請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8963
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 朱時宜 | |
dc.contributor.author | Yu-Hang Chen | en |
dc.contributor.author | 陳佑航 | zh_TW |
dc.date.accessioned | 2021-05-20T20:05:12Z | - |
dc.date.available | 2014-08-19 | |
dc.date.available | 2021-05-20T20:05:12Z | - |
dc.date.copyright | 2009-08-19 | |
dc.date.issued | 2009 | |
dc.date.submitted | 2009-08-14 | |
dc.identifier.citation | [1] T. Brabec, and F. Krausz, Reviews of Modern Physics
72, 545 (2000). [2] C. Spielmann et al., Science 278, 661 (1997). [3] I. P. Christov, M. M. Murnane, and H. C. Kapteyn, Physical Review Letters 78, 1251 (1997). [4] C. Gohle et al., Nature 436, 234 (2005). [5] S. T. Cundiff, and J. Ye, Reviews of Modern Physics 75, 325 (2003). [6] D. PaviCic et al., Physical Review Letters 98, 243001 (2007). [7] X. M. Tong, Z. X. Zhao, and C. D. Lin, Physical Review A 66, 033402 (2002). [8] H. R. Reiss, Physical Review A 22, 1786 (1980). [9] J. Muth-Bohm, A. Becker, and F. H. M. Faisal, Physical Review Letters 85, 2280 (2000). [10] K. J. Schafer, and K. C. Kulander, Physical Review A 42, 5794 (1990). [11] M. J. DeWitt, E. Wells, and R. R. Jones, Physical Review Letters 87, 153001 (2001). [12] E. Wells, M. J. DeWitt, and R. R. Jones, Physical Review A 66, 013409 (2002). [13] C. A. Ullrich, U. J. Gossmann, and E. K. U. Gross, Physical Review Letters 74, 872 (1995). [14] X.-M. Tong, and S.-I. Chu, Physical Review A 57, 452 (1998). [15] X.-M. Tong, and S.-I. Chu, Physical Review A 64, 013417 (2001). [16] R. S. Judson, and H. Rabitz, Physical Review Letters 68, 1500 (1992). [17] C. J. Bardeen et al., Chemical Physics Letters 280, 151 (1997). [18] S. Vajda et al., Chemical Physics 267, 231 (2001). [19] R. Bartels et al., Nature 406, 164 (2000). [20] J. L. Herek et al., Nature 417, 533 (2002). [21] G. M. Huang, T. J. Tarn, and J. W. Clark, Journal of Mathematical Physics 24, 2608 (1983). [22] A. P. Peirce, M. A. Dahleh, and H. Rabitz, Physical Review A 37, 4950 (1988). [23] P. Hohenberg, and W. Kohn, Physical Review 136, B864 (1964). [24] W. Kohn, and L. J. Sham, Physical Review 140, A1133 (1965). [25] J. P. Perdew, and Y. Wang, Physical Review B 45, 13244 (1992). [26] X. Chu, and S.-I. Chu, Physical Review A 63, 023411 (2001). [27] X. Chu, and S.-I. Chu, Physical Review A 70, 061402 (2004). [28] John Heslar et al., International Journal of Quantum Chemistry 107, 3159 (2007). [29] D. A. Telnov, and S.-I. Chu, Physical Review A (Atomic, Molecular, and Optical Physics) 76, 043412 (2007). [30] X. Chu, and S.-I. Chu, Physical Review A 64, 063404 (2001). [31] edited by M. Abramowitz and I. Stegun (Dover, New York, 1965). [32] D. A. Telnov, and S.-I. Chu, Physical Review A 71, 013408 (2005). [33] X.-M. Tong, and S.-I. Chu, Chemical Physics 217, 119 (1997). [34] X. Chu, and S.-I. Chu, Physical Review A 63, 013414 (2000). [35] V. Ramakrishna et al., Physical Review A 51, 960 (1995). [36] W. Zhu, J. Botina, and H. Rabitz, The Journal of Chemical Physics 108, 1953 (1998). [37] W. Zhu, and H. Rabitz, The Journal of Chemical Physics 109, 385 (1998). [38] Y. Ohtsuki, G. Turinici, and H. Rabitz, The Journal of Chemical Physics 120, 5509 (2004). [39] I. Serban, J. Werschnik, and E. K. U. Gross, Physical Review A 71, 053810 (2005). [40] R. Kosloff et al., Chemical Physics 139, 201 (1989). [41] A. Lofthus, and P. H. Krupenie, Journal of Physical and Chemical Reference Data 6, 113 (1977). [42] P. Baltzer et al., Physical Review A 45, 4374 (1992). [43] A. B. Cornford et al., The Journal of Chemical Physics 54, 2651 (1971). [44] X.-M. Tong, and S.-I. Chu, Physical Review A 61, 021802 (2000). | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/8963 | - |
