Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 口腔生物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89643
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李伯訓zh_TW
dc.contributor.advisorBor-Shiunn Leeen
dc.contributor.author謝旻芸zh_TW
dc.contributor.authorMin-Yun Hsiehen
dc.date.accessioned2023-09-13T16:12:41Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-13-
dc.date.issued2023-
dc.date.submitted2023-08-15-
dc.identifier.citation1. Cairo, F., et al., Coronally advanced flap and composite restoration of the enamel with or without connective tissue graft for the treatment of single maxillary gingival recession with non-carious cervical lesion. a randomized controlled clinical trial. J Clin Periodontol, 2020. 47(3): p. 362-371.
2. Checchi, L., et al., Gingival recession and toothbrushing in an italian school of dentistry: a pilot study. J Clin Periodontol, 1999. 26(5): p. 276-80.
3. Sangnes, G., Traumatization of teeth and gingiva related to habitual tooth cleaning procedures. J Clin Periodontol, 1976. 3(2): p. 94-103.
4. Yoneyama, T., et al., Probing depth, attachment loss and gingival recession. findings from a clinical examination in Ushiku, Japan. J Clin Periodontol, 1988. 15(9): p. 581-91.
5. Baelum, V., O. Fejerskov, and T. Karring, Oral hygiene, gingivitis and periodontal breakdown in adult tanzanians. J Periodontal Res, 1986. 21(3): p. 221-32.
6. Susin, C., et al., Gingival recession: epidemiology and risk indicators in a representative urban brazilian population. J Periodontol, 2004. 75(10): p. 1377-86.
7. Eke, P.I., et al., Advances in surveillance of periodontitis: the centers for disease control and prevention periodontal disease surveillance project. J Periodontol, 2012. 83(11): p. 1337-42.
8. Borgnakke, W.S., et al., Oral health and diabetes, in "Diabetes in America", C.C. Cowie, et al., Editors. 2018, National Institute of Diabetes and Digestive and Kidney Diseases (US): Bethesda (MD) of interest.
9. Eke, P.I., et al., Periodontitis in US Adults: national health and nutrition examination survey 2009-2014. J Am Dent Assoc, 2018. 149(7): p. 576-588 e6.
10. Miller, P.D., Miller classification of marginal tissue recession revisited after 35 years. Compend Contin Educ Dent, 2018. 39(8): p. 514-520.
11. Miller, P.D., Jr., A classification of marginal tissue recession. Int J Periodontics Restorative Dent, 1985. 5(2): p. 8-13.
12. Ralston, S.H., Chapter 75 - Genetic determinants of bone mass and osteoporotic fracture, in "Principles of Bone Biology" (third edition), J.P. Bilezikian, L.G. Raisz, and T.J. Martin, Editors. 2008, San Diego, p.1611-1634.
13. Roberts, A.B. and M.B. Sporn, Differential expression of the TGF-beta isoforms in embryogenesis suggests specific roles in developing and adult tissues. Mol Reprod Dev, 1992. 32(2): p. 91-8.
14. Lin, P.S., et al., Transforming growth factor beta 1 increases collagen content, and stimulates procollagen I and tissue inhibitor of metalloproteinase-1 production of dental pulp cells: role of MEK/ERK and activin receptor-like kinase-5/Smad signaling. J Formos Med Assoc, 2017. 116(5): p. 351-358.
15. Chan, C.P., et al., Effects of TGF-beta s on the growth, collagen synthesis and collagen lattice contraction of human dental pulp fibroblasts in vitro. Arch Oral Biol, 2005. 50(5): p. 469-79.
16. Rujirachotiwat, A. and S. Suttamanatwong, Curcumin upregulates transforming growth factor-beta1, its receptors, and vascular endothelial growth factor expressions in an in vitro human gingival fibroblast wound healing model. BMC Oral Health, 2021. 21(1): p. 535.
17. Jhaveri, H.M., et al., Acellular dermal matrix seeded with autologous gingival fibroblasts for the treatment of gingival recession: a proof-of-concept study. J Periodontol, 2010. 81(4): p. 616-25.
18. Plikus, M.V., et al., Fibroblasts: origins, definitions, and functions in health and disease. Cell, 2021. 184(15): p. 3852-3872.
19. 黃妙娥. 牙齦纖維母細胞在去細胞化之豬牙齦基質之生長與貼附. 2012/01.
