請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89639
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林居正 | zh_TW |
dc.contributor.advisor | Jiu-Jenq Lin | en |
dc.contributor.author | 曾怡珊 | zh_TW |
dc.contributor.author | I-Shan Tzeng | en |
dc.date.accessioned | 2023-09-13T16:11:37Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-13 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-27 | - |
dc.identifier.citation | Bid, D., Sharma, S.K. & Sajid, S. (2013). Role of Latissimus Dorsi and Lower Trapezius in Chronic Mechanical Low Back Pain due to Thoraco-lumbar Dysfunction. Indian J Physiotherapy and Occup Ther, 7(2),219-224. https://doi.org/10.5958/j.0973-5674.7.2.
Brady, B., Redfern, J., MacDougal, G., et al. (2008). The addition of aquatic therapy to rehabilitation following surgical rotator cuff repair: a feasibility study. Physiother Res Int, 13(3), 153-161. https://doi.org/10.1002/pri.403 Brody, L. T. & Geigle, P.R. (2009). “Ai Chi”Aquatic exercise for rehabilitation and training. Human Kinetics, Champaign, IL, 101-116 Burkhart, S. S., Morgan, C. D., & Kibler, W. B. (2000). Shoulder injuries in overhead athletes. The "dead arm" revisited. Clin Sports Med, 19(1), 125-158. https://doi.org/10.1016/s0278-5919(05)70300-8 Burmaster, C., Eckenrode, B. J. & Stiebel, M. (2016). Early Incorporation of an Evidence-Based Aquatic-Assisted Approach to Arthroscopic Rotator Cuff Repair Rehabilitation: Prospective Case Study. Phys Ther, 96(1), 53-61. https://doi.org/10.2522/ptj.20140178 Burn, M. B., McCulloch, P. C., Lintner, D. M., et al. (2016). Prevalence of Scapular Dyskinesis in Overhead and Nonoverhead Athletes: A Systematic Review. Orthop J Sports Med, 4(2), 2325967115627608. https://doi.org/10.1177/2325967115627608 Castillo-Lozano, R. & Cuesta-Vargas, A. I. (2013). A comparison land-water environment of maximal voluntary isometric contraction during manual muscle testing through surface electromyography. BMC Sports Sci Med Rehabil, 5(1), 28. https://doi.org/10.1186/2052-1847-5-28 Castillo-Lozano, R., Cuesta-Vargas, A. & Gabel, C. P. (2014). Analysis of arm elevation muscle activity through different movement planes and speeds during in-water and dry-land exercise. J Shoulder Elbow Surg, 23(2), 159-165. https://doi.org/10.1016/j.jse.2013.04.010 Chien, Y. T., Chang, C. Y., Chang, C. H., et al (2023). Effect of neuromuscular electrical stimulation on humeral adductors in subjects with full-thickness rotator cuff Tear. Formos. J Phys Ther, 48(2), 127-128. https://doi.org/10.6215/FJPT.202306.O27 Chu, S. K., Jayabalan, P., Kibler, W. B., et al. (2016). The Kinetic Chain Revisited: New Concepts on Throwing Mechanics and Injury. PM R, 8(3 Suppl), S69-77. https://doi.org/10.1016/j.pmrj.2015.11.015 Colado, J. C., Tella, V. & Triplett, N. T. (2008). A method for monitoring intensity during aquatic resistance exercises. J Strength Cond Res, 22(6), 2045-2049. https://doi.org/10.1519/JSC.0b013e31817ae71f Colado, J. C., Borreani, S., Pinto, S. S., et al. (2013). Neuromuscular responses during aquatic resistance exercise with different devices and depths. J Strength Cond Res, 27(12), 3384-3390. https://doi.org/10.1519/JSC.0b013e3182915ebe Cools, A. M., Dewitte, V., Lanszweert, F., et al. (2007). Rehabilitation of scapular muscle balance: which exercises to prescribe? Am J Sports Med, 35(10), 1744-1751. https://doi.org/10.1177/0363546507303560 