請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89661完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 洪挺軒 | zh_TW |
| dc.contributor.advisor | Ting-Hsuan Hung | en |
| dc.contributor.author | 林秀橤 | zh_TW |
| dc.contributor.author | Shiou-Ruei Lin | en |
| dc.date.accessioned | 2023-09-15T16:08:10Z | - |
| dc.date.available | 2023-09-16 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 王兩全。1988。臺灣主要茶樹品種幼木期抗病蟲害性調查。茶業改良場77年年報 147–150。
王兩全。1989。臺灣主要茶樹品種幼木期抗病蟲害性調查。茶業改良場78年年報 136–140。 王新超、楊亞軍。2003。茶樹抗性育種研究現狀。茶葉科學 23(2):94–98。 余錦安、鄭混元、羅士凱、蕭建興、胡智益、楊美珠、林金池、吳聲舜、邱垂豐。2019。2019年度命名茶樹新品種臺茶24號試驗報告。臺灣茶業研究彙報 38:11–28。 吳振鐸、馮鑑淮。1984。七十二年度命名茶樹新品種臺茶十四、十五、十六及十七號的育成。臺灣省茶業改良場研究特刊1號。 李敏郎。2009。植物殺菌劑之使用介紹。pp. 61–89。作物診斷與農藥安全使用手冊。行政院農業委員會農業藥物毒物試驗所。臺灣臺中。 李臺強、張清寬。2003。臺灣茶樹種原圖誌。行政院農業委員會茶業改良場。桃園市。 沈大航、喬文君、劉智、童華榮、陳應娟。2018。茶樹炭疽菌Colletotrichum gloeosporioides和C. acutatum的生物學特性比較及致病毒性初探。西南農業學報 31(5):980–985。 林木連、蕭素女。2004。作物簡介。pp. 2–8。植物保護圖鑑系列4-茶樹保護。行政院農業委員會動植物防疫檢疫局。臺北市。 林秀橤、張育京、林盈宏、鍾嘉綾、洪挺軒。2022。臺灣茶赤葉枯病菌族群對免賴得及甲基多保淨之感受性分析。植物醫學 64:139–148。 林秀橤。2021。茶園病蟲草害整合管理 (IPM)。pp. 3–133。五南圖書出版股份有限公司。臺灣臺北。 邱垂豐、林金池、黃正宗、林儒宏、蕭建興。2009。紅茶新品種-臺茶21號。臺灣茶業研究彙報 28:1–18。 段中漢、張智凱、王群中。2017。芒果炭疽病之藥劑防治與熱處理。臺灣農藥科學 3:65–78。 段中漢、陳冠穎。2020。葡萄晚腐病菌分子鑑定及對殺菌劑之感受性。植物醫學 62:23–32。 胡智益、林祐瑩。2019。臺灣茶樹栽培品種與新品種特性介紹。農業世界雜誌 428:1–16。 唐美君、肖強。2018。茶樹病蟲及天敵圖鑑。pp. 2–12。中國農業出版社。北京。 徐英祥 (譯) (渡邊傳右衛門1940~1943原著)。1995。臺灣之阿薩姆茶樹的栽培與製造。pp. 101–154。臺灣日據時期茶業文獻譯集。 高旭輝。1998a。試析茶樹機械抗病性。茶葉 24(2):73–75。 高旭輝。1998b。論茶樹抗病性的生化基礎。茶葉通訊 (1):27–29。 曹碧貴。2021。植物品種說明書-茶樹臺茶25號。 許如君。2018。殺菌劑作用機制分類。pp. 20–21。農用藥劑分類及作用機制檢索 (第三版) 。行政院農業委員會動植物防疫檢疫局。臺灣臺北。 陳右人。2006。臺灣茶樹育種。植物種苗 8(2):1–20。 陳宗懋、俞永明、程启坤。1989。國外茶葉科技進展。茶葉文摘 (2):1–8。 陳際松。1983。茶樹保護研究成果與檢討。臺灣茶業研究彙報 2:122–133。 彭孟慈。2007。台灣產芒果與草莓炭疽病菌對Strobilurin (QoI) 類及Benzimidazole類殺菌劑之抗感性。國立中興大學植物病理系碩士論文。 曾方明。1998。植物疫情監測技術手冊 (I) 病害篇。台灣省農業藥物毒物試驗所。臺灣臺中市。 曾方明。2004a。茶赤葉枯病。pp. 91–93。植物保護圖鑑系列4-茶樹保護。行政院農業委員會動植物防疫檢疫局。臺灣臺北市。 曾方明。2004b。茶褐色圓星病。pp. 94–96。植物保護圖鑑系列4-茶樹保護。行政院農業委員會動植物防疫檢疫局。臺灣臺北市。 曾方明。2008。台灣茶樹藻斑病。臺灣茶業研究彙報 27:85–88。 曾德賜。2015。農藥藥理與應用-殺菌劑。pp. 24–93。藝軒圖書出版社。新北市。 黃秀華。1988。葡萄晚腐病菌生理、生態及抗藥性菌系之探討。葡萄生產技術 14:125–134。 黃俊德。2006。辣椒炭疽病菌對亞托敏殺菌劑之抗藥性研究及其防治策略。國立屏東科技大學碩士論文。 楊怡真、陳以錚、方柏元、鍾文鑫。2014。台灣番石榴瘡痂病菌對苯并咪唑類 (benzimidazoles) 殺菌劑之感受性探討。植物病理學會刊 23:271–275。 裴家隆、孫守恭。1981。臺灣植物病原真菌抗藥性菌系之調查與研究 (一) 炭疽病菌 (Glomerella cingulata) 對Benomyl之抗藥性研究。植物保護學會會刊 23:207–220。 蔡永生、劉士綸、王雪芳、區少梅。2004。台灣主要栽培茶樹品種兒茶素含量與抗氧化活性之比較。臺灣茶業研究彙報 23:115–132。 蔡志濃、安寶貞、胡瓊月、鄭秀芳。2006。抑制三種果樹炭疽病菌之化學藥劑篩選。植病會刊 15:39–54。 蔡蕣隍、陳冠妏、黃健瑞。2021。台灣南部地區番石榴園炭疽病菌 (Colletotrichum spp.) 多樣性及對殺菌劑之敏感性。台灣農業研究 70(2):140–156。 澤田兼吉。1919。茶樹葉枯病菌。臺灣產菌類調查報告第一篇。pp.572–575。臺灣總督府農事試驗場。(日文) 蕭孟衿、吳聲舜。2018。臺灣山茶的發現、調查、分類學釐清與資源利用現況。臺灣茶業研究彙報 37:1–12。 賴正南。2005。茶作栽培技術修訂版。p.162。行政院農業委員會茶業改良場。臺灣桃園。 靜岡縣植物防疫會。2007。農作物病蟲害診斷指南。pp. 214–222。星光社印刷株式會社。(日文) 戴清良、徐焰平、林清強、王國紅、楊民和。2008。內生炭疽菌在茶樹體內的分布及其內生特性。林業科學 44:84–89。 戴肇鋒、蘇秋竹、張瑞璋。2020。殺菌劑抗藥性行動委員會 (Fungicide Resistance Action Committee) 簡介與臺灣殺菌劑抗藥性研究進展。臺灣農藥科學 9:37–54。 謝文瑞、段中漢。1984。葡萄晚腐病菌對滅紋、四氯丹、免賴得及撲克拉之抗藥性。中華植物保護學會會刊 26:33–39。 謝煥儒。1980。臺灣木本植物病害調查報告(三)。中華林學季刊 13(3):129–139。 羅珮昕、黃盈潔、鍾文全、鄭安秀、鍾文鑫。2010。利用PCR-RFLP調查臺南地區抗苯并咪唑類 (benzimidazoles) 殺菌劑芒果炭疽病菌的發生。植物病理學會刊 19:255–260。 Aguado, A., Pastrana, A. M., de los Santos, B., Romero, F., Sánchez, M. C., and Capote, N. 2014. Efficiency of natural products in the control of Colletotrichum acutatum monitored by realtime PCR. Acta Hortic. 1049:329–334. Ahuja, I., Kissen, R., and Bones, A. M. 2012. Phytoalexins in defense against pathogens. Trends Plant Sci. 17:73–90. Akbar, A., Ali, G. S., Pearson, B. J., Hamid, F. S., and Sumreen, S. 2017. Screening Camelia sinensis germplasm against grey leaf blight of tea. J. Agric. Stud. 5:123–135. Ali, M. E., Hudson, O., Hemphill, W. H., Brenneman, T. B., and Oliver J. E. 2019. First report of resistance to pyraclostrobin, boscalid, and thiophanate-methyl in Colletotrichum gloeosporioides from blueberry in Georgia. Plant Health Prog. 20(4):261–262. Ali, M. E., Hudson, O., Waliullah, S., Cook, J., and Brannen, P. M. 2020. Sensitivity of Colletotrichum isolates collected from strawberries in Georgia to pyraclostrobin, a quinone outside inhibitor (QoI) fungicide. Plant Health Prog. 21(1):69–70. Arafat, Y., Tayyab, M., Khan, M. U., Chen, T., Amjad, H., Awais, S., Lin, X., Lin, W., and Lin, S. 2019. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agronomy 9:466. Araujo, L., Bispo, W. M. S., Rios, J. A., Fernandes, S. A., and Rodrigues, F. D. Á. 2016. Alkaloids and phenolics biosynthesis increases mango resistance to infection by Ceratocystis fimbriata. Bragantia 75:199–211. Arroyave-Toro, J. J., Mosquera, S., and Villegas-Escobar, V. 2017. Biocontrol activity of Bacillus subtilis EA-CB0015 cells and lipopeptides against postharvest fungal pathogens. Biol. Control 114:195–200. Avenot, H. F., and Michailides, T. J. 2010. Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot. 29:643–651. Bala, K., Sood, A. K., Pathania, V. S., and Thakur, S. 2018. Effect of plant nutrition in insect pest management: A review. J. Pharmacogn. Phytochem. 7(4):2737–2742. Banerjee, B. 1983. Arthropod accumulation on tea in young and old habitats. Ecol. Entomol. 8:117–123. Barzman, M., Bàrberi, P., Birch, A. N. E., Boonekamp, P., Dachbrodt-Saaydeh, S., Graf, B., Hommel, B., Jensen, J. E., Kiss, J., Kudsk, P., Lamichhane, J. R., Messean, A., Moonen, A. C., Ratnadass, A., Ricci, P., Sarah, J. L., and Sattin, M. 2015. Eight principles of integrated pest management. Agron. Sustain. Dev. 35:1199–1215. Birari, B. P., Gade, R.M., and Chuodhari, R. K. 2018. Antifungal efficacy of plant extracts, biocontrol agents against Colletotrichum capsici causing anthracnose of chilli. J. Pharmacogn. Phytochem. 7(5):1368–1373. Cai, L., Hyde, K. D., Taylor, P. W. J., Weir, B. S., Waller, J. M., Abang, M. M., Zhang, J. Z., Yang, Y. L., Phoulivong, S., Liu, Z. Y., Prihastuti, H., Shivas, R. G., McKenzie, E. H. C., and Johnston, P. R. 2009. A polyphasic approach for studying Colletotrichum. Fungal Divers. 39:183–204. Campos-Martínez, A., Vel´ azquez-del Valle, M. G., Flores-Moctezuma, H. E., Su´ arezRodríguez, R., Ramírez-Trujillo, J. A., and Hern´ andez-Lauzardo, A. N., 2016. Antagonistic yeasts with potential to control Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. and Colletotrichum acutatum J.H. Simmonds on avocado fruits. Crop Prot. 89:101–104. Cannon, P. F., Damm, U., Johnston, P .R., and Weir, B. S. 2012. Colletotrichum – current status and future directions. Stud. Mycol. 73:181–213. Carbone, I., and Kohn, L. M. 1999. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556. Chakraborty, B. N., Rana, S., Das, S., Das, G., Som, R., Datta, S., and Chakraborty, U. 2005. Defense strategies of tea towards foliar pathogens. Pages 208–215 in: Chakraborty U, Chakraborty B (eds.) Stress Biology. New Delhi: Narosa Publishing House. Chen, C. J., Yu, J. J., Bi, C. W., Zhang, Y. N., Xu, J. Q., Wang, J. X., and Zhou, M. G. 2009. Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology 99:1403–1411. Chen, H. C., Xu, N., Chen, X. F., Chen, Z. M., and Yu, F. L. 1996. On the resistance mechanisms of tea clones to pink tea rust mite. Acta Phytophylacica Sinica 23:137–142. Chen, M., Zhu, X., Zhang, Y., Du, Z., Chen, X., Kong, X., Sun, W., and Chen, C. 2020. Drought stress modify cuticle of tender tea leaf and mature leaf for transpiration barrier enhancement through common and distinct modes. Sci. Rep. 10:6696. doi: 10.1038/s41598-020-63683-4. Chen, T. M., and Chen, S. F. 1982. Diseases of tea and their control in the People’s Republic of China. Plant Dis. 66:961–965. Chen, Y. S., Liu, W., Ye, N. X., Yang, J. F., Wei, R. F., and Fang, S. M. 2009. The difference of biological characteristics between Pestalotiopsis theae and Pestalotipsis guepini and observation of pathogenicity. J. Tea Sci. 29:449–455. Chen, Y., Qiao, W., Zeng, L., Shen, D., Liu, Z., Wang, X., and Tong, H. 2017. Characterization, pathogenicity, and phylogenetic analyses of Colletotrichum species associated with brown blight disease on Camellia sinensis in China. Plant Dis. 101:1022–1028. Chen, Z. M., and Chen, X. F. 1990. The diagnosis of tea diseases and its control. Pages 32–41 in: Shanghai Science and Technology Publishers, Shanghai. Cheruiyot, E. K., Mumera, L. M., Ng’etich, W. K., Hassanali, A., Wachira, F., and Wanyoko, J. K. 2008. Shoot epicatechin and epigallocatechin contents response to water stress in tea. [Camellia sinensis (L.) O. Kuntze] Biosci. Biotechnol. Biochem. 72:1219–1226. Chung, P. C., Wu, H. Y., Wang, Y. W., Ariyawansa, H. A., Hu, H. P., Hung, T. H., Tzean, S. S., and Chung, C. L. 2020. Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Sci. Rep. 10:14664. Chung, W. H., Chung, W. C., Peng, M. T., Yang, H. R., and Huang, J. W. 2010. Specific detection of benzimidazole resistance in Colletotrichum gloeosporioides from fruit crops by PCR-RFLP. New Biotechnol. 27:17–24. Chung, W. H., Ishii, H., Nishimura, K., Fukaya, M., Yano, K., and Kajitani, Y. 2006. Fungicide sensitivity and phylogenetic relationship of anthracnose fungi isolated from various fruit crops in Japan. Plant Dis. 90:506–512. Dai, Q., Xu, Y., Lin, Q., Wang, G., and Yang, M. 2008. Distribution and characteristics of Colletotrichum sp.as an endophyte in tea Plants (Camellia sinensis). Scientia Silvae Sinicae 44:84–89. Damicone, J., and Smith, D. 2009. Fungicide resistance management. Oklahoma Cooperative Extension Fact Sheet F-7663. http://osuextra.com/pdfs/F-7663web.pdf Accessed on Jul 24 2022. Davidse, L. C. 1986. Benzimidazole fungicides: mechanism of action and biological impact. Annu. Rev. Phytopath. 24:43–65. Dean, R., Van Kan, J. A. L., Pretorius, Z. A., Hammond-Kosack, K. E., Di Pietro, A., Spanu, P. D., Rudd, J. J., Dickman, M., Kahmann, R., Ellis, J., and Foster, G. D. 2012. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13:414–430. Dekker, J. 1995. Development of resistance to modern fungicides and strategies for its avoidance. Pages 23–38 In: Lyr, H. (Ed.), Modern Selective Fungicides–Properites, Applications, Mechanisms of Action. Gustav Fisher Verlag, New York. Dettman, J. R., Jacobson, D. J., Turner, E., Pringle, A., and Taylor, J. W. 2003. Reproductive isolation and phylogenetic divergence in Neurospora: comparing methods of species recognition in a model eukaryote. Evolution 57:2721–2741. Diao, Y. Z., Zhang, C., Liu, F., Wang, W. Z., Liu, L., Cai, L., and Liu, X. L. 2017. Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38:20–37. Dickens, J. S. W., and Cook, R. T. A. 1989. Glomerella cingulata on Camellia. Plant Pathol. 38:75–85. Dowling, M., Peres, N., Villani, S., and Schnabel, G., 2020. Managing Colletotrichum on fruit crops: a “Complex” challenge. Plant Dis. 104:2301–2316. Elderfield, J. A. D., Lopez-Ruiz, F. J., van den Bosch, F., and Cunniffe, N. J. 2018. Using epidemiological principles to explain fungicide resistance management tactics: why do mixtures outperform alternations? Phytopathology 108:803–817. FAO. 2016. Report of the working group on climate change of the FAO intergovernmental group on tea. http://www.fao.org/3/a-i5743e.pdf Accessed on 11 Aug 2022. FAOSTAT. 2022. Food and Agriculture Organization Statistical Database. https://www.fao.org/faostat/en/#data/QCL Accessed on 17 January 2022. Forcelini, B. B., Seijo, T. E., Amiri, A., and Peres, N. A. 2016. Resistance in strawberry isolates of Colletotrichum acutatum from Florida to quinone-outside inhibitor fungicides. Plant Dis. 100:2050–2056. Fu, M., Crous, P. W., Bai, Q., Zhang, P. F., Xiang, J., Guo, Y. S., Zhao, F. F., Yang, M. M., Hong, N., Zu, W. X., and Wang, G. P. 2019. Colletotrichum species associated with anthracnose of Pyrus spp. in China. Persoonia 42:1–35. Glass, N. L., and Donaldson, G. C. 1995. Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Appl. Environ. Microbiol. 61:1323–1330. Guo, M., Pan, Y. M., Dai, Y. L., and Gao, Z. M. 2014. First report of brown blight disease caused by Colletotrichum gloeosporioides on Camellia sinensis in Anhui Province, China. Plant Dis. 98:284. Guo, Y. Y., Li, X. X., He, L. F., Li, B. X., Mu, W., and Liu, F. 2020. Effect of Pyrisoxazole on Colletortrichum scovillei infection and anthracnose on chilli. Plnat Dis. 104:551–559. Hahn, M. 2014. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J. Chem. Biol. 7:133–41. Hajra, N. G. 2001. Advances in selection and breeding of tea-a review. J. Planta. Crop. 29:1–17. Hartati, S., Wiyono, S., Hidayat, S. H., and Sinaga, M. S. 2019. Antagonism mechanism of epiphytic yeast against anthracnose pathogen (Colletotrichum acutatum) on chilli. J. Perlind. Tanam. Indones. 23:47–53. Hawkins, N. J., and Fraaije, B. A. 2018. Fitness penalties in the evolution of fungicide resistance. Annu. Rev. Phytopath. 56:339–360. Hazarika, L. K., Bhuyan, M., and Hazarika, B. N. 2009. Insect pests of tea and their management. Ann. Rev. Entomol. 54:267–284. He, L., Li, X., Gao, Y., Li, B., Mu, W., and Liu, F. 2019. Characterization and fungicide sensitivity of Colletotrichum spp. from different host in Shandong, China. Plant Dis. 103:34–43. Hiruma, K. 2019. Plant interactions with parasitic and benefcial Colletotrichum fungi under changing environmental conditions. J. Gen. Plant Pathol. 85:468–470. Hobbelen, P. H. F., Paveley, N., and van den Bosch, F. 2013. The value of alternation or mixtures of fungicides for delaying the selection of resistance against two modes of action in populations of Mycosphaerella graminicola on winter wheat. Phytopathology 101:690–707. Hollomon, D. W. 2015. Fungicide resistance: facing the challenge. Plant Protect. Sci. 51:(4)170–176. Horikawa, T. 1986. Occurrence of benomyl-resistant isolates of Glomerella cingulata (Stoneman) Spaulding et Schrenk in tea fields. Ann. Phytopath. Soc. Japan 52:858–859. Hu, M. J., Grabke, A., Dowling, M. E., Holstein, H. J., and Schnabel, G. 2015. Resistance in Colletotrichum siamense from peach and blueberry to thiophanate-methyl and azoxystrobin. Plant Dis. 99:806–814. Hu., H., Tang, M. J., Guo, H. W., Zhang, G. Z., Gu, Q., Yuan, Y. W., Shang, L., Zhou, H. K., and Liu, Z. 2020. Phototsynthetic rate, Chlorophyll fluorescence in anthracnose infected tea plants. Int. J. Agri. Bio. DOI: 10.17957/IJAB/15.1469. Huber, D. M., and Watson, R. D. 1974. Nitrogen form and plant disease. Ann. Rev. Phytopath. 12:139–165. Hyde, K. D., Nilsson, R. H., Alias, S. A., Ariyawansa, H. A., Blair, J. E., Cai, L., de Cock, A. W. A. M., Dissanayake, A. H., Glockling, S. L., Goonasekara, I. D., Gorczak, M., Hahn, M., Jayawardena, R. S., van Kan, J. A. L., Laurence, M. H., Lévesque, C. A., Li, X. H., Liu, J. K., Maharachchikumbura, S. S. N., Manamgoda, D. S., et al. 2014. One stop shop: Backbone trees for important phytopathogenic genera: I. Fungal Divers. 67:21–125. Hyde, K., Cai, L., Cannon, P., Crouch, J., Crous, P., Damm, U., Goodwin, P., Chen, H., Johnston, P., Jones, E., Shivas, R. G., and Tan, Y. P. 2009. Colletotrichum—names in current use. Fungal Divers. 39(1):147–182. Ikeda, N., and Amma, S. 2004. Diallel analysis of resistance to anthracnose in tea. Breed. Res. 6:135–141. Ishii, H. 2006. Impact of fungicide resistance in plant pathogens on crop disease control and agricultural environment. Jpn. Agric. Res. Q. 40(3):205–211. Ishii, H., Watanabe, H., Yamaoka, Y., and Schnabel, G. 2022. Sensitivity to fungicides in isolates of Colletotrichum gloeosporioides and C. acutatum species complexes and efficacy against anthracnose diseases. Pestic. Biochem. Phys. 182:105049. Ishii, H., Zhen, F., Hu, M., Li, X., and Schnabel, G. 2016. Efficacy of SDHI fungicides, including benzovindiflupyr, against Colletotrichum species. Pest Manag. Sci. 72:1844–1853. Jacobs, R. L., Adhikari, T. B., Pattison, J., Yencho, G. C., Fernandez, G. E., and Louws, F. J., 2019. Inheritance of resistance to Colletotrichum gloeosporioides and C. acutatum in strawberry. Phytopathology 109:428-435. Jayawardena, R. S., Hyde, K. D., Damm, U., Cai, L., Liu, M., Li, X. H., Zhang, W., Zhao, W. S., and Yan, J. Y. 2016a. Notes on currently accepted species of Colletotrichum. Mycosphere 7:1192–1260. Jayawardena, R. S., Hyde, K. D., Jeewon, R., Liy, X. H., and Yan, J. Y. 2016b. Why is it important to correctly name Colletotrichum species? Mycosphere 7:1076–1092. Johnston, P. R., and Jones, D. 1997. Relationships among Colletotrichum isolates from fruit rots assessed using rDNA sequences. Mycologia 89: 420–430. Joshi, R. 2018. A review on Colletotrichum spp. virulence mechanism against host plant defensive factors. J. Med. Plants Stud. 6:64–67. Katan, T., Elad, Y., and Yunis, H. 1989. Resistance to diethofencarb (NPC) in benomyl-resistant field isolates of Botrytis cinerea. Plant Pathol. 38:86–92. Keith, L., Ko, W. H., and Sato, D. M. 2006. Identification guide for diseases of tea (Camellia sinensis). Univ. Hawaii Coop. Ext. Plant Dis. Bull. PD-33. Khanal, B. P., and Knoche, M. 2017. Mechanical properties of cuticles and their primary determinants. J. Exp. Bot. 68:5351–5367. Kim, J. S., Hassan, O., Go, M. J., and Chang, T. 2021. First report of Colletotrichum aenigma causing anthracnose of grape (Vitis vinifera) in Korea. Plant Dis. doi: 10.1094/PDIS-11-20-2458-PDN. Koenraadt, H., Somerville, S. C., and Jones, A. L. 1992. Characterization of mutations in the β-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82:1348–1354. Koller, W. 1999. Chemical approaches to managing plant pathogens. Pages 373–376 in: Handbook of Pest Management. J. R. Ruberson, ed., Marcel Dekker, New York. Kongtragoul, P., Nalumpang, S., Miyamoto, Y., Izumi, Y., and Akimitsu, K. 2011. Mutation at codon 198 of TUB2 gene for carbendazim resistance in Colletotrichum gloeosporioides causing mango anthracnose in Thailand. J. Plant Prot. Res. 51:377–384. Kuc, J. 1995. Phytoalexins, stress metabolism, and disease resistance in plants. Annu. Rev. Phytopath. 33:275–297. Kumar, S., and Deshmukh, R. 2022. Tea market report. https://www.alliedmarketresearch.com/tea-market Accessed on 23 Jan 2022. Lamine, C., Barbier, M., Buurma, J., Blanc, J., Haynes, I., and Noe, E. 2009. Societal assessment of current and novel low input crop protection strategies. Phase 2. http://www.endure-network.eu/content/download/5455/42963/file/ENDURE_DR3.11-validated.pdf Accessed on 31 Jul 2022 LaMondia, J. A. 2001. Management of euonymus anthracnose and fungicide resistance in Colletotrichum gloeosporioides by alternating or mixing fungicides. J. Environ. Hortic. 19:51–55. Lazniewska, J., Macioszek, V. K., and Kononowicz, A. K. 2012. Plant-fungus interface: the role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol. Mol. Plant Pathol. 78:24–30. Lee, J. E., Lee, B. E., Chung, J. O., Jeong, A. H., Lee, S. J., Lee, C. H., and Hong, Y. S. 2010. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: A 1H NMR-Bsaed Metabolomics Study. J. Agric. Food Chem. 58:10582–10589. Lee, S. H., Lin, S. R., and Chen, S. F. 2020. Identification of tea foliar diseases and pest damage under practical field conditions using a convolutional neural network. Plant Pathol. 69:1731–1739. Li, H., Zhou, G, Zhang, H., Liu, J., and Peng, K. 2012. Resistance of Colletotrichum gloeosporioides to benzimidazole fungicide carbendazim in Camellia oleifera nurseries. Acta Phytoath. Sin. 42(2):206–213. Li, X., Ahammed, G. L., Li, Z., Tang, M., Yan, P., and Han, W. 2016. Decreased biosynthesis of jasmonic acid via lipoxygenase pathway compromised caffeine-induced resistance to Colletotrichum gloeosporioides under elevated CO2 in tea seedlings. Phytopathology 106:1270–1277. Lin, S. R., and Huang, T. H. 2017. Current researches of endophytes in Camellia plants. Fung. Sci. 32:31–46. Lin, S. R., Lin, Y. H., Ariyawansa, H. A., Chang, Y. C., Yu, S. Y., Tsai, I., Chung, C. L., and Hung, T. H. 2022. Analysis of the pathogenicity and phylogeny of Colletotrichum species associated with brown blight of tea (Camellia sinensis) in Taiwan. Plant Dis. doi: 10.1094/PDIS-03-22-0509-RE. Lin, S. R., Tsai, C. C., Dai, J. R., Huang, Y. J., Huang, S. Y., and Sun, E. J. 2015. Identification and control of tea sprout wilt disease (Colletotrichum gloeosporioides). Page 131 in: 2015 International Forum on Tea Culture, Creativity and Science, Taiwan. Lin, S. R., Tsai, C. C., Dai, J. R., Huang, Y. J., Liu, T. L., and Sun, E. J. 2016. Study of Non-chemical pesticides control of tea sprout wilt disease (Colletotrichum gloeosporioides). Pages 214–229 in: The 4th Conference on Tea Science and Technology. Lin, S. R., Yu, S. Y., Chang, T. D., Lin, Y. J., Wen, C. J., and Lin, Y. H. 2021. First report of anthracnose caused by Colletotrichum fructicola on tea in Taiwan. Plant Dis. 105:710. Lin, Y. H., and Lin, Y. J. 2016. Recent developments in the molecular detection of Fusarium oxysporum f. sp. cubense. J. Nat. Sci. 2(10):e239. Liu, F., Weir, B. S., Damm, U., Crous, P. W., Wang, Y., Liu, B., Wang, M., Zhang, M., and Cai, L. 2015. Unravelling Colletotrichum species associated with Camellia: employing ApMat and GS loci to resolve species in the C. gloeosporioides complex. Persoonia 35:63–86. Liu, Z. S., and Zhou, J. G. 1994. Progress in the field of tea breeding researchers in the past 30 years in China. J. Tea Sci. 14(2):89–94. Lu, Q., Wang, Y., Li, N., Ni, D., Yang, Y., and Wang, X. 2018. Differences in the characteristics and pathogenicity of Colletotrichum camelliae and C. fructicola Isolated from the tea plant [Camellia sinensis (L.) O. Kuntze]. Front. Microbiol. 9:3060. doi: 10.3389/fmicb.2018.03060. Ma, Z. H., and Michailides, T. J. 2005. Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot. 24:853–863. MacLean, D. J., Braithwaite, K. S., Manners, J. M., and Irwin, J. A. G. 1993. How do we identify and classify fungal pathogens in the era of DNA analysis? Adv. Plant Pathol. 10:207–244. Maymon, M., Zveibil, A., Pivonia, S., Minz, D., and Freeman, S. 2006. Identification and characterization of benomyl-resistant and -sensitive populations of Colletotrichum gloeosporioides from statice (Limonium spp.). Phytopathology 96:542–548. Meetum, P, Leksomboon, C., and Kanjanamaneesathian, M. 2015. First report of Colletotrichum aenigma and C. siamense, the causal agents of anthracnose disease of dragon fruit in Thailand. J. Plant Pathol. 97:402. Mikulic-Petkovsek, M., Schmitzer, V., Jakopic, J., Cunja, V., Veberic, R., Munda, A., and Stampar, F. 2013. Phenolic compounds as defense response of pepper fruits to Colletotrichum coccodes. Physiol. Mol. Plant Pathol. 84:138−145. Miller, M. A., Pfeiffer, W., and Schwartz, T. 2011. The CIPRES science gateway: a community resource for phylogenetic analyses. Pages 1–8 in: the 2011 TeraGrid Conference: extreme digital discovery. Moriwaki, J., and Sato, T. 2009. A new combination for the causal agent of tea anthracnose: Discula theae-sinensis (I. Miyake) Moriwaki and Toy. Sato, comb. Nov. J. Gen. Plant Pathol. 75:359–361. Moyo, P., Cook, G., Basson, E., Steyn, C., Bester, R., Olivier, C., and Fourie, P. H. 2022. Monitoring benzimidazole resistance in Phyllosticta citricarpa using a molecular assay targeting mutations in codons 198 and 200 of the β-tubulin gene. Plant Dis. 106:1374–1380. Muoki, C. R., Maritim, T. M., Oluoch, W. A., Kamunya, S. M., and Bore, J. K. 2020. Combating climate change in the Kenyan tea industry. Front. Plant Sci. 11:339. Muraleedharan, N. 1992. Pest control in Asia. Pages 735–412 in: Wilson KC, Clifford NM (eds.), Tea: Cultivation to Consumption, London: Chapman and Hall. Muraleedharan, N., and Chen, Z. M. 1997. Pests and diseases of tea plant and their management. J. Plant. Crops 25:15–43. O’Donnell, K., and Cigelnik, E. 1997. Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol. Phylogenet. Evol. 7:103–116. Oh, B. J., Kim, K. D., and Kim, Y. S. 1999. Effect of cuticular wax layers of green and red pepper fruits on infection by Colletotrichum gloeosporioides. J. Phytopath. 147:547–552. Orrock, J. M., Rathinasabapathi, B., and Richter, B. S. 2020. Anthracnose in U.S. tea: pathogen characterization and susceptibility among six tea accessions. Plant Dis. 104:1055–1059. Pandey, A. K., Sinniah, G. D., Babu, A., and Tanti, A. 2021. How the global tea industry copes with fungal diseases – challenges and opportunities. Plant Dis. Doi: 10.1094/PDIS-09-20-1945-FE. Pasanen, A. L., Kalliokoski, P., Pasanen, P., Jantunen, M. J., and Nevalainen, A. 1991. Laboratory studies on the relationship between fungal growth and atmospheric temperature and humidity. Environ. Int. 17:225–228. Penzig, A. G. O. 1882. Fungi agrumicoli. Contribuzione allo studio dei funghi parassiti degli agrumi. Michelia 2:385–508. Peres, N. A. R., Souza, N. L., Peever, T. L., and Timmer, L. W. 2004. Benomyl sensitivity of isolates of Colletotrichum acutatum and C. gloeosporioides from citrus. Plant Dis. 88:125–130. Petch, T. 1923. Brown blight (Colletotrichum camelliae Massee). Pages 31–33. In The disease of the tea bush. Macmillan and Co., Limited St. Martin’s Street, London. Pettigrew, J. 2018. World of Tea. 83 Press, Birmingham, AL. Shepard, C. U. 1899. Tea Culture: The Experiment in South Carolina (Report No. 61). U.S. Department of Agriculture, Washington, D.C. https://archive.org/details/teacultureexperi61shep Accessed on 4 May 2022 Photita, W., Taylor, P. W. J., Ford, R., Hyde, K. D., and Lumyong, S. 2005. Morphological and molecular characterization of Colletotrichum species from herbaceous plants in Thailand. Fungal Divers. 18:117–133. Ponmurugan, P., Gnanamangai, B. M., and Manjukarunambika, K. 2019. Architectural effect of different tea clones on the development of blister blight disease. J. Appl. Bot. Food Qual. 92:7–14. Preston, C. A., Lewandowski, C., Enyedi, A. J., and Baldwin, I. T. 1999. Tobacco mosaic virus inoculation inhibits wound induced jasmonic acid–mediated responses within but not between plants. Planta 209:87–95. Punyasiri, N., Abeysinghe, S., and Kumar, V. 2001. Chemical and biochemical basis of the resistance and susceptibility of Sri Lankan tea cultivars to blister blight leaf disease (Exobasidium vexans). Pages 94–97 in: Production Proceedings of 2001 ICOS (Session Ⅱ), Shizuoka, Japan. Rao, S., and Nandineni, M. R. 2017. Genome sequencing and comparative genomics reveal a repertoire of putative pathogenicity genes in chilli anthracnose fungus Colletotrichum truncatum. PLoS ONE 12: e0183567. Ratanacherdchai, K., Wang, H. K., Lin, F. C., and Soytong, K. 2010. ISSR for comparison of cross-inoculation potential of Colletotrichum capsici causing chilli anthracnose. Afr. J. Microb. Res. 4(1):76–83. Raveau, R., Fontaine, J., and Lounes-Hadj Sahraoui, A. 2020. Essential oils ̀as potential alternative biocontrol products against plant pathogens and weeds: a Review. Foods 9:365. Réblová, M., Gams, W., and Seifert, K. A. 2007. Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stu. Mycol. 68:163–191. Riederer, M. 2006. Introduction: biology of the plant cuticle. Pages 1–10 in: Biology of the plant cuticle. Riederer M, Müller C, eds. Blackwell Science Publ, Oxford. Sanders, G., Korsten, L., and Wehner, F. C. 2000. Survey of fungicide sensitivity in Colletotrichum gloeosporioides from different avocado and mango production areas in South Africa. Eur. J. Plant Pathol. 106:745–752. Sangeetha, G., Usharani, S., and Muthukumar, A. 2009. Biocontrol with Trichoderma species for the management of postharvest crown rot of banana. Phytopath. Mediterr. 48:214–225. Sanjay, R., Baby, U. I., Sasidhar, R., and Premkumar, R. 2003. Impact of harvesting methods on grey blight incidence. Newsl. UPASI Tea Res. Found. India. 13:14–26. Sharma, G., and Shenoy, B. D. 2014. Colletotrichum fructicola and C. siamense are involved in chilli anthracnose in India. Arch. Phytopath. Pflanzenschutz 47:1179–1194. Shi, X. C., Wang, S. Y., Duan, X. C., Wang, Y. Z., Liu, F. Q., and Laborda, P. 2021. Biocontrol strategies for the management of Colletotrichum species in postharvest fruits. Crop Prot. 141:105454. doi: 10.1016/j.cropro.2020.105454 Silva, D. N., Talhinhas, P., Várzea, V., Cai, L., Paulo, O. S., and Batista, D. 2012. Application of the Apn2/MAT locus to improve the systematics of the Colletotrichum gloeosporioides complex: an example from coffee (Coffea spp.) hosts. Mycologia 104:396–409. Singh, S. B., Mukherjee, I., Kumar, P., Gopal, M., and Kulshretha, G. 2008. Determination of pesticide residues in IPM and non-IPM sample of mango (Mangifera indica). J. Environ. Sci. Health 43(4):300–306. Sinniah, G. D., Kumara, K. L. W., Karunajeewa, D. G. N. P., and Ranatunga, M. A. B. 2016. Development of an assessment key and techniques for field screening of tea (Camellia sinensis L.) cultivars for resistance to blister blight. Crop Prot. 79:143–149. Smith, B. J., 2008. Epidemiology and pathology of strawberry anthracnose: a North American perspective. Hort. Sci. 43:69–73. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. Stephenson, S. A., Green, J. R., Manners, J. M., and Maclean, D. J. 1997. Cloning and characterisation of glutamine synthetase from Colletotrichum gloeosporioides and demonstration of elevated expression during pathogenesis on Stylosanthes guianensis. Curr. Genet. 31:447–454. Stirling, A. M., Pegg, K. G., and Hayward, A. C. 1998. Interaction of Colletotrichum gloeosporioides, epiphytic microorganisms and nutrients on avocado leaves and friut. Australasian Plant Pathol. 27:169–179. Su, C. F., Hsieh, C. H., and Tsou, C. H. 2009. The confirmation of Camellia formosensis (Theaceae) as an independent species based on DNA sequence analyses. Bot. Stud. 50(4):477–485. Suwan, N., and Na-Lampang, S. 2013. Characterization and evaluation of carbendazim-resistance response of Colletotrichum species. J. Agri. Tech. 9(7):1883–1894. Takeda, Y. 2003. Phenotypes and genotypes related to tea gray blight disease resistance in the genetic resources of tea in Japan. J. Agri. Res. Q. 37:31–35. Tashiro, N., Manabe, K., and Ide, Y. 2012. Emergence and frequency of highly benzimidazole-resistant Colletotrichum gloeosporioides, pathogen of Japanese pear anthracnose, after discontinued use of benzimidazole. J. Gen. Plant Pathol. 78:221–226. Tashiro, N., Manabe, K., and Ide, Y. 2012. Emergence and frequency of highly benzimidazole-resistant Colletotrichum gloeosporioides, pathogen of Japanese pear anthracnose, after discontinued use of benzimidazole. J. Gen. Plant Pathol. 78:221–226. Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., and Fisher, M. C. 2000. Phylogenetic species recognition and species concepts in fungi. Fungal Genet. Biol. 31:21–32. Templeton, M. D., Rikkerink, E. H. A., Solon, S. L., and Crowhurst, R. N. 1992. Cloning and molecular characterization of the glyceraldehyde-3-phosphate dehydrogenase-encoding gene and cDNA from the plant pathogenic fungus Glomerella cingulata. Gene 122:225–230. Thseng, F. M. 2004. Tea Brown Blight. Pages 91–92 in: Plant Protection Illustration 4- Tea Protection. Bureau of Animal and Plant Health Inspection and Quarantine, Council of Agriculture, Executive Yuan, Taiwan. Thseng, F. M., and Chen, J. S. 1984. Studies on the brown blight disease of tea – morphology of the pathogen and factors affecting its sporulation. Taiwan Tea Res. Bull. 3:31–37. Thseng, F. M., and Chen, J. S. 1986. Studies on the brown blight disease of tea (II) –The pathogenicity and factors affecting spore germination of the pathogen. Taiwan Tea Res. Bull. 5:71–82. Tsai, I., Chung, C. L., Lin, S. R., Hung, T. H., Shen, T. L., Hu, C. Y., Hozzein, W. N., and Ariyawansa, H. A. 2020. Cryptic diversity, molecular systematics and pathogenicity of Pestalotiopsis and allied genera causing grey blight disease of tea in Taiwan, with description of a new species of Pseudopestalotiopsis. Plant Dis. 105(2):425–443. Tsai, J. N., Ann, P. J., Hu, C. Y., and Cheng, S. F. 2006. Evaluation of fungicides for suppression of mycelial growth and conidial germination of Colletotrichum species isolated from mango, pomelo and banana fruit. Plant Pathol. Bull. 15:39–54. Tzean, S. S., Tzeng, K. C., Chang, C. A., Tsay, T. T., and Yen, H. F. 2019. List of Plant Diseases in Taiwan. 5th ed. Taiwan Phytopathological Society, Taiwan. van den Bosch, F., Oliver, R., van den Berg, F., and Paveley, N. D. 2014a. Governing principles can guide fungicide resistance management tactic. Annu. Rev. Phytopath. 52:175–195. van den Bosch, F., Paveley, N., van den Berg, F., Hobbelen, P., and Oliver, R. 2014b. Mixtures as a fungicide resistance management tactic. Phytopathology 104:1264–1273. Veloso, J. S., Câmara, M. P., Lima, W. G., Michereff, S. J., and Doyle, V. P. 2018. Why species delimitation matters for fungal ecology: Colletotrichum diversity on wild and cultivated cashew in Brazil. Fungal Biol. 122:677–691. Vieira, W. A. D. S., Bezerra, P. A., da Silva, A. C., Veloso, J. S., Câmara, M. P. S., and Doyle, V. P. 2020. Optimal markers for the identification of Colletotrichum species. Mol. Phylogenet. Evol. 143:106694. doi: 10.1016/j.ympev.2019.106694 Wang, L. Y., Wei, K., Jiang, Y. W., Cheng, H., Zhou, J., He, W., and Zhang, C. C. 2011. Seasonal climate effects on flavanols and purine alkaloids of tea (Camellia sinensis L.). Eur. Food Res. Technol. 233:1049–1055. Wang, L., Wang, Y., Cao, H., Hao, X., Zeng, J., Yang, Y., and Wang, X. 2016. Transcriptome analysis of an anthracnose-resistant tea plant cultivar reveals genes associated with resistance to Colletotrichum camelliae. PLoS One 11(2):e0148535 Wang, X. H., Liu, X., Wang, R., Fa, L., Chen, L., Xin, X. B., Zhang, Y. G., Tian, H., Xia, M. R., and Hou, X. 2021. First report of Colletotrichum aenigma causing walnut anthracnose in China. Plant Dis. 105:225. Wang, Y. C., Hao, X. Y., Wang, L., Xiao, B., Wang, X. C., and Yang, Y. J. 2016a. Diverse Colletotrichum species cause anthracnose of tea plants (Camellia sinensis (L.) O. Kuntze) in China. Sci. Rep. 6:35287. doi: 10.1038/srep35287. Wang, Y. C., Qian, W. J., Li, N. N., Hao, X. Y., Wang, L., Xiao, B., Wang, X. C., and Yang, Y. J. 2016b. Metabolic changes of caffeine in tea plant (Camellia sinensis (L.) O. Kuntze) as defense response to Colletotrichum fructicola. J. Agric. Food Chem. 64:6685–6693. Wedge, D. E., Smith, B. J., Quebedeaux, J. P., and Constantin, R. J., 2007. Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Prot. 26:1449–1458. Weir, B. S., Johnston, P. R., and Damm, U. 2012. The Colletotrichum gloeosporioides species complex. Stud. Mycol. 73:115–180. White, T. J., Bruns, T., Lee, S. J. W. T., and Taylor, J. L. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pages 315–322 in: PCR Protocols: A guide to methods and applications. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White eds. Academic Press, Inc., New York, USA. 482 pp. Wickremasinghe, R. L., and Thirugnanasuntharan, K. 1980. Biochemical approach to thecontrol of Xyleborus fornicatus. Plant Soil 55: 9–15. Wickremasinghe, R. L., Perera, B. P. M., and Perera, P. W. C. 1976. α-Spinasterol, temperature and moisture content as determining factors in the infestation of Camellia sinensis by Xyleborus fornicatus. Biochem. Syst. Ecol. 4:103–110. Wilson, L. L., Madden, L. V., and Ellis, M. A. 1990. Influence of temperature and wetness duration on infection of immature and mature strawberry fruit by Colletotrichum acutatum. Phytopathology 80: 111–116. Win, P. M., Matsumura, E., and Fukuda, K. 2018. Diversity of tea endophytic fungi: cultivar- and tissue preferences. Appl. Ecol. Environ. Res. 16:677–695. Win, P. M., Matsumura, E., and Fukuda, K. 2021. Effectd of pesticides on the diversity of endophytic fungi in tea plants. Microb. Ecol. 82:62–72. Wong, F. P., and Midland, S. L. 2007. Sensitivity distributions of California populations of Colletotrichum cereale to the DMI fungicides propiconazole, myclobutanil, tebuconazole, and triadimefon. Plant Dis. 91:1547–1555. Wong, F. P., Cerda, K. A., Hernandez-Martinez, R., and Midland, S. L. 2008. Detection and characterization of benzimidazole resistance in California populations of Colletotrichum cereale. Plant Dis. 92(2):239–246. Wu, C. J., Chen, H. K., and Ni, H. F. 2020. Identification and characterization of Colletotrichum species associated with mango anthracnose in Taiwan. Eur. J. Plant Pathol. 157:1–15. Xinzhang, G.Y., Yang, J., and Shu, Q. 2012. Physiological mechanism of resistance to anthracnose of different Camellia varieties. Afr J Biotechnol 11(8):2026–2031. Xu, C., Liang, L., Li, Y., Yang, T., Fan, Y., Mao, X., and Wang, Y. 2021. Studies of quality development and major chemical composition of green tea processed from tea with different shoot maturity. LWT-Food Sci. Technol. 142:111055. doi: 10.1016/j.lwt.2021.111055 Yamada, K., and Sonoda, R. A. 2014. Fluorescence microscopic study of the infection process of Discula theae-sinensis in tea. Jpn. Agr. Res. Quart. 48:399–402. Yan, J. Y., Jayawardena, M. M. R. S., Goonasekara I. D., Wang, Y., Zhang, W., Liu, M., Huang, J. B., Wang, Z. Y., Shang, J. J., Peng, Y. L., Bahkali, A., Hyde, K. D., and Li, X. H. 2015. Diverse species of Colletotrichum associated with grapevine anthracnose in China. Fungal Divers. 71:233–246. Yang, L. N., He, M. H., Ouyuang, H. B., Zhu, W., Pan, Z. C., Sui, Q. J., Shang, L. P., and Zhan, J. 2019. Cross-resistance of the pathogenic fungus Alternaria alternata to fungicides with different modes of action. MBC Microbio. 19:205. Yang, S., Wang, H. X., Yi, Y. J., and Tan, L. L. 2019. First Report that Colletotrichum aenigma causes leaf spots on Camellia japonica in China. Plant Dis. 103:2127. Yeats, T. H., and Rose, J. K. C. 2013. The formation and function of plant cuticles. Plant Physiol. 163:5–20. Yoshida, K., and Takeda, Y. 2006. Evaluation of anthracnose resistance among tea genetic resources by wound-inoculation assay. Jpn. Agr. Res. Quart. 40:379–386. Yoshida, K., Ogino, A., Yamada, K., and Sonoda, R. A. 2010. Induction of disease resistance in Tea (Camellia sinensis L.) by plant activators. Jpn. Agr. Res. Quart. 44:391–398. Zhang, L. H., Li, M., Gao, Z. Y., Zhang, F. Z., Xie Y. X., Hu, M. J., and Yang, Y. 2013. Screening and cross-resistance analysis of alternative fungicides against carbendazim-resistant Colletotrichum gloeosporioides Penz. from mango (Mangifera indica L.). Acta Hortic. 992:415–422. Zhang, Y., Liu, H., Xu, Y., He, B., and Zheng, J. 2018. The tea brown blight disease caused by co-infection of Glomerella cingulata f. sp. camelliae and Botryosphaeria dothidea. J. Tea Sci. 38(1):87–93. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89661 | - |
| dc.description.abstract | 茶是臺灣重要經濟作物之一,茶赤葉枯病為茶葉生產中重要限制因子,不僅會危害成熟葉造成赤褐色病斑,更會感染嫩芽及嫩葉,造成黑色壞疽病斑而降低產量與成茶品質。茶赤葉枯病一般仰賴化學藥劑進行防治,然而,近十年來不斷有農友反映本病害發生嚴重程度增加及藥效降低。本研究首先調查在臺灣之病原菌相及其發生生態,測試病原菌對目前核准登記使用之殺菌劑之感受性,並對目前主要種植品種進行抗性檢定,以提出針對茶赤葉枯病之整合性防治管理建議。病原菌相調查結果顯示,分離自八個縣市計86處茶園之139株具病原性之炭疽菌菌株,利用形態學及包含真核生物核糖體內轉錄區 (internal transcribed spacer, ITS)、麩醯胺酸合成酶基因 (glutamine synthetase, GS)、Apn2-Mat1-2 intergenic spacer (ApMat)、微管蛋白 (beta-tubulin, TUB2)、肌動蛋白 (actin, ACT)、鈣調蛋白 (calmodulin, CAL) 和甘油醛-3-磷酸脫氫酶 (glyceraldehyde-3-phosphate dehydrogenase genes, GAPDH) 的多基因親緣分析,鑑定為Colletotrichum camelliae (佔所有分離株的 95.6%)、C. fructicola (3.7%) 及C. aenigma (0.7%),其中C. camelliae在20℃、25℃及30℃下致病力均最強。C. fructicola及C. aenigma是臺灣首次報導之茶樹病原菌,且C. aenigma更為在臺灣首次被報導。針對15種核准登記使用於防治本病害之殺菌劑,測試對臺灣八個主要產茶縣市之37株C. camelliae、三株C. fructicola及一株C. aenigma之菌絲生長抑制率,及對二株C. camelliae、一株C. fructicola及一株C. aenigma之孢子發芽抑制率,結果顯示C. aenigma及C. fructicola對藥劑感受性普遍較C. camelliae菌株高。在登記使用之濃度下,得克利 (tebuconazole)、待克利 (difenoconazole)、扶吉胺 (fluazinam) 及克熱淨 (iminoctadine) 可完全抑制95%測試菌株之菌絲生長,預期在田間具有高防治潛力;免賴得 (benomyl)、甲基多保淨 (thiophanate-methyl)、百克敏 (pyraclostrobin)、嘉賜貝芬 (kasugamycin + carbendazim) 及貝芬四克利 (carbendazim + tetraconazole) 則可完全抑制56–61%以上測試菌株之菌絲生長,具有中等防治潛力;抑制孢子發芽調查中,僅扶吉胺及腈硫醌之登記使用濃度大於其半效應濃度 (median effective concentration, EC50)。C. camelliae菌株對免賴得及甲基多保淨呈敏感性及高抗性兩群,且抗性菌株於各採樣縣市之慣行管理茶區均有發現,進一步分析β-tubulin基因中已知最常發生抗藥性突變之區段,發現高及低感受性菌株僅在第860個核苷酸具有差異,此一點突變造成第198胺基酸由glutamic acid (GAG) 變成alanine (GCG),符合文獻中造成高度抗藥性之機制。運用本研究新建立之接種方法 (菌絲塊對第3/4葉位的葉片進行離葉傷口接種),評估33個茶樹品種對三株C. camelliae之抗性,發現 ‘四季春’ 及 ‘柑仔種’ 相對於對照品種 (‘青心烏龍’) 較為耐病,可做為抗病育種之親本。本研究成果可提供之整合管理策略包括:1. 選擇種植如 ‘四季春’ 或 ‘柑仔種’ 之較耐病茶樹品種;2. 在茶樹剛修剪後及嫩葉生長階段,施用保護性殺菌劑以降低病菌之感染;3. 選擇防治效果較佳之化學藥劑 (如得克利、待克利、扶吉胺及克熱淨)、輪用不同作用機制藥劑及使用混合劑,以降低抗藥性突變菌株產生。 | zh_TW |
| dc.description.abstract | Tea [Camellia sinensis (L.) O. Kuntze] is an economically important crop in Taiwan. Brown blight is a key limiting factor for tea production. It causes reddish-brown symptom on mature leaves and black necrotic spots on shoots and tender leaves, which results in reduction of the yield and quality of tea. Brown blight of tea is generally controlled by chemical agents. However, in the past ten years, farmers have continuously reported that the disease severity is increasing and chemical control is ineffective. In this study, we investigated the population composition and ecology of the infectious agents, tested the sensitivity of pathogens to registered fungicides, and screened the resistance of main tea cultivars to the disease. Finally, we proposed effective integrated disease management strategies for farmers. A collection of 139 Colletotrichum isolates obtained from 86 tea plantations in eight cities/counties were identified as Colletotrichum camelliae (95.6% of all isolates), C. fructicola (3.7%), and C. aenigma (0.7%) by morphological characterization and multilocus phylogenic analysis using the ribosomal internal transcribed spacer (ITS), glutamine synthetase gene (GS), the Apn2-Mat1-2 intergenic spacer (ApMat), beta-tubulin (TUB2), actin, calmodulin (ACT), and glyceraldehyde-3-phosphate dehydrogenase genes (GAPDH). Among the three species, C. camelliae was the most pathogenic at 20℃, 25℃, and 30℃. This is the first report of C. fructicola and C. aenigma as tea pathogens in Taiwan, and the first report of C. aenigma in Taiwan. For the 15 fungicides registered for disease control, we tested the inhibition of mycelial growth of 37 isolates of C. camelliae, three isolates of C. fructicola, and one isolate of C. aenigma from eight major tea-producing counties and cities in Taiwan, as well as the inhibition of spore germination of two isolates of C. camelliae, one isolate of C. fructicola, and one isolate of C. aenigma. C. aenigma and C. fructicola were generally more sensitive to fungicides than C. camelliae. At the recommended concentrations, tebuconazole, difenoconazole, fluazinam, and iminoctadine which completely inhibited the mycelial growth of 95% isolates are expected to have high control efficacies in the field. In addition, benomyl, thiophanate-methyl, pyraclostrobin, kasugamycin + carbendazim, and carbendazim + tetraconazole completely inhibited the mycelial growth of 56–61% isolates and considered to have an intermediate potential of control efficacy. Regarding the inhibitory effect on spore germination, only the recommended concentrations of fluazinam and dithianon were greater than the median effective concentration (EC50) values of all isolates. According to the survey of fungicide sensitivity, C. camelliae isolates resistant and highly sensitive to methyl benzimidazole carbamates (MBC) fungicides, benomyl and thiophanate-methyl, were found. The resistant isolates were sampled from conventional tea plantations in all cities/counties. A segment of β-tubulin that is known to have the most frequent fungicide resistance mutations was sequenced. The sensitive and resistant isolates differed only at the 860th nucleotide, which caused the 198th amino acid changed from glutamic acid (GAG) to alanine (GCG). The phenomenon conforms to the mechanism of the emergence of high fungicide resistance in the literature. The newly developed inoculation method (wounded inoculation of detached 3rd/4th tea leaves with mycelial discs) was used to evaluate the resistance of 33 tea cultivars to 3 isolates of C. camelliae. Cutlivars, ‘Shy Jih Chuen’ and ‘Gan Zai Chung’, which showed more tolerance than the control cultivar ‘Chin-shin Oolong’, could be used as the parental candidate for resistance breeding of tea in the future. Based on the findings of this research, the integrated management strategies that can be provided include: 1. planting of disease-tolerant tea cultivar such as ‘Shy Jih Chuen’ or ‘Gan Zai Chung’; 2. preventive application of fungicides immediately after tea pruning and at a young leaf stage; 3. use of effective fungicides (such as tebuconazole, difenoconazole, fluazinam, and iminoctadine), rotation of fungicides with different mode of actions, and use of fungicide mixtures to reduce the emergence of fungicide-resistant mutants. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:08:10Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:08:10Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT v 第一章 緒言 1 1.1 茶 2 1.1.1 重要性 2 1.1.2 茶樹品種 2 1.1.3 茶樹葉部病害 3 1.1.4 茶樹抗病性研究 5 1.2 茶赤葉枯病 6 1.2.1 病徵 6 1.2.2 病原菌 7 1.2.3 發生情形 8 1.2.4 病原菌的接種 10 1.2.5 國內茶樹上核准登記使用之殺菌劑 12 1.2.6 抗藥性研究及抗藥性管理 14 1.3 研究動機 15 1.4 參考文獻 22 第二章 臺灣茶赤葉枯病病原性與親緣分析 33 2.1 Abstract 34 2.2 中文摘要 35 2.3 Introduction 36 2.4 Materials and Methods 39 2.4.1 Sample collection, pathogenicity, and isolation of causal agents. 39 2.4.2 DNA extraction, PCR amplification, and sequencing. 40 2.4.3 Phylogenetic analysis. 41 2.4.4 Effect of temperature on mycelial growth. 42 2.4.5 Effect of wounding and leaf maturity on lesion development. 42 2.4.6 Effect of temperature on lesion development. 44 2.5 Results 44 2.5.1 Sample collection and isolation of causal agents. 44 2.5.2 Phylogenetic and morphological analysis. 45 2.5.3 Effect of temperature on mycelial growth. 46 2.5.4 Effects of wounding and leaf maturity on lesion development. 46 2.5.5 Effect of temperature on lesion development. 48 2.6 Discussion 48 2.7 Literature Cited 52 第三章 臺灣茶赤葉枯病菌族群對免賴得及甲基多保淨之感受性分析 102 3.1 摘要 103 3.2 Abstract 104 3.3 前言 105 3.4 材料方法 107 3.4.1 病原菌來源 107 3.4.2 供試藥劑 107 3.4.3 藥劑對茶赤葉枯病菌菌絲生長之影響 108 3.4.4 β-tubulin抗藥性突變高風險區段之序列分析 108 3.4.5 抗感性C. camelliae菌株致病力之比較 109 3.5 結果 110 3.5.1 茶赤葉枯病菌菌株對免賴得及甲基多保淨之藥劑感受性 110 3.5.2 抗感性C. camelliae菌株之β-tubulin 序列差異 110 3.5.3 抗感性C. camelliae菌株之致病力比較 111 3.6 討論 111 3.7 引用文獻 113 第四章 臺灣茶赤葉枯病菌對15種殺菌劑之敏感性調查 126 4.1 摘要 127 4.2 Abstract 128 4.3 前言 129 4.4 材料方法 131 4.4.1 病原菌來源 131 4.4.2 供試藥劑 131 4.4.3 藥劑對茶赤葉枯病菌菌絲生長抑制測試 132 4.4.4 藥劑對茶赤葉枯病菌孢子發芽抑制測試 133 4.4.5 藥劑於登記使用濃度下可完全抑制之菌株比例 134 4.5 結果 134 4.5.1 藥劑對茶赤葉枯病菌菌絲生長抑制 134 4.5.2 藥劑對茶赤葉枯病菌孢子發芽抑制 135 4.5.3 藥劑田間防治潛力之評估 136 4.6 討論 137 4.7 引用文獻 140 第五章 臺灣茶樹品種對茶赤葉枯病菌之抗性測定 158 5.1 摘要 159 5.2 Abstract 160 5.3 臺灣茶葉的種植現況 161 5.4 臺灣茶樹品種 162 5.5 茶赤葉枯病之抗性檢定 162 5.6 茶樹品種對茶赤葉枯病的抗感病性 164 5.7 抗病育種的展望 165 5.8 引用文獻 166 第六章 結論 172 6.1 引用文獻 177 Appendices 181 博班修業期間著作目錄 182 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | Colletotrichum camellia | zh_TW |
| dc.subject | Colletotrichum fructicola | zh_TW |
| dc.subject | 病害整合管理 | zh_TW |
| dc.subject | Colletotrichum aenigma | zh_TW |
| dc.subject | 多基因親緣分析 | zh_TW |
| dc.subject | 接種 | zh_TW |
| dc.subject | 溫度 | zh_TW |
| dc.subject | 抗藥性 | zh_TW |
| dc.subject | 抗病性篩選 | zh_TW |
| dc.subject | inoculation | en |
| dc.subject | Colletotrichum camellia | en |
| dc.subject | Colletotrichum fructicola | en |
| dc.subject | Colletotrichum aenigma | en |
| dc.subject | multilocus phylogenetic analysis | en |
| dc.subject | temperature | en |
| dc.subject | fungicide resistance | en |
| dc.subject | disease resistance screening | en |
| dc.subject | integrated disease management | en |
| dc.title | 臺灣茶赤葉枯病菌之鑑定與藥劑感受性調查 | zh_TW |
| dc.title | Identification and Fungicide Sensitivity of Colletotrichum spp. Causing Brown Blight of Tea in Taiwan | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 鍾嘉綾 | zh_TW |
| dc.contributor.coadvisor | Chia-Lin Chung | en |
| dc.contributor.oralexamcommittee | 林盈宏 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Hsin Chung;Chi-Yu Chen;Iou-Zen Chen;Ying-Hong Lin | en |
| dc.subject.keyword | Colletotrichum camellia,Colletotrichum fructicola,Colletotrichum aenigma,多基因親緣分析,接種,溫度,抗藥性,抗病性篩選,病害整合管理, | zh_TW |
| dc.subject.keyword | Colletotrichum camellia,Colletotrichum fructicola,Colletotrichum aenigma,multilocus phylogenetic analysis,inoculation,temperature,fungicide resistance,disease resistance screening,integrated disease management, | en |
| dc.relation.page | 182 | - |
| dc.identifier.doi | 10.6342/NTU202203622 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2022-09-24 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 植物病理與微生物學系 | - |
| dc.date.embargo-lift | 2024-12-31 | - |
| 顯示於系所單位: | 植物病理與微生物學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf | 4.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