dc.description.abstract | 我們以第一原理計算和研究雙原子分子在超短強場雷射下的多光子過程,並且使用了對遠距位能修正過的含時密度泛函理論 (time-dependent density functional theory) 來處理多電子分子系統。為了得到準確並有效率的結果,我們採用推廣到雙元子系統的廣義擬似譜法 (generalized pseudospectral method) 來做數值處理。在多光子電離的計算中,可發現分子軌域的排列方向會直接的影響不同軌域的電離順序。而我們也獲得詳細的高次諧波頻譜 (high harmonic generation) 及比較了最高電子佔有軌域做出的貢獻。我們還發現到一氧化碳分子帶有的永久電偶極矩破壞了反轉對稱,從而產生原子系統不會出現的偶數高次諧波。
另外在本篇論文中,我們用最佳控制理論 (optimal control theory) 成功的控制且達到在雙能階系統下的時變目標,並應用共軛梯度法 (conjugate gradient algorithm) 大幅減少數值迭代所需的次數。 | zh_TW |
dc.description.abstract | We present an ab initio study of the time-dependent density-functional theory (TDDFT) with proper asymptotic long-range potential for nonperturbative treatment of multi-photon processes of diatomic molecules in strong laser field. For accurate and efficient treatment of the TDDFT equations, the generalized pseudospectral method (GPS) is extended to two-center molecules system. The procedure allows nonuniform and optimal spatial grid discretization of the Hamiltonian in prolate spheroidal coordinates and the time propagation using the split-operator technique in the energy representation.
The multiphoton ionization and high-order harmonic generation (HHG) of diatomic molecules N2, CO, and O2 in intense short laser pulse fields are calculated in detail. We observe both the electronic binding energy and the orientation of the orbitals affect the ionization rate. In the analysis of HHG, the highest occupied molecular orbital (HOMO) has dominant contribution, but accurate results have to be obtained with all-electron study. The CO molecule has a small permanent dipole moment cause the different nonlinear optical response to homonuclear molecules such as generating both even and odd harmonics. We also practice the optimal control theory using time-dependent targets on the two-level system with use of the conjugate gradient algorithm, therefore greatly reducing the number of iterations to reach convergence. | en |
dc.description.provenance | Made available in DSpace on 2021-05-20T20:05:12Z (GMT). No. of bitstreams: 1 ntu-98-R95222021-1.pdf: 1404577 bytes, checksum: b515d490b16ab18b34bdcd274b0c7bdd (MD5) Previous issue date: 2009 | en |
dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Theory of electron structure in diatomic molecules 3 2.1 Ground state density functional theory 3 2.1.1 Hohenberg-Kohn theorems 3 2.1.2 Kohn-Sham equations 6 2.1.3 Approximations for the exchange-correlation functional 7 2.2 Time-dependent density functional theory 8 2.3 Generalized pseudospectral method for two-center systems 10 2.4 Numerical solutions of the TDDFT equation 13 Chapter 3 Optimal control theory 17 3.1 Basic theory 17 3.2 Final-time targets and algorithms 19 3.3 Time-dependent targets and algorithms 22 3.4 Conjugate gradient method 23 3.5 Constraints on the optimal fields 24 Chapter 4 Results and discussion 26 4.1 Orbital energies 26 4.2 Multiphoton ionization 28 4.3 High-order harmonic generation 32 4.4 OCT on two-level system 42 Chapter 5 Conclusion and perspectives 47 Bibliography 48 | |
dc.language.iso | en | |
dc.title | 以第一原理含時密度泛函理論研究雙原子分子在超短強場雷射下的多光子效應及量子最佳控制理論 | zh_TW |
dc.title | Ab initio TDDFT study of multiphoton dynamics of diatomic molecules in intense ultrashort laser fields and quantum optimal control theory | en |
dc.type | Thesis | |
dc.date.schoolyear | 97-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 郭光宇,高英哲 | |
dc.subject.keyword | 雙原子分子,廣義擬似譜法,最佳控制理論,高階諧波,含時密度泛函理論,多光子電離, | zh_TW |
dc.subject.keyword | diatomic molecules,generalized pseudospectral method,optimal control theory,high-order harmonic generation,time-dependent density functional theory,multiphoton ionization, | en |
dc.relation.page | 50 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2009-08-14 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 物理研究所 | zh_TW |
顯示於系所單位: | 物理學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-98-1.pdf | 1.37 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。