請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃誌川 | zh_TW |
| dc.contributor.advisor | Jr-Chuan Huang | en |
| dc.contributor.author | 游昱霖 | zh_TW |
| dc.contributor.author | Yu-Lin Yu | en |
| dc.date.accessioned | 2023-09-15T16:08:27Z | - |
| dc.date.available | 2023-09-16 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., ... & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. BioScience, 48(11), 921-934. Andersson, M. G., van Rijswijk, P., & Middelburg, J. J. (2006). Uptake of dissolved inorganic nitrogen, urea and amino acids in the Scheldt estuary: comparison of organic carbon and nitrogen uptake. Aquatic Microbial Ecology, 44(3), 303-315. Avila, A., Bonilla, D., Rodà, F., Piñol, J., & Neal, C. (1995). Soilwater chemistry in a holm oak (Quercus ilex) forest: inferences on biogeochemical processes for a montane-Mediterranean area. Journal of Hydrology, 166(1-2), 15-35. Armstrong, F. A. J., & Tibbitts, S. (1968). Photochemical combustion of organic matter in sea water, for nitrogen, phosphorus and carbon determination. Journal of the Marine Biological Association of the United Kingdom, 48(1), 143-152. Battin, T. J., Kaplan, L. A., Findlay, S., Hopkinson, C. S., Marti, E., Packman, A. I., Newbold, J. D., & Sabater, F. (2008). Biophysical controls on organic carbon fluxes in fluvial networks. Nature geoscience, 1(2), 95-100. Bernal, S., Butturini, A., & Sabater, F. (2005). Seasonal variations of dissolved nitrogen and DOC: DON ratios in an intermittent Mediterranean stream. Biogeochemistry, 75(2), 351-372. Bernal, S., Lupon, A., Catalán, N., Castelar, S., & Martí, E. (2018). Decoupling of dissolved organic matter patterns between stream and riparian groundwater in a headwater forested catchment. Hydrology and Earth System Sciences, 22(3), 1897-1910. Bernhardt, E., & McDowell, W. (2008). Twenty years apart: Comparisons of DOM uptake during leaf leachate releases to Hubbard Brook Valley streams in 1979 versus 2000. Journal of Geophysical Research: Biogeosciences, 113(G3). Birgand, G., Armand-Lefevre, L., Lolom, I., Ruppe, E., Andremont, A., & Lucet, J. C. (2013). Duration of colonization by extended-spectrum β-lactamase-producing Enterobacteriaceae after hospital discharge. American journal of infection control, 41(5), 443-447. Boyer, J. N., Dailey, S. K., Gibson, P. J., Rogers, M. T., & Mir-Gonzalez, D. (2006). The role of dissolved organic matter bioavailability in promoting phytoplankton blooms in Florida Bay. Hydrobiologia, 569(1), 71-85. Bronk, D. A., Glibert, P. M., Malone, T. C., Banahan, S., & Sahlsten, E. (1998). Inorganic and organic nitrogen cycling in Chesapeake Bay: autotrophic versus heterotrophic processes and relationships to carbon flux. Aquatic microbial ecology, 15(2), 177-189. Bronk, D. A. (2002). Dynamics of DON. Biogeochemistry of marine dissolved organic matter, 153-247. Bronk, D. A., See, J. H., Bradley, P., & Killberg, L. (2007). DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences, 4(3), 283-296. Brookshire, E., Valett, H., Thomas, S., & Webster, J. (2007). Atmospheric N deposition increases organic N loss from temperate forests. Ecosystems, 10(2), 252-262. Brookshire, E. N. J., Valett, H. M., Thomas, S. A., & Webster, J. R. (2005). Coupled cycling of dissolved organic nitrogen and carbon in a forest stream. Ecology, 86(9), 2487-2496. Capone, D. G., Bronk, D. A., Mulholland, M. R., & Carpenter, E. J. (Eds.). (2008). Nitrogen in the marine environment. Elsevier. Carlson, C. A., & Ducklow, H. W. (1995). Dissolved organic carbon in the upper ocean of the central equatorial Pacific Ocean, 1992: Daily and finescale vertical variations. Deep Sea Research Part II: Topical Studies in Oceanography, 42(2-3), 639-656. Chi, C.-H., McEwan, R. W., Chang, C.-T., Zheng, C., Yang, Z., Chiang, J.-M., & Lin, T.-C. (2015). Typhoon disturbance mediates elevational patterns of forest structure, but not species diversity, in humid monsoon Asia. Ecosystems, 18(8), 1410-1423. Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H., Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P., Downing, J. A., & Middelburg, J. J. (2007). Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems, 10(1), 172-185. Conley, D. J., Paerl, H. W., Howarth, R. W., Boesch, D. F., Seitzinger, S. P., Havens, K. E., ... & Likens, G. E. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323(5917), 1014-1015. Cooper, C. E., & Brown, G. C. (2008). The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. Journal of bioenergetics and biomembranes, 40(5), 533-539. Daims, H., Lebedeva, E. V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., ... & Wagner, M. (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583), 504-509. Dentener, F., Drevet, J., Lamarque, J.-F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D., Horowitz, L. W., Krol, M., & Kulshrestha, U. (2006). Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochemical Cycles, 20(4). Di Baldassarre, G., & Montanari, A. (2009). Uncertainty in river discharge observations: a quantitative analysis. Hydrology and Earth System Sciences, 13(6), 913-921. Dittman, J. A., Driscoll, C. T., Groffman, P. M., & Fahey, T. J. (2007). Dynamics of nitrogen and dissolved organic carbon at the Hubbard Brook Experimental Forest. Ecology, 88(5), 1153-1166. DU, Y. D., CAO, H. X., LIU, S. Q., GU, X. B., & CAO, Y. X. (2017). Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. Journal of integrative agriculture, 16(5), 1153-1161. Fan, C., & Glibert, P. M. (2005). Effects of light on nitrogen and carbon uptake during a Prorocentrum minimum bloom. Harmful Algae, 4(3), 629-641. Fowler, D., Steadman, C. E., Stevenson, D., Coyle, M., Rees, R. M., Skiba, U. M., ... & Galloway, J. N. (2015). Effects of global change during the 21st century on the nitrogen cycle. Atmospheric Chemistry and Physics, 15(24), 13849-13893. Galloway, J. N., Aber, J. D., Erisman, J. W., Seitzinger, S. P., Howarth, R. W., Cowling, E. B., & Cosby, B. J. (2003). The nitrogen cascade. Bioscience, 53(4), 341-356. Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z., Freney, J. R., ... & Sutton, M. A. (2008). Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science, 320(5878), 889-892. García‐Palacios, P., Maestre, F. T., Kattge, J., & Wall, D. H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology letters, 16(8), 1045- 1053. Glibert, P. M., Wilkerson, F. P., Dugdale, R. C., Raven, J. A., Dupont, C. L., Leavitt, P. R., ... & Kana, T. M. (2016). Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen‐enriched conditions. Limnology and Oceanography, 61(1), 165-197. Goolsby, D. A., Battaglin, W. A., Aulenbach, B. T., & Hooper, R. P. (2001). Nitrogen input to the Gulf of Mexico. Journal of Environmental Quality, 30(2), 329-336. Hedin, L. O., Armesto, J. J., & Johnson, A. H. (1995). Patterns of nutrient loss from unpolluted, old‐growth temperate forests: Evaluation of biogeochemical theory. Ecology, 76(2), 493-509. Hillel, D., & Hatfield, J. L. (Eds.). (2005). Encyclopedia of Soils in the Environment (Vol. 3). Amsterdam: Elsevier. Horng, F. (1996). Soil nutrient pool and available nutrient dynamics in the Fushan mixed hardwood forest ecosystem. Taiwan J. For. Sci., 11, 465-473. Huang, J.-C., Lee, T.-Y., Kao, S.-J., Hsu, S.-C., Lin, H.-J., & Peng, T.-R. (2012). Land use effect and hydrological control on nitrate yield in subtropical mountainous watersheds. Hydrology and Earth System Sciences, 16(3), 699-714. Huang, J.-C., Lee, T.-Y., Lin, T.-C., Hein, T., Lee, L.-C., Shih, Y.-T., Kao, S.-J., Shiah, F.-K., & Lin, N.-H. (2016). Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences, 13(6), 1787-1800. Hungate, B. A., Dukes, J. S., Shaw, M. R., Luo, Y., & Field, C. B. (2003). Nitrogen and climate change. Science, 302(5650), 1512-1513. Jalbert, J., Mathevet, T., & Favre, A. C. (2011). Temporal uncertainty estimation of discharges from rating curves using a variographic analysis. Journal of Hydrology, 397(1-2), 83-92. Johnson, B., & Goldblatt, C. (2015). The nitrogen budget of Earth. Earth-Science Reviews, 148, 150-173. Juston, J., Jansson, P. E., & Gustafsson, D. (2014). Rating curve uncertainty and change detection in discharge time series: case study with 44‐year historic data from the Nyangores River, Kenya. Hydrological Processes, 28(4), 2509-2523. Kaushal, S. S., & Lewis, W. M. (2005). Fate and transport of organic nitrogen in minimally disturbed montane streams of Colorado, USA. Biogeochemistry, 74(3), 303-321. Kielland, K. (1994). Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology, 75(8), 2373-2383. Kuypers, M. M., Marchant, H. K., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263-276. Kuzyakov, Y., & Xu, X. (2013). Competition between roots and microorganisms for nitrogen: mechanisms and ecological relevance. New Phytologist, 198(3), 656-669. LeBauer, D. S., & Treseder, K. K. (2008). Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology, 89(2), 371-379. Lee, L.-C., Hsu, T.-C., Lee, T.-Y., Shih, Y.-T., Lin, C.-Y., Jien, S.-H., Hein, T., Zehetner, F., Shiah, F.-K., & Huang, J.-C. (2019). Unusual roles of discharge, slope and SOC in DOC transport in small mountainous rivers, Taiwan. Scientific reports, 9(1), 1-9. Lee, T.-Y., Shih, Y.-T., Huang, J.-C., Kao, S.-J., Shiah, F.-K., & Liu, K.-K. (2014). Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences, 11(19), 5307-5321. Leigh, J. A., & Dodsworth, J. A. (2007). Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol., 61, 349-377. Letscher, R. T., Hansell, D. A., Carlson, C. A., Lumpkin, R., & Knapp, A. N. (2013). Dissolved organic nitrogen in the global surface ocean: Distribution and fate. Global Biogeochemical Cycles, 27(1), 141-153. Lin, K. (1994). Biomass and leaf area index estimates of broadleaf forest in Fu-shan forest. Bull Taiwan For Res Inst New Ser, 9, 299-315. Lin, K. (1996). Soil survey and classification of the Fushan Experimental Forest. Taiwan J For Sci, 11, 159-174. Lin, K.-C., Hamburg, S. P., Tang, S.-l., Hsia, Y.-J., & Lin, T.-C. (2003). Typhoon effects on litterfall in a subtropical forest. Canadian Journal of Forest Research, 33(11), 2184-2192. Lin, T.-C., Hamburg, S. P., Lin, K.-C., Wang, L.-J., Chang, C.-T., Hsia, Y.-J., Vadeboncoeur, M. A., McMullen, C. M. M., & Liu, C.-P. (2011). Typhoon disturbance and forest dynamics: lessons from a northwest Pacific subtropical forest. Ecosystems, 14(1), 127-143. Lin, T.-C., Shaner, P.-J., Wang, L.-J., Shih, Y.-T., Wang, C.-P., Huang, G.-H., & Huang, J.-C. (2015). Effects of mountain tea plantations on nutrient cycling at upstream watersheds. Hydrology and Earth System Sciences, 19(11), 4493-4504. Lipson, D., & Näsholm, T. (2001). The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia, 128(3), 305-316. Liu, C.-P., Lu, S.-Y., Wang, C.-H., & Hwang, L.-S. (2008). Soil solution chemistry on the three slopes of a natural hardwood stand in the subtropics of the Fushan Forest. Soil science, 173(12), 845-856. Liu, C. P., & Sheu, B. H. (2003). Dissolved organic carbon in precipitation, throughfall, stemflow, soil solution, and stream water at the Guandaushi subtropical forest in Taiwan. Forest Ecology and Management, 172(2-3), 315-325. Lu, M.-C., Chang, C.-T., Lin, T.-C., Wang, L.-J., Wang, C.-P., Hsu, T.-C., & Huang, J.-C. (2017). Modeling the terrestrial N processes in a small mountain catchment through INCA-N: A case study in Taiwan. Science of The Total Environment, 593, 319-329. Luo, Y., Su, B. O., Currie, W. S., Dukes, J. S., Finzi, A., Hartwig, U., ... & Field, C. B. (2004). Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54(8), 731-739. Lutz, B. D., Bernhardt, E. S., Roberts, B. J., & Mulholland, P. J. (2011). Examining the coupling of carbon and nitrogen cycles in Appalachian streams: the role of dissolved organic nitrogen. Ecology, 92(3), 720-732. McDowell, W. H., Magill, A. H., Aitkenhead-Peterson, J. A., Aber, J. D., Merriam, J. L., & Kaushal, S. S. (2004). Effects of chronic nitrogen amendment on dissolved organic matter and inorganic nitrogen in soil solution. Forest Ecology and Management, 196(1), 29-41. McMillan, H., Freer, J., Pappenberger, F., Krueger, T., & Clark, M. (2010). Impacts of uncertain river flow data on rainfall‐runoff model calibration and discharge predictions. Hydrological Processes: An International Journal, 24(10), 1270-1284. Menzel, D. W., & Vaccaro, R. F. (1964). THE MEASUREMENT OF DISSOLVED ORGANIC AND PARTICULATE CARBON IN SEAWATER 1. Limnology and Oceanography, 9(1), 138-142. Montanari, M., Hostache, R., Matgen, P., Schumann, G., Pfister, L., & Hoffmann, L. (2009). Calibration and sequential updating of a coupled hydrologic-hydraulic model using remote sensing-derived water stages. Hydrology and Earth System Sciences, 13(3), 367-380. Mulholland, P. J. (2003). Large-scale patterns in dissolved organic carbon concentration, flux, and sources. In Aquatic ecosystems (pp. 139-159). Academic Press. Mulholland, P. J., Valett, H. M., Webster, J. R., Thomas, S. A., Cooper, L. W., Hamilton, S. K., & Peterson, B. J. (2004). Stream denitrification and total nitrate uptake rates measured using a field 15N tracer addition approach. Limnology and Oceanography, 49(3), 809-820. Näsholm, T., Kielland, K., & Ganeteg, U. (2009). Uptake of organic nitrogen by plants. New phytologist, 182(1), 31-48. Owen, J. S., King, H. B., Wang, M. K., & Sun, H. L. (2010). Net nitrogen mineralization and nitrification rates in forest soil in northeastern Taiwan. Soil Science & Plant Nutrition, 56(1), 177-185. Parajka, J., Merz, R., & Blöschl, G. (2007). Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrological Processes: An International Journal, 21(4), 435-446. Pellerin, B. A., Kaushal, S. S., & McDowell, W. H. (2006). Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds? Ecosystems, 9(5), 852-864. Perakis, S. S., & Hedin, L. O. (2002). Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 415(6870), 416-419. Parajka, J., Merz, R., & Blöschl, G. (2007). Uncertainty and multiple objective calibration in regional water balance modelling: case study in 320 Austrian catchments. Hydrological Processes: An International Journal, 21(4), 435-446. Qualls, R. G., & Haines, B. L. (1992). Biodegradability of dissolved organic matter in forest throughfall, soil solution, and stream water. Soil Science Society of America Journal, 56(2), 578-586. Rastetter, E. B., Perakis, S. S., Shaver, G. R., & Ågren, G. I. (2005). Terrestrial C sequestration at elevated CO2 and temperature: the role of dissolved organic N loss. Ecological Applications, 15(1), 71-86. Rodríguez‐Cardona, B., Wymore, A. S., & McDowell, W. H. (2016). DOC: NO3− ratios and NO3− uptake in forested headwater streams. Journal of Geophysical Research: Biogeosciences, 121(1), 205-217. Sarmiento, J. L., & Gruber, N. (2006). Air-Sea Interface. Ocean Biogeochemical Dynamics. Princeton University Press, Princeton, New Jersey, 503. Schulten, H. R., & Schnitzer, M. (1997). The chemistry of soil organic nitrogen: a review. Biology and Fertility of Soils, 26(1), 1-15. Seitzinger, S. P., Harrison, J. A., Dumont, E., Beusen, A. H., & Bouwman, A. (2005). Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: An overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochemical Cycles, 19(4). Seitzinger, S. P., & Harrison, J. A. (2008). Land-based nitrogen sources and their delivery to coastal systems. In Nitrogen in the marine environment. Academic Press, New York. Sharp, J. H., Beauregard, A. Y., Burdige, D., Cauwet, G., Curless, S. E., Lauck, R., ... & Styles, R. (2004). A direct instrument comparison for measurement of total dissolved nitrogen in seawater. Marine Chemistry, 84(3-4), 181-193. Shi, Q., Zhang, R., Lv, Y., Deng, Y., Elzatahrya, A. A., & Zhao, D. (2015). Nitrogen-doped ordered mesoporous carbons based on cyanamide as the dopant for supercapacitor. Carbon, 84, 335-346. Shih, Y. T., Chen, P. H., Lee, L. C., Liao, C. S., Jien, S. H., Shiah, F. K., ... & Huang, J. C. (2018). Dynamic responses of DOC and DIC transport to different flow regimes in a subtropical small mountainous river. Hydrology and earth system sciences, 22(12), 6579-6590. Soussana, J. F., & Lemaire, G. (2014). Coupling carbon and nitrogen cycles for environmentally sustainable intensification of grasslands and crop-livestock systems. Agriculture, Ecosystems & Environment, 190, 9-17. Sipler, R. E., & Bronk, D. A. (2015). Dynamics of dissolved organic nitrogen. Biogeochemistry of marine dissolved organic matter, 127-232. Sprugel, D. G., Ryan, M. G., Brooks, J. R., Vogt, K. A., & Martin, T. A. (1995). Respiration from the organ level to the stand. In Resource physiology of conifers (pp. 255-299). Academic Press. Stoddard, J. L. (1994). Long-term changes in watershed retention of nitrogen: its causes and aquatic consequences. Taylor, P. G., & Townsend, A. R. (2010). Stoichiometric control of organic carbon–nitrate relationships from soils to the sea. Nature, 464(7292), 1178-1181. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P., & Prentice, I. C. (2016). Mycorrhizal association as a primary control of the CO2 fertilization effect. Science, 353(6294), 72-74. Tranvik, L. J., Downing, J. A., Cotner, J. B., Loiselle, S. A., Striegl, R. G., Ballatore, T. J., Dillon, P., Finlay, K., Fortino, K., & Knoll, L. B. (2009). Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and oceanography, 54(6part2), 2298-2314. Vitousek, P. (1982). Nutrient cycling and nutrient use efficiency. The American Naturalist, 119(4), 553-572. Walsh, J. J., McRoy, C. P., Coachman, L. K., Goering, J. J., Nihoul, J. J., Whitledge, T. E., ... & Dean, K. (1989). Carbon and nitrogen cycling within the Bering/Chukchi Seas: Source regions for organic matter effecting AOU demands of the Arctic Ocean. Progress in Oceanography, 22(4), 277-359. West, A., Lin, C.-W., Lin, T.-C., Hilton, R., Liu, S.-H., Chang, C.-T., Lin, K.-C., Galy, A., Sparkes, R., & Hovius, N. (2011). Mobilization and transport of coarse woody debris to the oceans triggered by an extreme tropical storm. Limnology and oceanography, 56(1), 77-85. Westerberg, I. K., Guerrero, J. L., Younger, P. M., Beven, K. J., Seibert, J., Halldin, S., ... & Xu, C. Y. (2011). Calibration of hydrological models using flow-duration curves. Hydrology and Earth System Sciences, 15(7), 2205-2227. Wiegner, T. N., Seitzinger, S. P., Glibert, P. M., & Bronk, D. A. (2006). Bioavailability of dissolved organic nitrogen and carbon from nine rivers in the eastern United States. Aquatic Microbial Ecology, 43(3), 277-287. Wymore, A. S., Rodríguez-Cardona, B., & McDowell, W. H. (2015). Direct response of dissolved organic nitrogen to nitrate availability in headwater streams. Biogeochemistry, 126(1), 1-10. Xia, J., & Wan, S. (2008). Global response patterns of terrestrial plant species to nitrogen addition. New Phytologist, 179(2), 428-439. Xu, L., Cheng, S., Fang, H., Xin, X., Xu, X., & Tang, H. (2019). Soil inorganic nitrogen composition and plant functional type determine forage crops nitrogen uptake preference in the temperate cultivated grassland, Inner Mongolia. Soil Science and Plant Nutrition, 65(5), 501-510. Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and in the sea: how can it occur?. Biogeochemistry, 13(2), 87-115. Zhang, X., Ward, B. B., & Sigman, D. M. (2020). Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chemical Reviews, 120(12), 5308-5351. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89662 | - |
| dc.description.abstract | 溶解性有機氮(DON)作為一種在氮循環中生物可利用的活性氮,由於其量測上的困難度,導致在過往的研究中常被忽略,可能對氮營養狀態飽和的評估有所低估,因此了解溶解性有機氮的輸出量以及輸出行為有其必要。本研究在福山試驗林集水區,藉由及每週以及颱風事件時採集的雨水、河水、地下水、土壤水資料,透過平日與颱風事件中的營養鹽輸出狀況的比較,進一步討論當中的溶解性有機氮輸出的模式以及碳氮耦合關係的改變。研究結果顯示在福山試驗林集水區中,溶解性有機氮(DON)的平均濃度為~0.31 mg-N L⁻¹,年輸出產量為~18.96 kg ha⁻¹ yr⁻¹,暴雨約佔了全年20%的溶解性有機氮輸出佔比;溶解性無機氮(DIN)的平均濃度為~0.53 mg-N L⁻¹,年輸出產量為~24.04 kg ha⁻¹ yr⁻¹,暴雨約佔了全年17%的溶解性無機氮輸出佔比;溶解性有機碳(DOC)的平均濃度為~0.32 mg-N L⁻¹,年輸出產量為~23.97 kg ha⁻¹ yr⁻¹,颱風約佔了全年38%的溶解性有機碳輸出佔比。福山試驗林集水區的氮輸出在溶解性有機氮和無機氮上呈現負相關,另外溶解性有機碳和溶解性有機氮卻呈現解耦的狀態,並顯示出遠低於世界平均的河川碳氮比(約為0.88)。本研究認為流況的轉移特別是颱風,可能在福山試驗林的碳氮耦合模式貢獻上扮演一個重要的媒介,在不同流況上會改變平常福山試驗林的碳氮耦合,導致集水區呈現出極低的碳氮比,讓我們對於溶解性有機氮的輸出假設以及看法提供了更近一步的了解。 | zh_TW |
| dc.description.abstract | Dissolved organic nitrogen (DON) is a kind of reactive nitrogen in the nitrogen cycling processes, which has been neglected for decades because of the difficulty in measurement, leading to underestimating the nitrogen saturation in the ecosystem. This study compares the pattern of DON losses to previous studies, focusing on the carbon-nitrogen coupling between weekly normal flow and rainstorm event data. We analyze the stream water, groundwater, rainfall, and soil water collected at the Fushan Experimental Forest (FEF) in northeastern Taiwan. Results show that the mean DON concentration of ~0.31 mg-N L⁻¹, the mean DON yield of~18.96 kg ha⁻¹ yr⁻¹, and the rainstorms accounted for 20% of the annual DON yield; the mean DIN concentration of ~0.53 mg-N L⁻¹, the mean DIN yield of~24.04 kg ha⁻¹ yr⁻¹, and the rainstorms accounted for 17% of the annual DIN yield; the mean DOC concentration of ~0.32 mg-N L⁻¹, the mean DOC yield of~23.97 kg ha⁻¹ yr⁻¹, and the rainstorms accounted for 38% of the annual DOC yield. Furthermore, the pattern of DON losses shows the negative correlation between DIN and DON concentration, the relationship between carbon and nitrogen shows decoupling, and the riverine CN ratio of~0.88 is lower than the global average. Our study considers that the shift of flow regimes, especially typhoons/rainstorms, may play an essential role in the change of pattern of the DON losses, which causes the meager CN ratio and provides valuable insights for improving our understanding of carbon-nitrogen coupling in the Fushan Experimental Forest (FEF). | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:08:27Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:08:27Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘 要 I ABSTRACT II 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 OBJECTIVES 3 2 LITERATURE REVIEW 4 2.1 NITROGEN CYCLING 4 2.2 GLOBAL N BUDGET 7 2.3 CARBON-NITROGEN COUPLING 12 2.4 HYPOTHESES OF RIVERINE DISSOLVED ORGANIC NITROGEN LOSSES 17 2.5 FUSHAN EXPERIMENTAL FOREST(FEF) 22 3 MATERIAL AND METHODS 25 3.1 STUDY SITE 25 3.2 FIELD SAMPLING METHODS 26 3.2.1 Regular sampling 26 3.2.2 Event sampling 27 3.3 CHEMICAL ANALYSES 28 3.3.1 Anions analysis - Ion chromatography (IC) 28 3.3.2 TDN analysis 29 3.3.3 DOC analysis 30 3.4 DISCHARGE DATA COLLECTION AND ANALYSIS 31 3.4.1 Observational data collection and processing 31 3.4.2 HBV simulation 32 3.4.3 Probability of exceedance 34 3.4.4 Flux and yield calculation 35 4 RESULTS 37 4.1 NUTRIENT CONCENTRATIONS AND YIELDS 37 4.2 THE PATTERN OF DON LOSSES AT THE FEF CATCHMENT 40 4.3 RIVERINE NUTRIENT ENDMEMBER IN EACH POOL 43 5 DISCUSSION 47 5.1 THE DON SOURCES AT FUSHAN EXPERIMENTAL FOREST (FEF) 47 5.2 FLOW REGIME SHIFTS THE CARBON-NITROGEN COUPLING OF DON LOSSES 51 6 CONCLUSIONS 57 7 REFERENCES 59 | - |
| dc.language.iso | en | - |
| dc.subject | 福山試驗林 | zh_TW |
| dc.subject | 碳氮耦合 | zh_TW |
| dc.subject | 碳氮比 | zh_TW |
| dc.subject | 颱風 | zh_TW |
| dc.subject | 溶解性有機氮 | zh_TW |
| dc.subject | 流況 | zh_TW |
| dc.subject | Fushan Experimental Forest (FEF) | en |
| dc.subject | dissolved organic nitrogen (DON) | en |
| dc.subject | typhoon | en |
| dc.subject | flow regimes | en |
| dc.subject | carbon-nitrogen coupling | en |
| dc.subject | CN ratio | en |
| dc.title | 流況轉移對溶解性有機氮輸出之碳氮耦合關係的影響: 以福山試驗集水區為例 | zh_TW |
| dc.title | Influence of flow regime shift on the carbon-nitrogen coupling relationship of dissolved organic nitrogen export: a case study of the Fushan Experimental Forest catchment | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 梁偉立 | zh_TW |
| dc.contributor.oralexamcommittee | Teng-Chiu Lin;Wei-Li Liang | en |
| dc.subject.keyword | 溶解性有機氮,颱風,流況,碳氮耦合,碳氮比,福山試驗林, | zh_TW |
| dc.subject.keyword | dissolved organic nitrogen (DON),typhoon,flow regimes,carbon-nitrogen coupling,CN ratio,Fushan Experimental Forest (FEF), | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU202203583 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-26 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地理環境資源學系 | - |
| dc.date.embargo-lift | 2023-09-01 | - |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 4.15 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
