Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 轉譯醫學博士學位學程
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89649
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor田蕙芬zh_TW
dc.contributor.advisorHwei-Fang Tienen
dc.contributor.author黃懷萱zh_TW
dc.contributor.authorHuai-Hsuan Huangen
dc.date.accessioned2023-09-13T16:14:18Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-13-
dc.date.issued2023-
dc.date.submitted2023-07-25-
dc.identifier.citation1. Arber, D.A., et al., The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016. 127(20): p. 2391-405.
2. Khoury, J.D., et al., The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia, 2022. 36(7): p. 1703-1719.
3. Arber, D.A., et al., International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, 2022. 140(11): p. 1200-1228.
4. Larsson, C.A., G. Cote, and A. Quintas-Cardama, The changing mutational landscape of acute myeloid leukemia and myelodysplastic syndrome. Mol Cancer Res, 2013. 11(8): p. 815-27.
5. Dohner, H., et al., Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood, 2022. 140(12): p. 1345-1377.
6. Bowen, D., et al., TP53 gene mutation is frequent in patients with acute myeloid leukemia and complex karyotype, and is associated with very poor prognosis. Leukemia, 2009. 23(1): p. 203-6.
7. Najima, Y., et al., Prognostic impact of TP53 mutation, monosomal karyotype, and prior myeloid disorder in nonremission acute myeloid leukemia at allo-HSCT. Bone Marrow Transplant, 2021. 56(2): p. 334-346.
8. DiNardo, C.D. and A.H. Wei, How I treat acute myeloid leukemia in the era of new drugs. Blood, 2020. 135(2): p. 85-96.
9. Greenberg, P., et al., International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood, 1997. 89(6): p. 2079-88.
10. Voso, M.T., et al., Revised International Prognostic Scoring System (IPSS) predicts survival and leukemic evolution of myelodysplastic syndromes significantly better than IPSS and WHO Prognostic Scoring System: validation by the Gruppo Romano Mielodisplasie Italian Regional Database. J Clin Oncol, 2013. 31(21): p. 2671-7.
11. Platzbecker, U., Treatment of MDS. Blood, 2019. 133(10): p. 1096-1107.
12. Ades, L., et al., Efficacy and safety of lenalidomide in intermediate-2 or high-risk myelodysplastic syndromes with 5q deletion: results of a phase 2 study. Blood, 2009. 113(17): p. 3947-52.
13. Statello, L., et al., Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol, 2021. 22(2): p. 96-118.
14. Rinn, J.L., et al., Functional Demarcation of Active and Silent Chromatin Domains in Human <em>HOX</em> Loci by Noncoding RNAs. Cell, 2007. 129(7): p. 1311-1323.
15. Wang, K.C., et al., A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011. 472(7341): p. 120-4.
16. Yao, C.Y., et al., A 4-lncRNA scoring system for prognostication of adult myelodysplastic syndromes. Blood Adv, 2017. 1(19): p. 1505-1516.
17. Bhatlekar, S., J.Z. Fields, and B.M. Boman, Role of HOX Genes in Stem Cell Differentiation and Cancer. Stem Cells Int, 2018. 2018: p. 3569493.
18. Alharbi, R.A., et al., The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia, 2013. 27(5): p. 1000-8.
19. Rice, K.L. and J.D. Licht, HOX deregulation in acute myeloid leukemia. J Clin Invest, 2007. 117(4): p. 865-8.
20. Zhang, X., S.M. Weissman, and P.E. Newburger, Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol, 2014. 11(6): p. 777-87.
21. Diaz-Beya, M., et al., The lincRNA HOTAIRM1, located in the HOXA genomic region, is expressed in acute myeloid leukemia, impacts prognosis in patients in the intermediate-risk cytogenetic category, and is associated with a distinctive microRNA signature. Oncotarget, 2015. 6(31): p. 31613-27.