20. Ahangar, P., et al., Human gingival fibroblast secretome accelerates wound healing through anti-inflammatory and pro-angiogenic mechanisms. NPJ Regen Med, 2020. 5(1): p. 24.
21. Egusa, H., et al., Gingival fibroblasts as a promising source of induced pluripotent stem cells. PLoS One, 2010. 5(9): p. e12743.
22. Milinkovic, I., et al., Clinical application of autologous fibroblast cell culture in gingival recession treatment. J Periodontal Res, 2015. 50(3): p. 363-70.
23. Kassab, M.M. and R.E. Cohen, The etiology and prevalence of gingival recession. J Am Dent Assoc, 2003. 134(2): p. 220-5.
24. Imber, J.C. and A. Kasaj, Treatment of Gingival Recession: When and How? Int Dent J, 2021. 71(3): p. 178-187.
25. Chambrone, L. and G. Avila-Ortiz, An evidence-based system for the classification and clinical management of non-proximal gingival recession defects. J Periodontol, 2021. 92(3): p. 327-335.
26. Matas, F., J. Sentis, and C. Mendieta, Ten-year longitudinal study of gingival recession in dentists. J Clin Periodontol, 2011. 38(12): p. 1091-8.
27. Heasman, P.A., et al., Gingival recession and root caries in the ageing population: a critical evaluation of treatments. J Clin Periodontol, 2017. 44 Suppl 18: p. S178-S193.
28. Cortellini, P. and N.F. Bissada, Mucogingival conditions in the natural dentition: Narrative review, case definitions, and diagnostic considerations. J Clin Periodontol, 2018. 45 Suppl 20: p. S190-S198.
29. Zucchelli, G. and I. Mounssif, Periodontal plastic surgery. Periodontol 2000, 2015. 68(1): p. 333-68.
30. Li X, Kolltveit KM, Tronstad L, Olsen I. Systemic diseases caused by oral infection. Clin Microbiol Rev. 2000 Oct;13
31. Shaw, L., et al., Distinguishing the signals of gingivitis and periodontitis in supragingival plaque: a cross-sectional cohort study in malawi. Appl Environ Microbiol, 2016. 82(19): p. 6057-67.
32. Miller, P.D., Jr., Root coverage using the free soft tissue autograft following citric acid application. III. a successful and predictable procedure in areas of deep-wide recession. Int J Periodontics Restorative Dent, 1985. 5(2): p. 14-37.
33. Chen L.W., Use of coronally advanced flap with subepithelial connective tissue graft for root coverage. 2012.
34. Kassab, M.M. and R.E. Cohen, Treatment of gingival recession. J Am Dent Assoc, 2002. 133(11): p. 1499-506; quiz 1540.
35. Moharamzadeh, K., et al., Tissue-engineered oral mucosa: a review of the scientific literature. J Dent Res, 2007. 86(2): p. 115-24.
36. Michael Newman, H.T., Perry Klokkevold, Fermin Carranza, Carranza's clinical periodontology. 2014.
37. Cohen, E.S., Atlas of cosmetic and reconstructive periodontal surgery. 2007.
38. Lindhe, J., Niklaus Peter Lang, and Thorkild Karring, Clinical periodontology and implant dentistry. 2008.
39. Pini Prato, G.P., et al., Long-term evaluation (20 years) of the outcomes of subepithelial connective tissue graft plus coronally advanced flap in the treatment of maxillary single recession-type defects. J Periodontol, 2018. 89(11): p. 1290-1299.
40. Schmitt, C.M., et al., Soft tissue volume alterations after connective tissue grafting at teeth: the subepithelial autologous connective tissue graft versus a porcine collagen matrix - a pre-clinical volumetric analysis. J Clin Periodontol, 2016. 43(7): p. 609-17.
41. Chambrone, L. and D.N. Tatakis, Periodontal soft tissue root coverage procedures: a systematic review from the AAP regeneration workshop. J Periodontol, 2015. 86(2 Suppl): p. S8-51.
42. Vallecillo, C., et al., Collagen matrix vs. autogenous connective tissue graft for soft tissue augmentation: a systematic review and meta-analysis. Polymers (Basel), 2021. 13(11).
43. Puisys, A., et al., Clinical and histologic evaluations of porcine-derived collagen matrix membrane used for vertical soft tissue augmentation: a case series. Int J Periodontics Restorative Dent, 2019. 39(3): p. 341-347.
44. Vignoletti, F., et al., Clinical and histological healing of a new collagen matrix in combination with the coronally advanced flap for the treatment of miller class-I recession defects: an experimental study in the minipig. J Clin Periodontol, 2011. 38(9): p. 847-55.
45. Thoma, D.S., et al., Tissue integration of collagen-based matrices: an experimental study in mice. Clin Oral Implants Res, 2012. 23(12): p. 1333-9.
46. Tonetti, M.S., et al., Autologous connective tissue graft or xenogenic collagen matrix with coronally advanced flaps for coverage of multiple adjacent gingival recession. 36-month follow-up of a randomized multicentre trial. J Clin Periodontol, 2021. 48(7): p. 962-969.
47. McGuire, M.K. and E.T. Scheyer, Xenogeneic collagen matrix with coronally advanced flap compared to connective tissue with coronally advanced flap for the treatment of dehiscence-type recession defects. J Periodontol, 2010. 81(8): p. 1108-17.
48. Jepsen, K., et al., Long-term stability of root coverage by coronally advanced flap procedures. J Periodontol, 2017. 88(7): p. 626-633.
49. De Angelis, P., et al., Clinical comparison of a xenogeneic collagen matrix versus subepithelial autogenous connective tissue graft for augmentation of soft tissue around implants. Int J Oral Maxillofac Surg, 2021. 50(7): p. 956-963.
50. Chambrone, L., et al., Root coverage procedures for treating single and multiple recession-type defects: an updated cochrane systematic review. J Periodontol, 2019. 90(12): p. 1399-1422.
51. Guo, B. and P.X. Ma, Conducting polymers for tissue engineering. Biomacromolecules, 2018. 19(6): p. 1764-1782.
52. Reshmy, R., et al., Biodegradable polymer composites. In Biomass, Biofuels, Biochemicals" 1st Edition, 2021, USA, p.393–412.
53. Vishwakarma, Ajaykumar Karp, Jeffrey M., Polymer design and development, in "Biology and Engineering of Stem Cell Niches". USA, 2017. p.295-314.
54. Sun, H., et al., The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 2006. 27(9): p. 1735-40.
55. Bartnikowski, M., et al., Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Progress in Polymer Science, 2019. 96: p. 1-20.
56. Lee, B. S.;Chen, R. S.;Wang, D. M.;La, J. Y.;Lin, C. P., Attachment of MG-63 cells on an RGDS-immobilized asymmetrical polycaprolactone membrane. J Dent Sci, 2007, 2: p:201-210
57. Baker, R.W., Membranes and modules, In "Membrane Technology and Applications" 2nd ed, California, p.89-160, 2004
58. Fujio, K., et al., Revisiting the regulatory roles of the TGF-beta family of cytokines. Autoimmun Rev, 2016. 15(9): p. 917-22.
59. Rubtsov, Y.P. and A.Y. Rudensky, TGFbeta signalling in control of T-cell-mediated self-reactivity. Nat Rev Immunol, 2007. 7(6): p. 443-53.
60. Bierie, B. and H.L. Moses, Transforming growth factor beta (TGF-beta) and inflammation in cancer. Cytokine Growth Factor Rev, 2010. 21(1): p. 49-59.
61. Tziafas, D., A.J. Smith, and H. Lesot, Designing new treatment strategies in vital pulp therapy. J Dent, 2000. 28(2): p. 77-92.
62. Heiden, M., E. Nauman, and L. Stanciu, Bioresorbable Fe-Mn and Fe-Mn-HA materials for orthopedic implantation: enhancing degradation through porosity control. Adv Healthc Mater, 2017. 6(13).
63. Shrivastava, A., Polymerization, in introduction to plastics engineering, A. Shrivastava, Editor. 2018, William Andrew Publishing. p. 17-48.
64. Lam, C.X., et al., Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A, 2009. 90(3): p. 906-19.
65. Mochizuki, M., et al., Hydrolysis of polycaprolactone fibers by lipase: effects of draw ratio on enzymatic degradation. Journal of Applied Polymer Science, 1995. 55(2): p. 289-296.
66. Berthiaume, F., T.J. Maguire, and M.L. Yarmush, Tissue engineering and regenerative medicine: history, progress, and challenges. Annu Rev Chem Biomol Eng, 2011. 2: p. 403-30.
67. Al Haj Zen, A., et al., Effect of adenovirus-mediated overexpression of decorin on metalloproteinases, tissue inhibitors of metalloproteinases and cytokines secretion by human gingival fibroblasts. Matrix Biol, 2003. 22(3): p. 251-8.
68. Häkkinen, L., et al., A role for decorin in the structural organization of periodontal ligament. Laboratory Investigation, 2000. 80(12): p. 1869-1880.
69. Guo, J., Chen, H., Wang, Y., Cao, C. B., Guan, G. Q., A novel porcine acellular dermal matrix scaffold used in periodontal regeneration. Int J Oral Sci, 2013. 5(1): p. 37-43.
70. Bruzauskaite, I., Bironaite, D., Bagdonas, E., Bernotiene, E., Scaffolds and cells for tissue regeneration: different scaffold pore sizes-different cell effects. Cytotechnology, 2016. 68(3): p. 355-69.
71. Backes, E.H., et al., Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. J Biomed Mater Res B Appl Biomater, 2022. 110(6): p. 1479-1503.
72. Marconi, G.D., et al., Transforming growth factor-beta1 and human gingival fibroblast-to-myofibroblast differentiation: molecular and morphological modifications. Front Physiol, 2021. 12: p. 676512.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89643-
dc.description.abstract牙齦是一種在牙齒底下的組織,其組成的主要成分有:膠原蛋白(Collagen)、纖維母細胞(Fibroblast)、蛋白聚糖(Proteoglycans)。在健康的狀況下,牙齦組織呈現亮光澤粉色,若是牙齦開始變暗紅色且有化膿的現象,則要注意有可能是牙周病初期症狀,並可能造成牙齦萎縮的問題,目前臨床常用的治療方式為「游離牙齦移植手術」,但最大的缺點就是會帶給患者二次傷口。為了製造替代的人工移植體,本次實驗採用聚己內酯(Polycaprolactone, PCL)作為材料,並與目前臨床使用的Bio-Mend 膠原蛋白膜進行比較。在細胞生長的過程中有許多生長因子調控,其中Transforming growth factor β-1 (TGF-β1 )是非常重要的一個因子,其執行許多細胞功能,因此本研究藉由加入不同濃度的TGF-β1來探討纖維母細胞之膠原蛋白、纖連蛋白、蛋白聚糖蛋白質的表現量是否有影響,進而了解此人造膜對於未來應用於游離結締組織移植手術治療的可能性。
本研究先對材料進行基本性質鑑定(SEM、Porosity),接著為了解其體外降解程度,使用凝膠透滲層析儀(GPC)進行測試,接著利用CCK-8 kit測試細胞存活數,最後收集細胞蛋白進行西方墨點法了解其蛋白質表現。
結果顯示,聚己內酯膜在經過細胞培養7 ~ 21天後,分子量呈現趨勢性下降,培養液對聚己內酯膜的降解不具影響,而PCL膜的降解會隨細胞分泌出的lipase變多而變快,PCL膜在加入TGF-β1後細胞數並無大量上升,而Bio-mend的膠原蛋白膜在加入TGF-β1後細胞數雖有稍微上升,但發現PCL的組別在不加TGF-β1時就已能表現大量蛋白,而Bio-mend的膠原蛋白膜除Collagen外其餘蛋白表現量都偏低。
整體來說,膠原蛋白膜的整體表現都較聚己內酯膜差,或許聚己內酯膜在未來能成為替代膠原蛋白膜的一種材料。
zh_TW
dc.description.abstractGingiva is a tissue located underneath the teeth, composed mainly of collagen, fibroblasts, and proteoglycans. In a healthy condition, the gingival tissue appears shiny pink. If the gingiva begins to turn dark red and purulent, it might be an early symptom of periodontal disease and may cause gum recession. Currently, the commonly used treatment method for this condition is "connective tissue graft”, but the major disadvantage is that it will bring secondary wounds to the patient.
In order to create an alternative artificial graft, we used polycaprolactone (PCL) as the material in comparison with Bio-Mend Collagen membrane. Transforming growth factor β 1 (TGF-β1) is an important growth factor as it regulates many cellular functions. It is a secreted protein that performs many cellular function. To understand the future application of this artificial membrane for connective tissue graft, we examined the expression level of collagen, fibronectin, and proteoglycan proteins in fibroblasts induced by TGF-β1 addition.
In this research, the surface morphology and porosity of PCL membrane were examined. Subsequently, gel permeation chromatography was used to investigate the degree of degradation in vitro. Cell viability was evaluated using the CCK-8 kit and cellular proteins were examined using Western blot analysis.
The results showed that the PCL membrane with cell cultured gradually degraded within 7-21 days. The culture medium contributed negligible effect to the degradation of PCL membrane. By contrast, the degradation of PCL membrane increased with the increase of cell numbers because the lipase secreted by cells also increased. The addition of TGF-β1 to the PCL membrane did not cause significant cell proliferation. However, the cell number slightly increased after TGF-β1 addition in Bio-mend collagen membrane. Prominent protein expression was observed for PCL membrane without adding TGF-β1, but the protein expression levels were relatively low in the Bio-Mend collagen membrane except for collagen.
Overall, the collagen membrane performance was inferior to PCL membrane regarding gingival regeneration. The PCL membrane might exhibit the potential to become an alternative material to replace collagen membranes in the future.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:12:41Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-13T16:12:41Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1 牙齦 3
2.1.1 定義及組成 3
2.1.2 牙齦纖維母細胞(Gingival fibroblast) 3
2.2 牙齦萎縮 4
2.2.1 牙齦萎縮定義及原因 4
2.2.2 牙齦萎縮程度 4
2.2.3 現行的治療方式 5
2.3 現行的其他醫材 9
2.4 聚己內酯(Polycaprolactone) 10
2.5 膠原蛋白膜(Collagen membrane) 11
2.6 Transforming growth factor-β1 11
Chapter 3 材料方法 13
3.1 實驗流程圖 13
3.2 實驗藥品 13
3.3 使用儀器 18
3.4 聚己內酯膜製備與檢測 19
3.4.1 聚己內酯膜配置 19
3.4.2 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 19
3.5 膠原蛋白膜製備與檢測 20
3.5.1 膠原蛋白膜 20
3.5.2 掃描電子顯微鏡(Scanning Electron Microscope, SEM) 20
3.6 使用細胞株及細胞培養條件 20
3.6.1 細胞培養液配置 20
3.6.2 解凍細胞 20
3.6.3 細胞繼代培養 21
3.6.4 冷凍細胞 21
3.7 凝膠透滲層析儀(Gel Permeation Chromatograph) 22
3.8 冷凍乾燥機 23
3.9 細胞存活率測試(CCK-8 kit)24
3.10 西方墨點法(Western blot) 24
Chapter 4 實驗結果 27
4.1 聚己內酯膜與膠原蛋白膜結構觀察結果 27
4.2 聚己內酯膜與膠原蛋白膜孔隙率與孔徑比較 34
4.3 聚己內酯降解情形 39
4.4 CCK-8測試結果 50
4.4.1 TGF-β1最佳濃度 50
4.4.2 聚己內酯膜與膠原蛋白膜細胞數量隨天數之變化 51
4.5 Western Bolt測試結果 52
Chapter 5 討論 59
5.1 聚己內酯模與膠原蛋白膜結構內部比較 59
5.2 聚己內酯模與膠原蛋白膜孔隙度及孔徑比較 59
5.3 聚己內酯降解討論 60
5.4 細胞於聚己內酯膜和膠原蛋白膜上生長情形 61
5.5 細胞於聚己內酯膜和膠原蛋白膜上蛋白質表現量 62
Chapter 6 結論 63
Chapter 7 參考資料 64
-
dc.language.isozh_TW-
dc.subject游離結締組織zh_TW
dc.subjectTransforming growth factor β-1zh_TW
dc.subject聚己內酯膜zh_TW
dc.subject纖維母細胞zh_TW
dc.subject膠原蛋白膜zh_TW
dc.subjectPolycaprolactoneen
dc.subjectTransforming growth factor β 1en
dc.subjectFibroblasten
dc.subjectConnective tissue graften
dc.subjectCollagen membraneen
dc.title使用多孔聚己內酯膜及人類牙齦纖維母細胞進行牙齦組織再生zh_TW
dc.titleGingival tissue regeneration using porous polycaprolactone membrane and human gingival fibroblastsen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭世榮;侯欣翰;鄭國忠zh_TW
dc.contributor.oralexamcommitteeShih-Jung Cheng ;Hsin-Han Hou;Chung-Cheng Kuoen
dc.subject.keyword游離結締組織,聚己內酯膜,Transforming growth factor β-1,纖維母細胞,膠原蛋白膜,zh_TW
dc.subject.keywordConnective tissue graft,Polycaprolactone,Transforming growth factor β 1,Fibroblast,Collagen membrane,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202304175-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-15-
dc.contributor.author-college醫學院-
dc.contributor.author-dept口腔生物科學研究所-
dc.date.embargo-lift2028-08-14-
顯示於系所單位:口腔生物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
10.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved