Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89641
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊長豪zh_TW
dc.contributor.advisorChang-Hao Yangen
dc.contributor.author蘇郁婷zh_TW
dc.contributor.authorYu-Ting Suen
dc.date.accessioned2023-09-13T16:12:10Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-13-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Chen HY, Kuo S, Su PF, Wu JS, Ou HT. Health Care Costs Associated With Macrovascular, Microvascular, and Metabolic Complications of Type 2 Diabetes Across Time: Estimates From a Population-Based Cohort of More Than 0.8 Million Individuals With Up to 15 Years of Follow-up. Diabetes Care. 2020;43(8):1732-1740.
2. Martinez-Zapata MJ, Martí-Carvajal AJ, Solà I, et al. Anti-vascular endothelial growth factor for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;2014(11):CD008721.
3. Stitt AW, Curtis TM, Chen M, et al. The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res. 2016;51:156-186.
4. Wang W, Lo ACY. Diabetic Retinopathy: Pathophysiology and Treatments. Int J Mol Sci. 2018;19(6):1816.
5. Anderson RE, Rapp LM, Wiegand RD. Lipid peroxidation and retinal degeneration. Curr Eye Res. 1984;3(1):223-227.
6. van Reyk DM, Gillies MC, Davies MJ. The retina: oxidative stress and diabetes. Redox Rep. 2003;8(4):187-192.
7. Feldman EL. Oxidative stress and diabetic neuropathy: a new understanding of an old problem. J Clin Invest. 2003;111(4):431-433.
8. Brownlee M. The pathobiology of diabetic complications: a unifying mechanism. Diabetes. 2005;54(6):1615-1625.
9. Yeh PT, Yang CM, Huang JS, et al. Vitreous levels of reactive oxygen species in proliferative diabetic retinopathy. Ophthalmology. 2008;115(4):734-737.e1.
10. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058-1070.
11. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48(1):1-9.
12. Kaneto H, Katakami N, Kawamori D, et al. Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007;9(3):355-366.
13. Pan HZ, Zhang H, Chang D, Li H, Sui H. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy. Br J Ophthalmol. 2008;92(4):548-551.
14. Giugliano D, Ceriello A, Paolisso G. Oxidative stress and diabetic vascular complications. Diabetes Care. 1996;19(3):257-267.
15. Cutler RG. Oxidative stress profiling: part I. Its potential importance in the optimization of human health. Ann N Y Acad Sci. 2005;1055:93-135.
16. Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes. 2004;53(12):3233-3238.
17. Levine RL, Garland D, Oliver CN, et al. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990;186:464-478.
18. Park SW, Cho CS, Jun HO, et al. Anti-angiogenic effect of luteolin on retinal neovascularization via blockade of reactive oxygen species production. Invest Ophthalmol Vis Sci. 2012;53(12):7718-7726.
19. Feenstra DJ, Yego EC, Mohr S. Modes of Retinal Cell Death in Diabetic Retinopathy. J Clin Exp Ophthalmol. 2013;4(5):298.
20. Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016;2016:3164734.
21. Simó R, Villarroel M, Corraliza L, Hernández C, Garcia-Ramírez M. The retinal pigment epithelium: something more than a constituent of the blood-retinal barrier--implications for the pathogenesis of diabetic retinopathy. J Biomed Biotechnol. 2010;2010:190724.
22. Li C, Miao X, Li F, et al. Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. Oxid Med Cell Longev. 2017;2017:9702820.
23. Willermain F, Scifo L, Weber C, Caspers L, Perret J, Delporte C. Potential Interplay between Hyperosmolarity and Inflammation on Retinal Pigmented Epithelium in Pathogenesis of Diabetic Retinopathy. Int J Mol Sci. 2018;19(4):1056.
24. Wang-Fischer Y, Garyantes T. Improving the Reliability and Utility of Streptozotocin-Induced Rat Diabetic Model. J Diabetes Res. 2018;2018:8054073. Published 2018 Sep 23.
25. Yuan Z, Feng W, Hong J, Zheng Q, Shuai J, Ge Y. p38MAPK and ERK promote nitric oxide production in cultured human retinal pigmented epithelial cells induced by high concentration glucose. Nitric Oxide. 2009;20(1):9-15.
26. Michelucci A, Cordes T, Ghelfi J, et al. Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production. Proc Natl Acad Sci U S A. 2013;110(19):7820-7825.
27. Mills EL, Ryan DG, Prag HA, et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature. 2018;556(7699):113-117.
28. Tang C, Wang X, Xie Y, et al. 4-Octyl Itaconate Activates Nrf2 Signaling to Inhibit Pro-Inflammatory Cytokine Production in Peripheral Blood Mononuclear Cells of Systemic Lupus Erythematosus Patients. Cell Physiol Biochem. 2018;51(2):979-990.
29. Liu H, Feng Y, Xu M, Yang J, Wang Z, Di G. Four-octyl itaconate activates Keap1-Nrf2 signaling to protect neuronal cells from hydrogen peroxide. Cell Commun Signal. 2018;16(1):81.
30. Gorrini C, Harris IS, Mak TW. Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 2013;12(12):931-947.
31. Tang C, Tan S, Zhang Y, Dong L, Xu Y. Activation of Keap1-Nrf2 signaling by 4-octyl itaconate protects human umbilical vein endothelial cells from high glucose. Biochem Biophys Res Commun. 2019;508(3):921-927.
32. Fu X, Wu M, Zhou X. Protective effects of 4-octyl itaconate against inflammatory response in angiotensin II-induced oxidative stress in human primary retinal pigment epithelium. Biochem Biophys Res Commun. 2021;557:77-84.
33. Yi Z, Deng M, Scott MJ, et al. Immune-Responsive Gene 1/Itaconate Activates Nuclear Factor Erythroid 2-Related Factor 2 in Hepatocytes to Protect Against Liver Ischemia-Reperfusion Injury. Hepatology. 2020;72(4):1394-1411.
34. Li R, Yang W, Yin Y, Ma X, Zhang P, Tao K. 4-OI Attenuates Carbon Tetrachloride-Induced Hepatic Injury via Regulating Oxidative Stress and the Inflammatory Response. Front Pharmacol. 2021;12:651444.
35. Tian F, Wang Z, He J, Zhang Z, Tan N. 4-Octyl itaconate protects against renal fibrosis via inhibiting TGF-β/Smad pathway, autophagy and reducing generation of reactive oxygen species. Eur J Pharmacol. 2020;873:172989.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89641-
dc.description.abstract背景
糖尿病視網膜病變是糖尿病常見的微血管病變,也是造成全世界失明的主要原因之一。視網膜色素上皮細胞可以維持視網膜構造及功能的穩定。糖尿病的高血糖情況會引起視網膜色素上皮細胞內的氧化壓力增加、產生過量的活性氧自由基,進而造成細胞凋亡。糖尿病視網膜病變的病理機轉就是因視網膜色素上皮細胞的凋亡引起血-視網膜障蔽的破壞,進而使血管通透性增加並造成血管滲漏及視網膜出血。因此,在糖尿病的病人中,如何防止視網膜色素上皮細胞內的氧化壓力增加及細胞凋亡,以避免糖尿病視網膜病變的發生或惡化是一個重要的課題。
Nrf2是一個轉錄因子,可調控抗氧化基因的轉錄活性,Nrf2活化後會從細胞質進入細胞核,啟動抗氧化基因的轉錄活性以移除氧化壓力,而HO-1、NQO1、GCLM則是由Nrf2調控的主要基因產物。衣康酸是檸檬酸循環中的一個中間產物,在發炎、代謝、免疫的過程都扮演重要的角色。近期的研究發現衣康酸衍生物經由活化Nrf2訊息傳遞途徑可抑制細胞凋亡與氧化壓力。衣康酸衍生物與Keap1結合後會使Keap1-Nrf2的結合分離、活化Nrf2並進入細胞核,進一步去活化產生抗氧化相關的蛋白質,減少細胞內的活性氧自由基及氧化產物。本研究目標即是探討衣康酸衍生物在視網膜色素上皮細胞中抑制因高糖環境所引發之氧化與細胞凋亡的能力。
研究方法
本研究使用人類視網膜色素上皮細胞株ARPE-19,建立高糖環境對視網膜色素上皮細胞傷害的實驗模式。添加不同濃度的衣康酸衍生物於ARPE-19細胞培養中,觀察衣康酸衍生物對高糖引起的細胞凋亡與氧化壓力的影響。透過測量其細胞活性、細胞凋亡情形與氧化產物的表現量,可以得知衣康酸衍生物對於ARPE-19細胞的抗凋亡與抗氧化的保護效果。此外,為了確認衣康酸衍生物作用於Nrf2訊息傳遞調控的機轉,使用免疫螢光染色證明衣康酸衍生物促使Nrf2從細胞質進到細胞核,並透過西方墨點法去偵測Nrf2調控之下游的抗氧化蛋白質產物。最後使用Nrf2 siRNA去抑制Nrf2的表現,觀察衣康酸衍生物的相關保護效果是否隨之消失,來證明衣康酸衍生物是透過調控Nrf2訊息傳遞來達到其影響的結果。
結果
ARPE-19細胞能耐受在各個濃度(5、10、25與50 μM)之衣康酸衍生物中。高糖環境刺激ARPE-19細胞產生活性氧自由基及各種氧化產物,而衣康酸衍生物能顯著抑制高糖環境所造成的活性氧自由基、去氧核醣核酸、蛋白質與脂質的氧化產物(分別為8-OHdG、nitrotyrosine及acrolein)。透過西方墨點法檢測cleaved caspase-3的量與Bcl-2/Bax比例以及分析TUNEL試驗,發現衣康酸衍生物能顯著減少高糖環境中ARPE-19細胞的凋亡。使用螢光染色法與核質分離萃取分析Nrf2蛋白質,可見衣康酸衍生物促使Nrf2蛋白質從細胞質進到細胞核內,且Nrf2蛋白質在細胞核中的表現量顯著增加。Nrf2所調控之下游抗氧化蛋白質產物(HO1、NQO1與GCLM)的產量則隨衣康酸衍生物之作用而顯著上升。此外,使用Nrf2 siRNA轉染之ARPE-19細胞,與對照組相比,可見衣康酸衍生物對於ARPE-19細胞的抗氧化、抗細胞凋亡作用顯著下降。
結論
本研究有助於了解衣康酸衍生物對因高糖引起之氧化壓力造成視網膜色素上皮細胞損傷具有保護作用,是透過活化Nrf2、增加Nrf2下游調控之抗氧化蛋白質的途徑。本研究結果或能對衣康酸衍生物未來用於治療或減緩糖尿病視網膜病變惡化提供參考。
zh_TW
dc.description.abstractBackground
Diabetic retinopathy (DR) is a significant microvascular complication associated with diabetes mellitus. The pathogenesis of DR encompasses increased vascular permeability, neovascularization, retinal ischemia, and edema, culminating in visual impairment and potential blindness. The heightened oxidative stress induced by hyperglycemia plays a pivotal role in the pathogenic mechanisms underlying DR. Accumulation of reactive oxygen species (ROS) disrupts retinal cellular homeostasis, triggers apoptotic cascades, compromises the integrity of the blood-retinal barrier, and contributes to the development and progression of DR. Therefore, attenuating oxidative stress has the potential to inhibit apoptosis in retinal cells and impede the progression of DR.
Itaconate, an essential intermediate metabolite derived from the tricarboxylic acid (TCA) cycle, has gained recognition as a vital autocrine regulatory component implicated in cellular metabolism. Recent research indicates that derivatives of itaconate possess protective properties against oxidative damage by activating the Nrf2 signaling pathway. Our study aims to investigate the antioxidative and anti-apoptotic effects of 4-octyl itaconate (4-OI), a cell-permeable derivative of itaconate, in high glucose (HG)-induced oxidative retinal injury.