22. Jing, Y., et al., Mutant NPM1-regulated lncRNA HOTAIRM1 promotes leukemia cell autophagy and proliferation by targeting EGR1 and ULK3. J Exp Clin Cancer Res, 2021. 40(1): p. 312.
23. Al-Kershi, S., et al., The stem cell-specific long noncoding RNA HOXA10-AS in the pathogenesis of KMT2A-rearranged leukemia. Blood Adv, 2019. 3(24): p. 4252-4263.
24. Huang, J.Z., et al., A Peptide Encoded by a Putative lncRNA HOXB-AS3 Suppresses Colon Cancer Growth. Mol Cell, 2017. 68(1): p. 171-184 e6.
25. Hou, H.A., et al., DNMT3A mutations in acute myeloid leukemia: stability during disease evolution and clinical implications. Blood, 2012. 119(2): p. 559-68.
26. Chou, W.C., et al., Clinical implications of minimal residual disease monitoring by quantitative polymerase chain reaction in acute myeloid leukemia patients bearing nucleophosmin (NPM1) mutations. Leukemia, 2007. 21(5): p. 998-1004.
27. Tien, H.F., et al., Correlation of cytogenetic results with immunophenotype, genotype, clinical features, and ras mutation in acute myeloid leukemia. A study of 235 Chinese patients in Taiwan. Cancer Genet Cytogenet, 1995. 84(1): p. 60-8.
28. Chen, C.Y., et al., RUNX1 gene mutation in primary myelodysplastic syndrome--the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol, 2007. 139(3): p. 405-14.
29. Chou, W.C., et al., Distinct clinical and biological features of de novo acute myeloid leukemia with additional sex comb-like 1 (ASXL1) mutations. Blood, 2010. 116(20): p. 4086-94.
30. Ernst, T., et al., Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat Genet, 2010. 42(8): p. 722-6.
31. Chou, W.C., et al., The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia, 2011. 25(2): p. 246-53.
32. Chen, C.Y., et al., Acquisition of JAK2, PTPN11, and RAS mutations during disease progression in primary myelodysplastic syndrome. Leukemia, 2006. 20(6): p. 1155-8.
33. Hou, H.A., et al., TP53 mutations in de novo acute myeloid leukemia patients: longitudinal follow-ups show the mutation is stable during disease evolution. Blood Cancer J, 2015. 5(7): p. e331.
34. Hou, H.A., et al., Clinical implications of the SETBP1 mutation in patients with primary myelodysplastic syndrome and its stability during disease progression. Am J Hematol, 2014. 89(2): p. 181-6.
35. Wu, S.J., et al., The clinical implication of SRSF2 mutation in patients with myelodysplastic syndrome and its stability during disease evolution. Blood, 2012. 120(15): p. 3106-11.
36. Chou, W.C., et al., TET2 mutation is an unfavorable prognostic factor in acute myeloid leukemia patients with intermediate-risk cytogenetics. Blood, 2011. 118(14): p. 3803-10.
37. Shiah, H.S., et al., Clinical and biological implications of partial tandem duplication of the MLL gene in acute myeloid leukemia without chromosomal abnormalities at 11q23. Leukemia, 2002. 16(2): p. 196-202.
38. Hou, H.A., et al., Splicing factor mutations predict poor prognosis in patients with de novo acute myeloid leukemia. Oncotarget, 2016. 7(8): p. 9084-101.
39. Subramanian, A., et al., Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A, 2005. 102(43): p. 15545-50.
40. Mootha, V.K., et al., PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 2003. 34(3): p. 267-73.
41. Wang, Y., W. Zhu, and D.E. Levy, Nuclear and cytoplasmic mRNA quantification by SYBR green based real-time RT-PCR. Methods, 2006. 39(4): p. 356-62.
42. Cancer Genome Atlas Research, N., et al., Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med, 2013. 368(22): p. 2059-74.
43. Lebert-Ghali, C.E., et al., Hoxa cluster genes determine the proliferative activity of adult mouse hematopoietic stem and progenitor cells. Blood, 2016. 127(1): p. 87-90.
44. Guenther, M.G., et al., Global and Hox-specific roles for the MLL1 methyltransferase. Proc Natl Acad Sci U S A, 2005. 102(24): p. 8603-8.
45. Lin, M.F., I. Jungreis, and M. Kellis, PhyloCSF: a comparative genomics method to distinguish protein coding and non-coding regions. Bioinformatics, 2011. 27(13): p. i275-82.
46. Tripathi, V., et al., The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell, 2010. 39(6): p. 925-38.
47. West, J.A., et al., The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites. Mol Cell, 2014. 55(5): p. 791-802.
48. Garzon, R., et al., Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci U S A, 2014. 111(52): p. 18679-84.
49. Huang, H.H., et al., Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome. BMC Cancer, 2019. 19(1): p. 617.
50. Papaioannou, D., et al., The long non-coding RNA HOXB-AS3 regulates ribosomal RNA transcription in NPM1-mutated acute myeloid leukemia. Nat Commun, 2019. 10(1): p. 5351.
51. Kim, Y.-K., RNA therapy: rich history, various applications and unlimited future prospects. Experimental & Molecular Medicine, 2022. 54(4): p. 455-465.
52. Toden, S., T.J. Zumwalt, and A. Goel, Non-coding RNAs and potential therapeutic targeting in cancer. Biochim Biophys Acta Rev Cancer, 2021. 1875(1): p. 188491.
53. Zhu, Y., et al., RNA-based therapeutics: an overview and prospectus. Cell Death Dis, 2022. 13(7): p. 644.
54. Fang, E., et al., Advances in COVID-19 mRNA vaccine development. Signal Transduct Target Ther, 2022. 7(1): p. 94.
55. Rojas, L.A., et al., Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 2023. 618(7963): p. 144-150.
56. Tan, F., et al., LncRNA SBF2-AS1: A Budding Star in Various Cancers. Curr Pharm Des, 2022. 28(18): p. 1513-1522.
57. Tian, Y.J., et al., Long noncoding RNA SBF2-AS1 act as a ceRNA to modulate cell proliferation via binding with miR-188-5p in acute myeloid leukemia. Artif Cells Nanomed Biotechnol, 2019. 47(1): p. 1730-1737.
58. Wang, G., et al., Circulating lnc-LOC as a novel noninvasive biomarker in the treatment surveillance of acute promyelocytic leukaemia. BMC Cancer, 2022. 22(1): p. 481.
59. Liu, S., et al., Prognostic value and potential mechanism of long non-coding RNA Lnc-SMIM20-1 in acute myeloid leukemia. Expert Rev Anticancer Ther, 2022. 22(8): p. 875-885.
60. Wang, Y., Q. Zhou, and J.J. Ma, High expression of lnc-CRNDE presents as a biomarker for acute myeloid leukemia and promotes the malignant progression in acute myeloid leukemia cell line U937. Eur Rev Med Pharmacol Sci, 2018. 22(3): p. 763-770.
61. Guan, X., et al., Lnc-SOX6-1 upregulation correlates with poor risk stratification and worse treatment outcomes, and promotes cell proliferation while inhibits apoptosis in pediatric acute myeloid leukemia. Int J Lab Hematol, 2019. 41(2): p. 234-241.
62. El-Khazragy, N., et al., The prognostic significance of the long non-coding RNAs "CCAT1, PVT1" in t(8;21) associated Acute Myeloid Leukemia. Gene, 2019. 707: p. 172-177.
63. El-Khazragy, N., et al., Interaction between 12p chromosomal abnormalities and Lnc-HOTAIR mediated pathway in acute myeloid leukemia. J Cell Biochem, 2019. 120(9): p. 15288-15296.
64. Gao, S., et al., Long noncoding RNA HOTAIR promotes the self-renewal of leukemia stem cells through epigenetic silencing of p15. Exp Hematol, 2018. 67: p. 32-40 e3.
65. Hao, S. and Z. Shao, HOTAIR is upregulated in acute myeloid leukemia and that indicates a poor prognosis. Int J Clin Exp Pathol, 2015. 8(6): p. 7223-8.
66. Hu, L., et al., Long non-coding RNA HOTAIR regulates myeloid differentiation through the upregulation of p21 via miR-17-5p in acute myeloid leukaemia. RNA Biol, 2021. 18(10): p. 1434-1444.
67. Zhou, W., et al., HOTAIR suppresses PTEN via DNMT3b and confers drug resistance in acute myeloid leukemia. Hematology, 2021. 26(1): p. 170-178.
68. Wang, X., et al., Long non-coding RNA taurine-upregulated gene 1 correlates with poor prognosis, induces cell proliferation, and represses cell apoptosis via targeting aurora kinase A in adult acute myeloid leukemia. Ann Hematol, 2018. 97(8): p. 1375-1389.
69. Wei, S., et al., PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol, 2016. 9(1): p. 44.
70. Chen, L., et al., HOTAIRM1 knockdown enhances cytarabine-induced cytotoxicity by suppression of glycolysis through the Wnt/beta-catenin/PFKP pathway in acute myeloid leukemia cells. Arch Biochem Biophys, 2020. 680: p. 108244.
71. Shi, X., et al., Overexpression of ZEB2-AS1 lncRNA is associated with poor clinical outcomes in acute myeloid leukemia. Oncol Lett, 2019. 17(6): p. 4935-4947.
72. Jiang, Z., Q. Yu, and X. Luo, Identification of long non-coding RNA MVIH as a prognostic marker and therapeutic target in acute myeloid leukemia. J Clin Lab Anal, 2020. 34(4): p. e23113.
73. Ke, S. and X. Zhou, LncRNA MVIH knockdown inhibits the malignancy progression through downregulating miR-505 mediated HMGB1 and CCNE2 in acute myeloid leukemia. Transl Cancer Res, 2019. 8(7): p. 2526-2534.
74. Chen, B., et al., Long non-coding RNA LINC01268 promotes cell growth and inhibits cell apoptosis by modulating miR-217/SOS1 axis in acute myeloid leukemia. Braz J Med Biol Res, 2020. 53(8): p. e9299.
75. Yan, J., et al., Long non-coding RNA MIR17HG sponges microRNA-21 to upregulate PTEN and regulate homoharringtonine-based chemoresistance of acute myeloid leukemia cells. Oncol Lett, 2022. 23(1): p. 24.
76. Zhang, X.M., et al., lncRNA HOXB-AS3 promotes hepatoma by inhibiting p53 expression. Eur Rev Med Pharmacol Sci, 2018. 22(20): p. 6784-6792.
77. Wu, C., et al., Alternative splicing of HOXB-AS3 underlie the promoting effect of nuclear m6A reader YTHDC1 on the self-renewal of leukemic stem cells in acute myeloid leukemia. Int J Biol Macromol, 2023. 237: p. 123990.
78. Zhuang, X.H., Y. Liu, and J.L. Li, Overexpression of long noncoding RNA HOXB-AS3 indicates an unfavorable prognosis and promotes tumorigenesis in epithelial ovarian cancer via Wnt/beta-catenin signaling pathway. Biosci Rep, 2019. 39(8).
79. Xu, S., et al., LncRNA HOXB-AS3 promotes growth, invasion and migration of epithelial ovarian cancer by altering glycolysis. Life Sci, 2021. 264: p. 118636.
80. Jiang, W., et al., lncRNA HOXB-AS3 exacerbates proliferation, migration, and invasion of lung cancer via activating the PI3K-AKT pathway. J Cell Physiol, 2020. 235(10): p. 7194-7203.
81. Leng, F., et al., A micro-peptide encoded by HOXB-AS3 promotes the proliferation and viability of oral squamous cell carcinoma cell lines by directly binding with IGF2BP2 to stabilize c-Myc. Oncol Lett, 2021. 22(4): p. 697.
82. Xing, Y., et al., Long non-coding RNA (lncRNA) HOXB-AS3 promotes cell proliferation and inhibits apoptosis by regulating ADAM9 expression through targeting miR-498-5p in endometrial carcinoma. J Int Med Res, 2021. 49(6): p. 3000605211013548.
83. Zhou, Q., et al., LncRNA HOXB-AS3 binding to PTBP1 protein regulates lipid metabolism by targeting SREBP1 in endometrioid carcinoma. Life Sci, 2023. 320: p. 121512.
84. Eklund, E., The role of Hox proteins in leukemogenesis: insights into key regulatory events in hematopoiesis. Crit Rev Oncog, 2011. 16(1-2): p. 65-76.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89649-
dc.description.abstract背景資料
在細胞內的轉錄物(transcripts)裡,長鏈非編碼核糖核酸(Long non-coding RNAs,lncRNAs)佔了一大部分,也在造血作用(hematopoiesis)的過程中扮演重要角色。然而,長鏈非編碼核糖核酸對於血液惡性疾病,如:急性骨髓性白血病(acute myeloid leukemia,AML)和骨髓分化不良症候群(myelodysplastic syndrome,MDS),有何重要影響,目前所知有限。
在這個研究裡,我們研究的主角是HOXB-AS3,一個在人類HOXB 群組基因裡的長鏈非編碼核糖核酸;研究其在骨髓性細胞株裡的特性,及在急性骨髓性白血病患者和骨髓分化不良症候群患者裡,他們的臨床表徵及預後。

研究方法
我們利用短髮夾核糖核酸(short hairpin RNA,shRNA)去抑制HOXB-AS3在細胞株裡的表現,並觀察細胞生長情形,再使用微陣列(microarray)的方式,來分析及找尋細胞內被影響的基因,接著利用定量即時聚合酶鏈鎖反應(quantitative polymerase chain reaction)的方式來驗證。另外,我們也利用溴化去氧尿嘧啶流式細胞儀分析(BrdU flow assay),顯示HOXB-AS3對細胞生長分裂的影響。
更進一步地,我們回溯性研究HOXB-AS3,對於193位急性骨髓性白血病患者及157位骨髓分化不良症候群患者,其表現量與臨床表現及預後之影響。

研究結果
在急性骨髓性白血病細胞株OCI-AML3內,降低HOXB-AS3的表現,會抑制細胞的生長。在微陣列的分析中, HOXB-AS3不影響HOX基因的表現,反而會影響細胞周期及去氧核糖核酸複製相關的基因表現。
在急性骨髓性白血病患者裡,HOXB-AS3高表現的患者,其預後較低表現患者差(高表現者的整體存活期中位數為17.7 個月,相較於低表現者為未達到,P < 0.0001;高表現者的無復發存活期中位數為12.9 個月,相較於低表現者為未達到,P = 0.0070)。在骨髓分化不良症候群患者裡,也可看到類似狀況(高表現者的整體存活期中位數為14.6個月,相較於低表現者為42.4個月,P = 0.0018)。我們的分析結果,使用美國癌症基因體圖譜計畫急性骨髓性白血病患者群(TCGA AML cohort)及本院另外一組骨髓分化不良症候患者群,作為驗證組,也能重現。在骨髓分化不良症候群患者的次族群分析裡,在國際預後評分系統(international prognostic scoring system ,IPSS)低風險及中低風險的患者中,HOXB-AS3高表現能預測患者有較差的預後(高表現者的整體存活期中位數為29.2個月,相較於低表現者為77.3個月,P = 0.0194);然而在高風險患者中,則無太大差異。

結論
本研究發現,HOXB-AS3在骨髓惡性疾病裡所扮演的角色,也進一步展現出,HOXB-AS3的表現量,對於急性骨髓性白血病患者及骨髓化不良症候群患者,在預後上的影響。
zh_TW
dc.description.abstractBackground
Long non-coding RNAs (lncRNAs) represent the majority of cellular transcripts and play pivotal roles in hematopoiesis. However, their clinical relevance in acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS) remains largely unknown. Here, we investigated the functions of HOXB-AS3, a lncRNA located at human HOXB cluster, in the myeloid cells, and analyzed the prognostic significances in patients with AML and MDS.

Methods
We used shRNAs to downregulate lncRNA HOXB-AS3 in the cell lines, and then observed the cell growth. We investigated the downstream genes by microarray analysis, and validated the results with quantitative polymerase chain reaction. We also illustrated the effects of lncRNA HOXB-AS3 in the myeloid cell lines by BrdU proliferation flow assay. Further, we retrospectively analyzed lncRNA HOXB-AS3 expression in 193 patients with AML and 157 with MDS by microarray analysis and evaluated its clinical significance.

Results
Downregulation of lncRNA HOXB-AS3 suppressed cell proliferation in the myeloid cell line, OCI-AML3. In the microarray analysis, lncRNA HOXB-AS3 potentiated the expressions of several key factors in cell cycle progression and DNA replication without affecting the expressions of HOX genes. In AML, patients with higher HOXB-AS3 expression had shorter survival than those with lower HOXB-AS3 expression (median overall survival (OS), 17.7 months versus not reached, P<0.0001; median relapse-free survival, 12.9 months versus not reached, P=0.0070). In MDS, patients with higher HOXB-AS3 expression also had adverse prognosis compared with those with lower HOXB-AS3 expression (median OS, 14.6 months versus 42.4 months, P=0.0018). The prognostic significance of lncRNA HOXB-AS3 expression was validated in the TCGA AML cohort and another MDS cohort from our institute. The subgroup analyses in MDS patients showed that higher HOXB-AS3 expressions could predict poor prognosis only in low and low-intermediate IPSS risk groups (median OS, 29.2 months versus 77.3 months, P=0.0194), but not in high and intermediate-high IPSS risk groups.

Conclusions
This study uncovers a promoting role of lncRNA HOXB-AS3 in myeloid malignancies and identifies the prognostic value of lncRNA HOXB-AS3 expression in AML and MDS patients, particularly in the lower-risk group.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:14:18Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-13T16:14:18Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
目錄 vii
圖目錄 x
表目錄 xii
附圖目錄 xiii
附表目錄 xiv
縮寫及翻譯名稱列表 xv
第一章 研究背景 1
1.1 骨髓惡性疾病簡介 1
1.1.1 急性骨髓性白血病簡介 1
1.1.2 骨髓分化不良症候群簡介 2
1.1.3 小結 3
1.2 長鏈非編碼核糖核酸在骨髓惡性疾病裡的發現 3
1.2.1 長鏈非編碼核糖核酸簡介 3
1.2.2長鏈非編碼核糖核酸在急性骨髓性白血病裡所扮演的角色 4
1.3 HOX群組基因在急性骨髓性白血病之角色 5
1.4 研究目的 6
第二章 研究方法 7
2.1病患臨床相關資料收集與實驗 7
2.1.1研究案中收錄患者之選擇(Patient selection) 7
2.1.2染色體變化及基因突變之分析(Cytogenetic abnormalities and gene mutations) 8
2.1.3微陣列實驗及分析(Microarray experiments and analysis) 8
2.1.4 HOXB-AS3表現量與基因突變關係圖 9
2.2 細胞株相關實驗 9
2.2.1細胞株和細胞培養(Cell lines and cell cultures) 9
2.2.2短髮夾核糖核酸及長鏈非編碼核糖核酸之慢病毒載體設計及製造(Constructions of lentiviral vectors with shRNA and lncRNA, and lentiviral production) 10
2.2.3由慢病毒來製成穩定表現之細胞株(Lentivirus infection to generate stable cell lines) 11
2.2.4溴化去氧尿嘧啶流式細胞儀實驗(BrdU flow assay) 11
2.2.5細胞生長實驗(Proliferation assay) 12
2.2.6即時定量聚合酶連鎖反應(Real-time quantitative polymerase chain reaction,Q-PCR) 12
2.2.7核細胞質分離實驗(Nuclear-cytoplasm fractionation) 13
2.3統計分析(Statistical analysis) 14
第三章 研究結果Results 16
3.1 找尋與急性骨髓性白血病相關之長鏈非編碼核糖核酸 16
3.1.1 影響急性骨髓性白血病預後之長鏈非編碼核糖核酸 16
3.1.2 HOXB-AS3 在人類基因內的位置 16
3.1.3 HOXB-AS3為一跨物種且持續存在之基因 17
3.2 HOXB-AS3 在細胞內所扮演之角色 17
3.2.1 在骨髓性細胞株裡,抑制HOXB-AS3表現,會抑制細胞生長 17
3.2.2 HOXB-AS3 不影響HOX基因群的表現 18
3.2.3 HOXB-AS3對於細胞周期之影響與生長分裂相關基因之表現 18
3.2.4 HOXB-AS3 位在細胞質內為主 19
3.3 HOXB-AS3對於急性骨髓性白血病患者之重要性 20
3.3.1. HOXB-AS3在急性骨髓性白血病患者的表現及其臨床表徵 20
3.3.2. HOXB-AS3對急性骨髓性白血病患者的預後之影響 21
3.4 HOXB-AS3 對於骨髓分化不良症候群患者之重要性 22
3.4.1 HOXB-AS3 在骨髓分化不良症候群患者之表現 22
3.4.2骨髓分化不良症候群患者之臨床表徵 22
3.4.3 HOXB-AS3 對骨髓分化不良症候群患者之預後之影響 23
第四章 討論 25
4.1 HOXB-AS3在急性骨髓性白血病及骨髓分化不良症候群所扮演的角色 25
4.2 本研究之侷限 26
4.3 本研究發表後,其他HOXB-AS3相關研究之討論 27
4.4 長鏈非編碼核糖核酸將來可能的臨床應用 28
第五章結論 31
圖 32
表 70
參考文獻 78
附錄 83
附圖 83
附表 87
R語法 93
原始已發表之論文 95
修業期間發表之論文 96
-
dc.language.isozh_TW-
dc.subject急性骨髓性白血病zh_TW
dc.subject長鏈非編碼核糖核酸zh_TW
dc.subject骨髓分化不良症候群zh_TW
dc.subjectHOXB-AS3zh_TW
dc.subject細胞生長zh_TW
dc.subjectHOXB-AS3en
dc.subjectlong non-coding RNAen
dc.subjectmyelodysplastic syndromeen
dc.subjectacute myeloid leukemiaen
dc.subjectproliferationen
dc.title長鏈非編碼核糖核酸HOXB-AS3在急性骨髓性白血病及骨髓分化不良症候群患者之角色zh_TW
dc.titleThe role of long non-coding RNA HOXB-AS3 in patients with acute myeloid leukemia and myelodysplastic syndromeen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.coadvisor陳瑞華;鄭安理zh_TW
dc.contributor.coadvisorRuey-Hwa Chen;Ann-Lii Chengen
dc.contributor.oralexamcommittee周文堅;林亮音;林國儀;周玉山zh_TW
dc.contributor.oralexamcommitteeWen-Chien Chou;LIANG-IN LIN;Kuo-I Lin;Yuh-Shan Jouen
dc.subject.keywordHOXB-AS3,急性骨髓性白血病,骨髓分化不良症候群,長鏈非編碼核糖核酸,細胞生長,zh_TW
dc.subject.keywordHOXB-AS3,acute myeloid leukemia,myelodysplastic syndrome,long non-coding RNA,proliferation,en
dc.relation.page99-
dc.identifier.doi10.6342/NTU202300729-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-07-26-
dc.contributor.author-college醫學院-
dc.contributor.author-dept轉譯醫學博士學位學程-
顯示於系所單位:轉譯醫學博士學位學程

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf7.49 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved