請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8965完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 于天立(Tian-Li Yu) | |
| dc.contributor.author | Si-Cheng Chen | en |
| dc.contributor.author | 陳思誠 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:05:15Z | - |
| dc.date.available | 2009-08-19 | |
| dc.date.available | 2021-05-20T20:05:15Z | - |
| dc.date.copyright | 2009-08-19 | |
| dc.date.issued | 2009 | |
| dc.date.submitted | 2009-08-14 | |
| dc.identifier.citation | [1] D. H. Ackley. A connectionist machine for genetic hillclimbing. Kluwer Academic Publishers, Norwell, MA, USA, 1987.
[2] S. Baluja. Population-based incremental learning: A method for integrating genetic search based function optimization and competitive learning. Technical report, Carnegie Mellon University, Pittsburgh, PA, USA, 1994. [3] J. S. D. Bonet, C. L. Isbell, and P. Viola. Mimic: Finding optima by estimating probability densities. In M. J. M.C. Mozer and T. Petsche, editors, Advances in Neural Information Processing Systems, volume 9, page 424. The MIT Press, 1997. [4] D. Coffin and R. Smith. The limitations of distribution sampling for linkage learning. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 364–369, Sept. 2007. [5] C. Echegoyen, R. Santana, J. A. Lozano, and P. Larranaga. The impact of exact probabilistic learning algorithms in edas based on bayesian networks. Linkage in Evolutionary Computation, pages 109–139, 2008. [6] L. Emmendorfer and A. Pozo. A clustering-based approach for linkage learning applied to multimodal optimization. Linkage in Evolutionary Computation, pages 225–248, 2008. [7] R. Etxeberria and P. Larranaga. Global optimization using bayesian networks. In Second Symposium on Artificial Intelligence (CIMAF-99), pages 332–339, 1999. [8] S. Forrest and M. Mitchell. What makes a problem hard for a genetic algorithm? some anomalous results and their explanation. In Machine Learning, pages 285–319, 1993. [9] D. E. Goldberg. Simple genetic algorithms and the minimal, deceptive problem. In Genetic algorithms and simulated annealing, pages 74–88, 1987. [10] D. E. Goldberg. Genetic algorithms and walsh functions: Part i, a gentle introduction. In Complex Systems, volume 3, pages 129 – 152, 1989. [11] D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1989. [12] D. E. Goldberg. The Design of Innovation: Lessons from and for Competent Genetic Algorithms, chapter 12, pages 187–216. Kluwer Academic Publishers, Norwell, MA, USA, 2002. [13] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic algorithms, noise, and the sizing of populations. In Complex Systems, volume 6, pages 333 – 362, 1992. [14] G. Harik. Linkage learning via probabilistic modeling in the ecga. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, 1999. [15] G. Harik, E. Cantu-Paz, D. E. Goldberg, and B. L. Miller. The gambler’s ruin problem, genetic algorithms, and the sizing of populations. Evolutionary Computation, 7(3):231–253, 1999. [16] G. Harik, F. Lobo, and D. Goldberg. The compact genetic algorithm. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 523–528, May 1998. [17] G. R. Harik. Finding multimodal solutions using restricted tournament selection. In Proceedings of the 6th International Conference on Genetic Algorithms, pages 24–31, San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. [18] P. Larranaga and J. A. Lozano, editors. Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, 2002. [19] C. Lima, M. Pelikan, D. Goldberg, F. Lobo, K. Sastry, and M. Hauschild. Influence of selection and replacement strategies on linkage learning in boa. In Evolutionary Computation, 2007. CEC 2007. IEEE Congress on, pages 1083–1090, Sept. 2007. [20] H. Muhlenbein and G. Paass. From recombination of genes to the estimation of distributions i. binary parameters. In PPSN IV: Proceedings of the 4th International Conference on Parallel Problem Solving from Nature, pages 178–187, London, UK, 1996. Springer-Verlag. [21] M. Pelikan and D. E. Goldberg. Escaping hierarchical traps with competent genetic algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO2001), pages 511–518. Morgan Kaufmann, 2001. [22] M. Pelikan, D. E. Goldberg, and E. Cantu-Paz. Boa: The bayesian optimization algorithm. In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-99), pages 525–532, 1999. [23] M. Pelikan, D. E. Goldberg, and F. G. Lobo. A survey of optimization by building and using probabilistic models. Comput. Optim. Appl., 21(1):5–20, 2002. [24] M. Pelikan and H. Muhlenbein. The bivariate marginal distribution algorithm. In R. Roy, T. Furuhashi, and P. Chawdhry, editors, Advances in Soft Computing Engineering Design and Manufacturing, pages 521–535, London, 1999. [25] M. Tsuji, M. Munetomo, and K. Akama. Modeling dependencies of loci with string classification according to fitness differences. In Genetic and Evolutionary Computation (GECCO 2004), pages 246–257, 2004. [26] H. Wu and J. L. Shapiro. Does overfitting affect performance in estimation of distribution algorithms. In GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pages 433–434, New York, NY, USA, 2006. ACM. [27] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen. A genetic algorithm design inspired by organization theory: a pilot study of a dependency structure matrix driven genetic algorithm. Technical report, IlliGAL, University of Illinois at Urbana-Champaign, Urbana, IL, 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8965 | - |
| dc.description.abstract | 本論文探討分佈估測演算法(Estimation of Distribution Algorithms)在基因成對獨
立函數(allelic pairwise independent functions)上之延展性,以及此類函數例如奇 偶性函數(parity function)、奇偶與陷阱函數(parity-with-trap function)、沃爾什 編碼函數(Walsh-code function)對於鍊結學習(linkage learning)難度之影響。對於 分佈估測演算法而言,奇偶性函數被認為是難解的函數,但是在我們的實驗中證 實奇偶性函數可被精簡基因演算法(Compact Genetic Algorithms)在多項式時間之 內解出,並且困難度更高之奇偶與陷阱函數也被延伸式精簡基因演算法(Extended Compact Genetic Algorithms)解出,縱然鍊結模型依然無法正確被認出。我們也 計算出了精簡基因演算法在奇偶性函數上之收斂時間(convergence time)模型,並 且此模型與前述之實驗結果吻合。此外,我們也討論了不同分佈估測演算法之性 能出現歧異之根本原因。最後,本論文提出了另一個可欺騙大多數分佈估測演算 法中鍊結學習機制之基因成對獨立函數,稱之為沃爾什編碼函數,然而此函數仍 然能被精簡基因演算法解出。 | zh_TW |
| dc.description.abstract | This thesis investigates the difficulty of linkage learning, an essential core, in EDAs. Specifically, it examines allelic-pairwise independent functions including the parity, parity-with-trap, and Walsh-code functions. While the parity function was believed to be difficult for EDAs in previous work, our experiments indicate that it can be solved by CGA within a polynomial number of function evaluations to the problem size. Consequently, the apparently difficult parity-with-trap function can be easily solved by ECGA, even though the linkage model is incorrect. A convergence model for CGA on the parity function is also derived to verify and support the empirical findings. Then the root cause of the different performances between different EDAs is also discussed. Finally, this thesis proposes a so-called Walsh-code function, which is more difficult than the parity function. Although the proposed function does deceive the linkage-learning mechanism in most EDAs, EDAs are still able to solve it to some extent. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:05:15Z (GMT). No. of bitstreams: 1 ntu-98-R96921065-1.pdf: 423416 bytes, checksum: 6a11b421a6319f2821f1139e4f3048d6 (MD5) Previous issue date: 2009 | en |
| dc.description.tableofcontents | 謝辭 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
中文摘要 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation and Objective . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Road Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.1 Simple Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Building Block Hypothesis and Deceptive Problems . . . . . . . . . . . . 5 2.3 Framework of EDAs . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Compact GA and Extended Compact GA . . . . . . . . . . . . . . . . . . . 8 2.4.1 Compact GA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4.2 Extended Compact GA . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Previous Works on Parity Functions . . . . . . . . . . . . . . . . . . 12 3 Performance of CGA on CPF . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.1.1 Bisection Method . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Experimental Result and Discussions . . . . . . . . . . . . . . . . . . 16 4 Scalability Model of CGA . . . . . . . . . . . . . . . . . . . . . . . . 17 4.1 CPF with Single Building Block . . . . . . . . . . . . . . . . . . . . 17 4.2 Scalability with Multiple BBs . . . . . . . . . . . . . . . . . . . . . 21 5 Performance of ECGA on CP/TF . . . . . . . . . . . . . . . . . . . . . . 23 5.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.2 Experimental Result and Discussions . . . . . . . . . . . . . . . . . . 25 6 Effects of Different Probabilistic Models on ECGA . . . . . . . . . . . . 27 6.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . . . . 27 6.2 Experimental Result and Discussions . . . . . . . . . . . . . . . . . . 28 7 Allelic Pairwise Independent Functions . . . . . . . . . . . . . . . . . 32 7.1 Walsh Functions and Walsh Codes . . . . . . . . . . . . . . . . . . . . 33 7.2 Walsh-code functions and Experimental Design . . . . . . . . . . . . . 34 7.3 Experimental Result and Discussion . . . . . . . . . . . . . . . . . . 35 8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 | |
| dc.language.iso | en | |
| dc.title | 分佈估測演算法在基因成對獨立函數上之延展性探討 | zh_TW |
| dc.title | Scalability of Estimation of Distribution Algorithms On Allelic Pairwise Independent Functions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 97-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭士康(Shyh-Kang Jeng),陳穎平(Ying-Ping Chen) | |
| dc.subject.keyword | 基因演算法,鍊結學習,分佈估測演算法,奇偶性函數, | zh_TW |
| dc.subject.keyword | Genetic Algorithms,Linkage Learning,Estimation of Distribution Algorithms,Parity Function, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2009-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-98-1.pdf | 413.49 kB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