Materials and methods
We used human ARPE-19 cells as the in vitro model. A subset of ARPE-19 cells was cultivated in a medium containing low glucose concentration (5.5 mM), while the remaining cells were exposed to various concentrations (0, 5, or 50 μM) of 4-OI for a duration of 2 hours and transferred to a high-glucose medium (35 mM) subsequently. Analysis of ROS production, peroxidation products, mitochondrial depolarization assay, cytotoxicity, Nrf2 signaling-related antioxidative stress proteins, and expression of Nrf2 protein in nuclear lysates and cytoplasmic lysates were performed. ARPE-19 cells were also transfected with NRF2 specified siRNA or siRNA control. The transfected cells were cultured 48 hours after transfection and then used in the experiments.
Results
ARPE-19 cells tolerated well under the treatment of 4-OI in the concentration of 5, 10, 25, and 50 μM. Four-OI suppressed ROS, ROS-related mitochondrial damage, tested by JC-1, oxidative stress mediators including 8-OHdG, nitrotyrosine, and acrolein in HG-stimulated ARPE-19. Four-OI inhibited HG-induced apoptosis activation including cleaved caspase-3, Bcl-2/Bax, and TUNEL staining. Four-OI caused nuclear translocation of Nrf2 protein and expression of Nrf2 signaling-related antioxidative stress proteins including HO1, NQO1 and GCLM. Moreover, Nrf2 siRNA eliminated OI-mediated antioxidative and anti-apoptotic protection against HG in ARPE-19 cells.
Conclusion
Our study provided evidence supporting the activation of Nrf2/HO1 signaling by 4-OI protects ARPE-19 cells against oxidative injury induced by HG levels. This cytoprotective effect mediated by 4-OI was reversed when Nrf2 was knocked down using targeted siRNA in ARPE-19 cells exposed to HG. These findings contribute to an enhanced comprehension of the antioxidative properties exhibited by itaconate in HG-induced oxidative retinal injury. Furthermore, the implications of these results have the potential for future applications in the treatment of diabetic retinopathy.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:12:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-13T16:12:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontentsAcknowledgement..................i
Abstract (Chinese)...............ii
Abstract.........................iv
Introduction.....................1
Materials and methods............5
Results..........................9
Discussion.......................12
Conclusion.......................15
References.......................16
Figures..........................21
-
dc.language.isoen-
dc.subjectNrf2zh_TW
dc.subject衣康酸zh_TW
dc.subject糖尿病視網膜病變zh_TW
dc.subject視網膜色素上皮細胞zh_TW
dc.subject細胞凋亡zh_TW
dc.subject氧化壓力zh_TW
dc.subjectretinal pigment epitheliumen
dc.subjectdiabetic retinopathyen
dc.subjectItaconateen
dc.subjectNrf2en
dc.subjectoxidative stressen
dc.subjectcell apoptosisen
dc.title衣康酸衍生物在視網膜色素上皮細胞經由Nrf2/HO1訊息傳導路徑抑制因高糖所引發之氧化壓力及細胞凋亡zh_TW
dc.titleFour-Octyl Itaconate Suppresses High Glucose-Induced Oxidative Stress and Apoptosis in Retinal Pigment Epithelial Cells through Nrf2/HO1 Pathwayen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee楊偉勛;方怡謨zh_TW
dc.contributor.oralexamcommitteeWei-Shiung Yang;I-Mo Fangen
dc.subject.keyword衣康酸,糖尿病視網膜病變,視網膜色素上皮細胞,細胞凋亡,氧化壓力,Nrf2,zh_TW
dc.subject.keywordItaconate,diabetic retinopathy,retinal pigment epithelium,cell apoptosis,oxidative stress,Nrf2,en
dc.relation.page33-
dc.identifier.doi10.6342/NTU202303222-
dc.rights.note未授權-
dc.date.accepted2023-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
1.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved