請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89660完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡明哲柯淳涵 | zh_TW |
| dc.contributor.advisor | Ming-Jer TsaiChun-Han Ko | en |
| dc.contributor.author | 許峻奇 | zh_TW |
| dc.contributor.author | Chun-Chi Hsu | en |
| dc.date.accessioned | 2023-09-15T16:07:53Z | - |
| dc.date.available | 2023-09-16 | - |
| dc.date.copyright | 2023-09-15 | - |
| dc.date.issued | 2022 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | References
Beneš, H., Rӧsner, J., Holler, P., Synková, H., Kotek J., Horák, Z., 2007. Glycolysis of flexible polyurethane foam in recycling of car seats: Polymers for Advanced Technologies. Polymers for Advanced Technologies. 18. 149–156. https://doi.org/10.1002/pat.810 Borda, J., Pasztor, G., Zsuga, M., 2000. Glycolysis of polyurethane foams and elastomers. Polymer Degradation and Stability. 68, 419-422. https://doi.org/10.1016/S0141-3910(00)00030-6 Borda, J., Racz, A., Zsuga, M., 2002. Recycled polyurethane elastomers: a universal adhesive. Journal of Adhesion Science and Technology. 16, 1225-1234. https://doi.org/10.1163/156856102320256864 Chao-Hsiung, W., Ching-Yuan, C., Chien-Min, C., Hung-Chang, H., 2003. Glycolysis of waste flexible polyurethane foam. Polymer Degradation and Stability. 80(1). 103-111. https://doi.org/10.1016/S0141-3910(02)00390-7 Chao-Hsiung, W., Ching-Yuan, C., Jiunn-Kuen, L., 2002. Glycolysis of rigid polyurethane from waste refrigerators. Polymer Degradation and Stability. 75, 413–421. https://doi.org/10.1016/S0141-3910(01)00237-3 Datta, J., 2012. Effect of glycols used as glycolysis agents on chemical structure and thermal stability of the produced glycolysates. Journal of Thermal Analysis and Calorimetry. 109, 517-520. https://doi.org/10.1007/s10973-012-2530-0 Datta, J., Haponiuk, JT., 2008. Advanced coating of interior of tanks for rising environmental safety - novel applications of polyurethanes. Polish Maritime Research. 15, 8-13. https://doi.org/10.2478/v10012-007-0070-5 Datta, J., Rohn, M., 2007. Thermal properties of polyurethanes synthesized using waste polyurethane foam glycolysates. Journal of Thermal Analysis and Calorimetry. 88, 437-40. https://doi.org/10.1007/s10973-006-8041-0 Diego, S., Ana, M.B., Antonio, L., Carolina. M., Juan F.R., 2014. Novel polyol initiator from polyurethane recycling residue. Journal of Material Cycles and Waste Management. 16(3). 525-532. https://doi.org/10.1007/s10163-013-0205-y Dinwoodie, J.M., 1978. The Properties and Performance of Particleboard Adhesives. Journal of the Institute of Wood Science. 8, 59-67. Duygu, C., Sedat, S., 2021. Polyurethane adhesive based on polyol monomers BHET and BHETA depolymerised from PET waste. International Journal of Adhesion and Adhesives. 105, 102799. https://doi.org/10.1016/j.ijadhadh.2020.102799 Engels, H.W., Pirkl, H.G., Albers, R., Albach, R.W., Krause, J., Hoffmann, A., Casselmann, H., Dormish, J., 2013. Polyurethanes: Versatile Materials and Sustainable Problem Solvers for Todays Challenges. Angewandte Chemie International Edition. 52, 2-22. https://doi.org/10.1002/anie.201302766 EPA., 2019. Glycolysis of recycling waste PU foam from automobile shredder residue. EPA., 2022. Monthly Report on Environmental Protection Statistics. 398. Freeman, G.G., Krebich, S., 1968. Estimating Durability of Wood Adhesives in Vitro. Forest Products Journal. 18, 39-43. Kemona, A., Piotrowska, M., 2020. Polyurethane Recycling and Disposal: Methods and Prospects. Polymers. 12, 1752. https://doi.org/10.3390/polym12081752 Ming-Shan, H., Y-Ching, S., Wen-Jau, L., 2014. Adhesion and Coating Performances of waterborne polyurethane resins containing liquefied lignin. Quarterly Journal of Forest Research 36(3). 217-226. Modesti, M., Simioni, F., Munari, R., Baldoin, N., 1995. Recycling of flexible polyurethane foams with low aromatic amine content. Reactive and Functional Polymers. 26. 157-65. https://doi.org/10.1016/1381-5148(95)00031-A Molero, C., Antonio, L., Rodríguez, J.F., 2008. Influence of the use of recycled polyols obtained by glycolysis on the preparation and physical properties of flexible polyurethane. Journal of Applied Polymer Science. 109(1). 617-626. https://doi.org/10.1002/app.28136 Molero, C., de Lucas, A., Rodríguez, J.F., 2006. Purification by liquid extraction of recovered polyols. Solvent Extraction and Ion Exchange. 24(5). 719-730. https://doi.org/10.1080/07366290600762587 Molero, C., de Lucas, A., Rodríguez, J.F., 2006. Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: glycol influence. Polymer Degradation and Stability. 91(2). 221-228. https://doi.org/10.1016/j.polymdegradstab.2005.05.008 Molero, C., de Lucas, A., Rodríguez, J.F., 2008. Recovery of polyols from flexible polyurethane foam by “split-phase” glycolysis: study on the influence of reaction parameters. Polymer Degradation and Stability. 93(2). 353-361. https://doi.org/10.1016/j.polymdegradstab.2007.11.026 Molero, C., de Lucas, A., Rodríguez, J.F., 2009. Activities of octoate salts as novel catalysts for the transesterification of flexible polyurethane foams with diethylene glycol. Polymer Degradation and Stability. 94(4). 533-539. https://doi.org/10.1016/j.polymdegradstab.2009.01.021 Morooka, H., Nakakawaji, T., Okamoto, S., Araki, K., Yamada, E., 2005. Chemical recycling of rigid polyurethane foam for refrigerators. Polymer Preprints. 54(1). 1951. Murai, M., Sanou, M., Fujimoto, T., Baba, F., 2003. Glycolysis of rigid polyurethane foam under various reaction conditions. Journal of Cellular Plastics. 39(1). 15-27. https://doi.org/10.1177/002195503031021 Nikje, M.M.A., Garmarudi, AB., 2010. Regeneration of polyol by pentaerythritol-assisted glycolysis of flexible polyurethane foam wastes. Iranian Polymer Journal. 19(4). 287-295. Nikje, M.M.A., Mohammadi, FHA., 2010. Polyurethane foam wastes recycling under microwave irradiation. Polym-Plast Technol. 49. 818-821. https://doi.org/10.1080/03602551003749635 Nikje, M.M.A., Nikrah, M., 2007 Chemical recycling and liquefaction of rigid polyurethane foam wastes through microwave assisted glycolysis process. Journal of Macromolecular Science, 44(6). 613-617. https://doi.org/10.1080/10601320701285003 Nikje, M.M.A., Nikrah, M., Haghshenas, M., 2007. Microwave assisted “split-phase” glycolysis of polyurethane flexible foam wastes. Polymer Bulletin. 59. 91-104. https://doi.org/10.1007/s00289-007-0753-1 Nuno, G., Artur, F., Ana, B.T., 2019. Cure and performance of castor oil polyurethane adhesive. International Journal of Adhesion and Adhesives. 95(102413). https://doi.org/10.1016/j.ijadhadh.2019.102413 Plastics Europe Market Research Group (PEMRG)/Consultic Marketing & Industrieberatung GmbH, World Plastics Production 1950 – 2011 Plastics Europe, 2022. Plastics - the Facts 2021. An Analysis of European Plastics Production, Demand and Waste Data. Brussels, Belgium Ravindra, V.G., Shrray, S., Prakash A.M., Pradeep T.G., 2019. Recycling and Disposal Methods for Polyurethane Wastes: A Review. Open Journal of Polymer Chemistry. 9. 39-51. https://doi.org/10.4236/ojpchem.2019.92004. Rudolf, B., Lucie, Z., Dita, M., 2019. Recycling of rigid polyurethane foam: Micro-milled powder used as active filler in polyurethane adhesives. Journal of Applied Polymer Science. 137. e49095. https://doi.org/10.1002/app.49095 Scheirs J., 1998. Polymer recycling. UK: John Wiley & Sons. 339-377. Shuchang, X., Feifeng, H., Mituru, O., Takao, H., Yoshio, I., 1993. General purpose adhesives prepared from chemically decomposed waste rigid polyurethane foams. Kobunshi Ronbunshu. 50(11). 847-853. https://doi.org/10.1295/koron.50.847 Simioni, F., Bisello, S., Tavan, M., 1983. Polyol recovery from rigid polyurethane waste. Cellular Polymers. 2(4). 281-293. Simioni, F., Modesti, M., Rienzi, S.A., 1987. Polyol recovery from elastomer polyurethane waste. Cellular Polymers. 6. 27-41. Simón, D., Borreguero, A.M., De Lucas, A., Rodríguez, J.F., 2014. Glycolysis of flexible polyurethane wastes containing polymeric polyols. Polymer Degradation and Stability. 109, 115-121. https://doi.org/10.1016/j.polymdegradstab.2014.07.009 Simón, D., Borreguero, A.M., De Lucas, A., Rodríguez, J.F., 2015. Glycolysis of viscoelastic flexible polyurethane foam wastes. Polymer Degradation and Stability. 116, 23-25. http://dx.doi.org/10.1016/j.polymdegradstab.2015.03.008 Simón, D., García, M.T., de Lucas, A., Borreguero, A.M., Rodríguez, J.F., 2013. Glycolysis of flexible polyurethane wastes using stannous octoate as the catalyst: study on the influence of reaction parameters. Polymer Degradation and Stability. 98(1). 144-149. https://doi.org/10.1016/j.polymdegradstab.2012.10.017 Štěpán. H., Přemysl. Š., Martin. B., Ondřej. S., Rudolf, B., 2018. Influence of Using Recycled Polyurethane Particles as a Filler on Properties of Polyurethane Adhesives for Gluing of Wood: Recycled PU in wood glue. Bioresources. 13(2). 2592-2601. https://doi.org/10.15376/biores.13.2.2592-2601 Tranghton, G.E., Chow, S., 1968. Accelerated Aging of Glue-Wood Bonds. Journal of the Institute of Wood Science. 21. 29-34. Wilson, J.B., 1981. Isocyanate Adhesive as Binders for Composition Board. Adhesives age. 41. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89660 | - |
| dc.description.abstract | 廢棄汽車的坐墊泡棉係以聚氨酯(Polyurethane)作為主要成分,但因其體積較大、密度低、難分解的特性,以至於焚化爐及掩埋場均不易處理,因此亟需另尋其他辦法處理這些廢棄泡棉。本研究係以廢棄汽車坐墊泡棉作為原料,利用醇解(Glycolysis)進行降解以取得多元醇(Polyol)。後以傅立葉轉換紅外光譜,分析多元醇化學鍵結,並探討其他基本性質如黏度、分子量、羥價與固形分。並將多元醇重新與二異氰酸酯聚合作為合板與集成材的膠合劑,探討其可行性。研究結果發現,多元醇可運用分子量範圍約在9100至9850之間。利用傅立葉轉換紅外光譜的圖譜分析,了解醇解可將聚氨酯當中的NCO基團降解,產生聚醚多元醇(Polyether polyol)以及胺類化合物(amino group compound)。此等醇解物之黏度、分子量、羥價與固形分,皆會受到添加的二乙二醇(Diethylene glycol, DEG)量的影響。在與二異氰酸鹽(Methylene diphenyl diisocyanate, MDI)重新聚合時,較高的MDI/Polyol (w/w, %)比例,具有較高的膠合強度以及耐熱、耐水性。膠合劑用於合板熱壓製程時,70 ℃ 、15 - 20 min為較合適的熱壓條件,做為兩層同等級集成材的膠合劑時,其MOE約在6.5-7.5 GPa之間,MOR則是在50-56 MPa之間。若以台灣每年產生約六千餘噸廢棄汽車坐墊泡棉估計,若將其全數利用醇解製得多元醇而利用在木材膠合劑上,將有潛力取代目前常用之尿素膠或RF膠等,達到循環經濟的目的。 | zh_TW |
| dc.description.abstract | Automobile cushion foam is made based on polyurethane. Because of its bulk, low density and low degradability, it is difficult to be treated by current incinerators and landfills. There is an urgent need to find alternatives to treat waste automobile cushion foam. In this study, waste automobile cushion foam was glycolyzed by diethylene glycol (DEG) to obtain polyol. Then, the chemical bonding of polyols was analyzed by Fourier transform infrared spectroscopy (FTIR). Other basic properties such as viscosity, molecular weight, hydroxyl value, and solid fraction were also been analyzed. The feasibility of re-polymerizing polyol with methylene diphenyl diisocyanate (MDI) as an adhesive for plywood and glulam was also investigated. The study found that polyols can be used in the molecular weight range of approximately 9100 to 9850. FTIR revealed that glycolysis degraded isocyanate group of polyurethane to produce polyether polyol and amino group compound. The viscosity, molecular weight, hydroxyl value, and solid content of these polyols are affected by the amount of DEG added. Higher MDI/Polyol (w/w, %) ratio in the repolymerization with MDI result in higher bonding strength, heat, and water resistance. When the adhesive is used in the hot pressing process of plywood, 70 oC and 15 - 20 min are the more suitable hot-pressing conditions. When the adhesive is used in two-layer identical grade glulam, modulus of elasticity (MOE) are about 6.5-7.5 GPa. The modulus of rupture (MOR) are between 50-56 MPa. Under the estimation for about 6,000 tons of waste automobile cushion foam generated annually, glycolyzed polyol will have the potential to replace all the urea or resorcinol formaldehyde wood adhesive in Taiwan. By doing do could assist achieving the circular economy. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-15T16:07:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-15T16:07:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
口試委員審定書 i 謝辭 ii 摘要 iii Abstract iv List of Figures vii List of Tables viii Chapter 1 Introduction 1 1.1 General Background Information 1 1.2 Objective 2 Chapter 2 Literature Review 3 2.1 Polyurethane 3 2.2.1 Mechanical Recycle 6 2.2.2 Chemical Recycle 8 2.3 Polyurethane Adhesives 12 Chapter 3 Materials and Methods 13 3.1 Materials 13 3.2 Glycolysis of Polyurethanes 14 3.3 Hydroxyl Value Determination 16 3.4 Viscosity 17 3.5 Molecular Weight 17 3.6 Solid Content 17 3.7 FTIR 17 3.8 Plywood 18 3.9 Glulam 21 3.9.1 Glulam Peeling Rate 23 3.9.2 Glulam Strength Test 24 Chapter 4 Results and Discussion 25 4.1 Glycolysis Polyol Characteristic 25 4.1.1 Viscosity 25 4.1.2 Molecular Weight 27 4.1.3 Solid Content 29 4.1.4 Hydroxyl Value 30 4.1.5 FTIR 32 4.2 PU Adhesives Use at Plywood 36 4.2.1 Effect of Viscosity and Molecular Weight 38 4.2.2 Effect of Adhesive Formula 40 4.2.3 Effect of Hot Press Temperature 42 4.2.4 Effect of Hot Press Time 44 4.3 PU Adhesives Use at Glulam 48 4.4 Feasibility Analysis 52 Chapter 5 Conclusion 55 References 57 Appendix 62 | - |
| dc.language.iso | en | - |
| dc.subject | 廢汽車泡棉 | zh_TW |
| dc.subject | 循環經濟 | zh_TW |
| dc.subject | 醇解 | zh_TW |
| dc.subject | 多元醇 | zh_TW |
| dc.subject | 膠合劑 | zh_TW |
| dc.subject | 合板 | zh_TW |
| dc.subject | 集成材 | zh_TW |
| dc.subject | 聚氨酯 | zh_TW |
| dc.subject | polyols | en |
| dc.subject | Waste automobile foam | en |
| dc.subject | polyurethane | en |
| dc.subject | glycolysis | en |
| dc.subject | wood adhesives | en |
| dc.subject | plywood | en |
| dc.subject | glulam | en |
| dc.subject | circular economy | en |
| dc.title | 醇解回收汽車泡棉於木材膠合劑之應用 | zh_TW |
| dc.title | Application of glycolyzed recycled automobile PU foam on wood adhesive | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 110-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊閔傑 | zh_TW |
| dc.contributor.oralexamcommittee | Te-Hsin Yang;Min-Jay Chung | en |
| dc.subject.keyword | 廢汽車泡棉,聚氨酯,醇解,多元醇,膠合劑,合板,集成材,循環經濟, | zh_TW |
| dc.subject.keyword | Waste automobile foam,polyurethane,glycolysis,polyols,wood adhesives,plywood,glulam,circular economy, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202203296 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2022-09-26 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 森林環境暨資源學系 | - |
| dc.date.embargo-lift | 2027-09-27 | - |
| 顯示於系所單位: | 森林環境暨資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-110-2.pdf 未授權公開取用 | 3.16 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
