. T. Cheng (1986). Preliminary Heat Flow Measurements in Taiwan, paper presented at. In Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore. Liebel, H. T., Stølen, M. S., Frengstad, B. S., Ramstad, R. K., & Brattli, B. (2012). Insights into the reliability of different thermal conductivity measurement techniques: a thermo-geological study in Mære (Norway). Bulletin of Engineering Geology and the Environment, 71(2), 235-243. Liu, S.Y. (1966). Heat flow measurements through the deep oil wells in Miaoli. Report of Central Univ., Taiwan, Vol.1, 63-79. Ramstad, R. K., Midttømme, K., Liebel, H. T., Frengstad, B. S., & Willemoes-Wissing, B. (2015). Thermal conductivity map of the Oslo region based on thermal diffusivity measurements of rock core samples. Bulletin of Engineering Geology and the Environment, 74(4), 1275-1286, doi: 10.1007/s10064-014-0701-x. Roy, R. F. (1981). Thermophysical properties of rocks. Physical properties of rocks and minerals. Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8), doi: 10.1029/2004jb003251. Wu, S. K., Chi, W. C., Hsu, S. M., Ke, C. C., & Wang, Y. (2013). Shallow crustal thermal structures of central Taiwan foothills region. Terr. Atmos. Zhao, Y., Bai, K., & Zhao, Y. (2019). Characteristics of a geothermal anomaly in the Fushan Sag, Beibuwan Basin, China, and its effects on oil and gas reservoirs. Arabian Journal of Geosciences, 12(22), 1-12, doi: 0.1007/s12517-019-4889-8. 中文文獻 余炳盛、方建能、宋聖榮、何鎮平(1999),花東礦物岩石圖鑑,國立臺灣博物館,212頁 吳文雄、楊燦堯、劉聰桂(2005),臺灣的岩石,臺灣地理百科65,遠足文化,臺北,208頁。 林朝棨、周瑞燉(1978),臺灣地質,茂昌圖書,臺北,450頁。 郭奇龍、邢金池(1996),臺灣主要礦物與岩石,臺灣省礦物局,臺北。 陳文山(2016),臺灣地質概論,社團法人中華民國地質學會,臺北,204頁。 陳汝勤、莊文星(1992),岩石學,大學科學叢書13,聯經出版事業公司,臺北,444頁。 陳肇夏(1998),臺灣的變質岩,經濟部中央地質調查所,357頁。 鄧屬予(1997),臺灣沉積岩,臺灣地質9,經濟部中央地質調查所,臺北,235頁。 網路文獻 工業技術研究院(2022),地熱發電資訊網臺灣地熱大事紀,檢自https://www.geothermal-taiwan.org.tw/Memorabilia。 經濟部能源局(2022年3月17日),能源轉型白皮書109年度執行報告,檢自https://www.moeaboe.gov.tw/ECW/populace/content/ContentDesc.aspx?menu_id=15551。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89664 | - |
dc.description.abstract | 熱導係數為計算熱流的重要參數之一,臺灣測量岩層熱導係數的研究很少,因此本研究於西部麓山帶、雪山山脈、脊樑山脈、海岸山脈和恆春半島等地質區主要地層進行岩層熱導係數量測。使用岩心取樣器,鑽取直徑6公分、長10~30公分的岩心或採集岩石樣本,共計於40個地層中取得101個岩石或岩心樣本及1個土壤樣本,樣本經磨平處理後,以熱導係數儀測量其熱導係數。測量結果發現,樣本中最高值為四稜砂岩的變質砂岩(~5.21 Wm-1K-1),最低值為大平層的紅土(~0.33 Wm-1K-1),平均值為2.25 Wm-1K-1,中位數為2.11 Wm-1K-1,標準差為0.93 Wm-1K-1。依照地質年代分類,成岩地層中熱導係數最大值為雪山山脈始新世的四稜砂岩(~5.21 Wm-1K-1),最小值為恆春半島上新世馬鞍山層泥質砂岩(~0.39Wm-1K-1),推測雪山山脈的四稜砂岩由於其礦物組成多為熱導係數較高的石英組成,因此熱導係數偏高,恆春半島的馬鞍山層泥質砂岩可能因孔隙率較高,因此熱導係數偏低。若是以地質分區分類,最高值為雪山山脈地質區(~2.77 Wm-1K-1),其岩性主要由變質砂岩和硬頁岩組成,透過樣本觀察,推測其石英含量高且孔隙率低,所以其導熱能力最好,最低值為海岸山脈地質區(~1.52 Wm-1K-1),其岩石組成主要為火成岩、泥岩、砂岩、礫岩,是其導熱能力偏弱的原因。以地理分類,可發現臺灣山區(雪山山脈、脊樑山脈)有相對較高的熱導係數。以三大岩性分類,熱導係數以變質岩最高(中位數為2.36 Wm-1K-1,標準差約0.76 Wm-1K-1),沉積岩其次(中位數為1.95 Wm-1K-1,標準差約1.02 Wm-1K-1),火成岩最低(中位數為1.52 Wm-1K-1,標準差約0.38 Wm-1K-1)。與過去研究岩性和熱導係數關係的文獻對比結果,層理發達的頁岩、硬頁岩、板岩、千枚岩、片岩可能受非均向性影響,測量面與層面角度不一樣而產生較大的差異性,泥質砂岩與石灰岩受低孔隙率的影響而有偏低的現象,玄武岩和安山岩則因岩石礦物組成類似,測量結果相近。另外,與區域性岩性組成的熱導係數文獻對比結果,由於查表屬區域性的代表值,跟局部岩層的實際數值可能有一定的差距,因此文獻中的熱導係數可能低估了四稜砂岩區域的熱流值,並高估其他六個地層的熱流值。本研究結果提供較完整的臺灣岩層熱導係數分佈情形,有助於未來臺灣熱流的研究,以及地熱潛能的評估。 | zh_TW |
dc.description.abstract | Thermal conductivity was one of the important parameters for calculating heat flow. The detail thermal conductivity measurements of different stratigraphic and lithological features are insufficient in Taiwan. In this study, we measured the thermal conductivity systematically in the Western Foothills, Hsuehshan Range, Central Range, Coastal Range and Hengchun Peninsula. A total of 101 rock or core samples and one soil sample, including cores of 10-30 cm in length and rock blocks of 20×20×10 cm in size, were obtained from 40 different strata. We smoothed the samples and measured them with a thermal conductivity meter. The results show that the highest value is the metamorphic sandstone of Szuling sandstone (~5.21 Wm-1K-1), while the lowest value is the laterite (~0.33 Wm-1K-1) of the Daping layer. Statistically, the average value is 2.25 Wm-1K-1, the median is 2.11 Wm-1K-1, and the standard deviation is 0.93 Wm-1K-1. According to geological ages in different areas, the highest thermal conductivity (~5.21 Wm-1K-1) of the diagenetic strata is the Eocene Szuling sandstone in the Hsuehshan Range; in contrast, the lowest one (~0.39Wm-1K-1) is the argillaceous sandstone of the Pliocene Ma-an Shan layer in the Hengchun Peninsula. We speculate that the high thermal conductivity of Szuling sandstone is due to its primary composition of quartz, demonstrating a high thermal conductivity property. The low thermal conductivity of argillaceous sandstone can result from its higher porosity causing low thermal conductivity. Geologically, the highest thermal conductivity occurs in the Hsuehshan Range geologic province (~2.77 Wm-1K-1), mainly composed of metamorphic sandstone and argillite. We believe that the high thermal conductivity comes from the high quartz content and low porosity. The lowest thermal conductivity is discovered in the Coastal Range geologic province (~1.52 Wm-1K-1), mainly composed of igneous rock, mudstone, sandstone, and conglomerate. Geographically, it can be found that the thermal conductivity of inland Taiwan (Hsuehshan Range, Central Range) is higher than that of the inshore (Western Foothills, Coastal Range, Hengchun Peninsula). For the three major lithologies, including metamorphic, sedimentary, and igneous rocks, the median thermal conductivity of metamorphic rocks is 2.36 Wm-1K-1 with a standard deviation of about 0.76 Wm-1K-1 which is the highest among the three major lithologies. The median thermal conductivity of sedimentary rocks is 1.95 Wm-1K-1 with a standard deviation of about 1.02 Wm-1K-1. The standard deviation is the largest among the three, similar to previous studies. The median thermal conductivity of igneous rocks is 1.52 Wm-1K-1 with a standard deviation of about 0.38 Wm-1K-1. The median and standard deviations are the lowest of the three. Compared with the thermal conductivity of Wu et al. (2013), our results indicate that the heat flow in the Szuling sandstone area was underestimated, and the heat flow in the other six formations was overestimated. Comparing the results of rock types in thermal conductivity between the literature, strongly foliated rocks like shale, argillite, slate, phyllite, and schist are affected by anisotropy, which makes the thermal conductivity different from the literature. Besides, argillaceous sandstone and limestone have lower thermal conductivity, which is affected by low porosity. Basalt and andesite have similar thermal conductivity due to the similar mineral composition of the rock. The thermal conductivity measurement results in this study can provide a reference for future research on heat flow estimation in Taiwan. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:09:01Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-15T16:09:01Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 I
致謝 II 摘要 IV Abstract VI 第一章、緒論 1 1-1研究動機與目的 1 1-2區域地質背景 2 1-3文獻回顧 9 第二章、研究方法 12 2-1採集位置 13 2-2採集方式 16 2-3樣本處理 19 2-4儀器介紹 20 2-5施測流程 22 2-6數據資料處理與分析方式 23 第三章、結果 25 3-1樣本測量結果 25 3-2地質年代與熱導係數 35 3-3地質分區與熱導係數 37 3-4地理分區與熱導係數 38 3-5岩性與熱導係數 41 第四章、討論 46 4-1地質年代與熱導係數 46 4-2造成岩性間導熱能力差異的原因 49 4-3乾溼樣本熱導係數的差異 54 4-4與前人熱導係數對比 57 4-5採樣數量的建議 63 第五章、結論 65 參考文獻 66 附錄一 各樣本熱導係數測量情形 71 附錄二 濕樣本熱導係數測量情形 76 附錄三 岩心及岩石樣本描述 78 | - |
dc.language.iso | zh_TW | - |
dc.title | 臺灣地層的岩石熱導係數研究 | zh_TW |
dc.title | Rock thermal conductivity study of Taiwan strata | en |
dc.type | Thesis | - |
dc.date.schoolyear | 110-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.coadvisor | 江協堂 | zh_TW |
dc.contributor.coadvisor | Hsieh-Tang Chiang | en |
dc.contributor.oralexamcommittee | 陳麗雯 | zh_TW |
dc.contributor.oralexamcommittee | Chuen-Tien Shyu;Suh-Yui Teng;Li-Wen Chen | en |
dc.subject.keyword | 臺灣,熱導係數,地熱探勘,熱流,岩石熱傳導, | zh_TW |
dc.subject.keyword | Taiwan,thermal conductivity,geothermal exploration,heat flow,rock heat conduction, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU202203953 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2022-09-27 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 海洋研究所 | - |
顯示於系所單位: | 海洋研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-110-2.pdf | 11.08 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。