Cools, A. M., Struyf, F., De Mey, K., et al. (2014). Rehabilitation of scapular dyskinesis: from the office worker to the elite overhead athlete. Br J Sports Med, 48(8), 692-697. https://doi.org/10.1136/bjsports-2013-092148 Cricchio, M. & Frazer, C. (2011). Scapulothoracic and scapulohumeral exercises: a narrative review of electromyographic studies. J Hand Ther, 24(4), 322-333; quiz 334. https://doi.org/10.1016/j.jht.2011.06.001 Criswell, E., & Cram, J. R. (2011). Chapter 17 Electrode Placements. In Cram's introduction to surface electromyography (pp. 58, 268–294). essay, Jones and Bartlett. Cuesta-Vargas, A. I. & Cano-Herrera, C. L. (2014). Surface electromyography during physical exercise in water: a systematic review. BMC Sports Sci Med Rehabil, 6(1), 15. https://doi.org/10.1186/2052-1847-6-15 De Mey, K., Danneels, L., Cagnie, B., et al. (2013). Kinetic chain influences on upper and lower trapezius muscle activation during eight variations of a scapular retraction exercise in overhead athletes. J Sci Med Sport, 16(1), 65-70. https://doi.org/https://doi.org/10.1016/j.jsams.2012.04.008 De Mey, K., Danneels, L., Cagnie, B., et al. (2014). Shoulder muscle activation levels during four closed kinetic chain exercises with and without Redcord slings. J Strength Cond Res, 28(6), 1626-1635. https://doi.org/10.1519/JSC.0000000000000292 Ellenbecker, T. S. & Aoki, R. (2020). Step by Step Guide to Understanding the Kinetic Chain Concept in the Overhead Athlete. Curr Rev Musculoskelet Med, 13(2), 155-163. https://doi.org/10.1007/s12178-020-09615-1 Elliott, B., Fleisig, G., Nicholls, R., et al. (2003). Technique effects on upper limb loading in the tennis serve. J Sci Med Sport, 6(1), 76-87. https://doi.org/10.1016/s1440-2440(03)80011-7 Hickey, D., Solvig, V., Cavalheri, V., et al. (2018). Scapular dyskinesis increases the risk of future shoulder pain by 43% in asymptomatic athletes: a systematic review and meta-analysis. Br J Sports Med, 52(2), 102-110. https://doi.org/10.1136/bjsports-2017-097559 Huang, T. S., Huang, H. Y., Wang, T. G., et al. (2015). Comprehensive classification test of scapular dyskinesis: A reliability study. Man Ther, 20(3), 427-432. https://doi.org/10.1016/j.math.2014.10.017 Huang, T. S., Ou, H. L., Huang, C. Y., et al. (2015). Specific kinematics and associated muscle activation in individuals with scapular dyskinesis. J Shoulder Elbow Surg, 24(8), 1227-1234. https://doi.org/10.1016/j.jse.2014.12.022 Huang, T. S., Lin, J. J., Ou, H. L., et al. (2017). Movement Pattern of Scapular Dyskinesis in Symptomatic Overhead Athletes. Sci Rep, 7(1), 6621. https://doi.org/10.1038/s41598-017-06779-8 Jang Tae, S., Lee Dong, S., Kim Ki, H., et al. (2021). Effects of Maximum Repeated Squat Exercise on Number of Repetition, Trunk and Lower Extremity EMG Response according to Water Depth. Int J Internet Broad Commu, 13(1), 152-160. https://doi.org/10.7236/IJIBC.2021.13.1.152 Januario, L., Machado Cid, M., Zanca, G., et al. (2022). Serratus anterior sEMG – sensor placement and test position for normalization purposes during maximal and submaximal exertions. Med Eng Phys, 101, 103765. https://doi.org/10.1016/j.medengphy.2022.103765 Johnson, G., Bogduk, N., Nowitzke, A., et al. (1994). Anatomy and actions of the trapezius muscle. Clin Biomech (Bristol, Avon), 9(1), 44-50. https://doi.org/10.1016/0268-0033(94)90057-4 Karabay, D., Emuk, Y. & Ozer Kaya, D. (2020). Muscle Activity Ratios of Scapular Stabilizers During Closed Kinetic Chain Exercises in Healthy Shoulders: A Systematic Review. J Sport Rehabil, 29(7), 1001-1018. https://doi.org/10.1123/jsr.2018-0449 Kelly, B. T., Roskin, L. A., Kirkendall, D. T., et al. (2000). Shoulder muscle activation during aquatic and dry land exercises in nonimpaired subjects. J Orthop Sports Phys Ther, 30(4), 204-210. https://doi.org/10.2519/jospt.2000.30.4.204 Kendall F. P., McCreary, E. K., Provance P. G., et al. (2010). Muscles: Testing and function with posture and pain. Lippincott.Wailliams & Wilkins Kibler, W. B. (1994). Clinical biomechanics of the elbow in tennis: implications for evaluation and diagnosis. Med Sci Sports Exerc, 26(10), 1203-1206. https://www.ncbi.nlm.nih.gov/pubmed/7799762 Kibler, W. B. (1995). Biomechanical analysis of the shoulder during tennis activities. Clin Sports Med, 14(1), 79-85. https://www.ncbi.nlm.nih.gov/pubmed/7712559 Kibler, W. B. (1998). The role of the scapula in athletic shoulder function. Am J Sports Med, 26(2), 325-337. https://doi.org/10.1177/03635465980260022801 Kibler W.B., Uhl T.L., Maddux J.W., et al. (2002). Qualitative clinical evaluation of scapular dysfunction: a reliability study. J Shoulder Elbow Surg, 11(6):550-6. http://doi.org/10.1067/mse.2002.126766 Kibler, W. B., Press, J. & Sciascia, A. (2006). The role of core stability in athletic function. Sports Med, 36(3), 189-198. https://doi.org/10.2165/00007256-200636030-00001 Kibler, W. B., Ludewig, P. M., McClure, P., et al. (2009). Scapular Summit 2009: introduction. July 16, 2009, Lexington, Kentucky. J Orthop Sports Phys Ther, 39(11), A1-A13. https://doi.org/10.2519/jospt.2009.0303 Kibler, W. B., Sciascia, A. & Wilkes, T. (2012). Scapular dyskinesis and its relation to shoulder injury. J Am Acad Orthop Surg, 20(6), 364-372. https://doi.org/10.5435/JAAOS-20-06-364 Kibler, W. B., Ludewig, P. M., McClure, P. W., et al. (2013). Clinical implications of scapular dyskinesis in shoulder injury: the 2013 consensus statement from the 'Scapular Summit'. Br J Sports Med, 47(14), 877-885. https://doi.org/10.1136/bjsports-2013-092425 Kibler, W. B. & Myers, N. L. (2018). Pathophysiology of tennis injuries: the kinetic chain. Tennis Medicine, 53-60. https://doi.org/https://doi.org/10.1007/978-3-319-71498-1_4 Kibler, W. B. & Sciascia, A. (2019). Evaluation and Management of Scapular Dyskinesis in Overhead Athletes. Curr Rev Musculoskelet Med, 12(4), 515-526. https://doi.org/10.1007/s12178-019-09591-1 Konno, J., & Sova, R. (1999). Ai Chi: Balance, harmony & healing. DSL. Ku, P. H., Chen, S. F., Yang, Y. R., et al. (2020). The effects of Ai Chi for balance in individuals with chronic stroke: a randomized controlled trial. Sci Rep, 10(1), 1201. https://doi.org/10.1038/s41598-020-58098-0 Kurt, E. E., Buyukturan, B., Buyukturan, O., et al. (2018). Effects of Ai Chi on balance, quality of life, functional mobility, and motor impairment in patients with Parkinson's disease. Disabil Rehabil, 40(7), 791-797. https://doi.org/10.1080/09638288.2016.1276972 Lauer, J., Vilas-Boas, J. P. & Rouard, A. H. (2018a). Shoulder joint kinetics and dynamics during underwater forward arm elevation. J Biomech, 71, 144-150. https://doi.org/10.1016/j.jbiomech.2018.01.043 Lauer, J., Vilas-Boas, J. P. & Rouard, A. H. (2018b). Shoulder mechanical demands of slow underwater exercises in the scapular plane. Clin Biomech (Bristol, Avon), 53, 117-123. https://doi.org/10.1016/j.clinbiomech.2018.02.014 Lehman, G. J., Gilas, D. & Patel, U. (2008). An unstable support surface does not increase scapulothoracic stabilizing muscle activity during push up and push up plus exercises. Man Ther, 13(6), 500-506. https://doi.org/10.1016/j.math.2007.05.016 Ludewig, P. M., Cook, T. M. & Nawoczenski, D. A. (1996). Three-dimensional scapular orientation and muscle activity at selected positions of humeral elevation. J Orthop Sports Phys Ther, 24(2), 57-65. https://doi.org/10.2519/jospt.1996.24.2.57 Ludewig, P. M. & Reynolds, J. F. (2009). The association of scapular kinematics and glenohumeral joint pathologies. J Orthop Sports Phys Ther, 39(2), 90-104. https://doi.org/10.2519/jospt.2009.2808 Maenhout, A., Van Praet, K., Pizzi, L., et al. (2010). Electromyographic analysis of knee push up plus variations: what is the influence of the kinetic chain on scapular muscle activity? Br J Sports Med, 44(14), 1010-1015. https://doi.org/10.1136/bjsm.2009.062810 McCann, P. D., Wootten, M. E., Kadaba, M. P., et al. (1993). A kinematic and electromyographic study of shoulder rehabilitation exercises. Clin Orthop Relat Res(288), 179-188. https://www.ncbi.nlm.nih.gov/pubmed/8458132 McClure, P., Tate, A. R., Kareha, S., et al. (2009). A clinical method for identifying scapular dyskinesis, part 1: reliability. J Athl Train, 44(2), 160-164. https://doi.org/10.4085/1062-6050-44.2.160 McMullen, J. & Uhl, T. L. (2000). A kinetic chain approach for shoulder rehabilitation. J Athl Train, 35(3), 329-337. https://www.ncbi.nlm.nih.gov/pubmed/16558646 Mendez-Rebolledo, G., Morales-Verdugo, J., Orozco-Chavez, I., et al. (2021). Optimal activation ratio of the scapular muscles in closed kinetic chain shoulder exercises: A systematic review. J Back Musculoskelet Rehabil, 34(1), 3-16. https://doi.org/10.3233/BMR-191771 Michener, L. A., Sharma, S., Cools, A. M., et al. (2016). Relative scapular muscle activity ratios are altered in subacromial pain syndrome. J Shoulder Elbow Surg, 25(11), 1861-1867. https://doi.org/https://doi.org/10.1016/j.jse.2016.04.010 Mintken, P. E., McDevitt, A. W., Cleland, J. A., et al. (2016). Cervicothoracic manual therapy plus exercise therapy versus exercise therapy alone in the management of individuals with shoulder pain: a multicenter randomized controlled trial. J Orthop Sports Phys Ther, 46(8), 617-628. https://doi.org/10.2519/jospt.2016.6319 Miyakoshi, K., Umehara, J., Komamura, T., et al. (2019). Effect of different trunk postures on scapular muscle activities and kinematics during shoulder external rotation. J Shoulder Elbow Surg, 28(12), 2438-2446. https://doi.org/10.1016/j.jse.2019.04.059 Nasu, H., Yamaguchi, K., Nimura, A., et al. (2012). An anatomic study of structure and innervation of the serratus anterior muscle. Surg Radiol Anat, 34(10), 921-928. https://doi.org/10.1007/s00276-012-0984-1 Paine, R. M. & Voight, M. (1993). The role of the scapula. J Orthop Sports Phys Ther, 18(1), 386-391. https://doi.org/10.2519/jospt.1993.18.1.386 Perez-de la Cruz, S. (2021). Comparison between Three Therapeutic Options for the Treatment of Balance and Gait in Stroke: A Randomized Controlled Trial. Int J Environ Res Public Health, 18(2). https://doi.org/10.3390/ijerph18020426 Phadke, V. & Ludewig, P. M. (2013). Study of the scapular muscle latency and deactivation time in people with and without shoulder impingement. J Electromyogr Kinesiol, 23(2),469-475. https://doi.org/10.1016/j.jelekin.2012.10.004 Pinto, S. S., Alberton, C. L., Zaffari, P., et al. (2015). Rating of Perceived Exertion and Physiological Responses in Water-Based Exercise. J Hum Kinet, 49, 99-108. https://doi.org/10.1515/hukin-2015-0112 Pinto, S. S., Liedtke, G. V., Alberton, C. L., et al. (2010). Electromyographic signal and force comparisons during maximal voluntary isometric contraction in water and on dry land. Eur J Appl Physiol, 110(5), 1075-1082. https://doi.org/10.1007/s00421-010-1598-0 Piraua, A. L., Pitangui, A. C., Silva, J. P., et al. (2014). Electromyographic analysis of the serratus anterior and trapezius muscles during push-ups on stable and unstable bases in subjects with scapular dyskinesis. J Electromyogr Kinesiol, 24(5), 675-681. https://doi.org/10.1016/j.jelekin.2014.05.009 Psycharakis, S. G., Coleman, S. G. S., Linton, L., et al. (2019). Muscle activity during aquatic and land exercises in people with and without low back pain. Phys Ther, 99(3), 297-310. https://doi.org/10.1093/ptj/pzy150 Richardson, E., Lewis, J. S., Gibson, J., et al. (2020). Role of the kinetic chain in shoulder rehabilitation: does incorporating the trunk and lower limb into shoulder exercise regimes influence shoulder muscle recruitment patterns? Systematic review of electromyography studies. BMJ Open Sport Exerc Med, 6(1), e000683. https://doi.org/10.1136/bmjsem-2019-000683 Saini, S. S., Shah, S. S. & Curtis, A. S. (2020). Scapular Dyskinesis and the Kinetic Chain: Recognizing Dysfunction and Treating Injury in the Tennis Athlete. Curr Rev Musculoskelet Med, 13(6), 748-756. https://doi.org/10.1007/s12178-020-09672-6 Schory, A., Bidinger, E., Wolf, J., et al. (2016). A Systematic Review of the Exercises That Produce Optimal Muscle Ratios of the Scapular Stabilizers in Normal Shoulders. Int J Sports Phys Ther, 11(3), 321-336. Sciascia, A. & Cromwell, R. (2012). Kinetic chain rehabilitation: a theoretical framework. Rehabil Res Pract, 2012, 853037. https://doi.org/10.1155/2012/853037 Sciascia, A., Thigpen, C., Namdari, S., et al. (2012). Kinetic chain abnormalities in the athletic shoulder. Sports Med Arthrosc Rev, 20(1), 16-21. https://doi.org/10.1097/JSA.0b013e31823a021f Seitz, A.L., Baxter C. J., Benya K. (2015). Muscle thickness measurements of the lower trapezius with rehabilitative ultrasound imaging are confounded by scapular dyskineis. Man Ther, 20(4), 558-563. https://doi.org/10.1016/j.math.2015.01.002. Silva, M. F., Dias, J. M., Dela Bela, L. F., et al. (2020). A review on muscle activation behaviour during gait in shallow water and deep-water running and surface electromyography procedures. J Bodyw Mov Ther, 24(4), 432-441. https://doi.org/10.1016/j.jbmt.2020.06.005 So, B. C. L., Ng, J. K. & Au, K. C. K. (2019). A 4-week community aquatic physiotherapy program with Ai Chi or Bad Ragaz Ring Method improves disability and trunk muscle endurance in adults with chronic low back pain: A pilot study. J Back Musculoskelet Rehabil, 32(5), 755-767. https://doi.org/10.3233/BMR-171059 Tate, A. R., McClure, P. W., Kareha, S., et al. (2008). Effect of the Scapula Reposition Test on shoulder impingement symptoms and elevation strength in overhead athletes. J Orthop Sports Phys Ther, 38(1), 4-11. https://doi.org/10.2519/jospt.2008.2616 Thein, J. M. & Brody, L. T. (1998). Aquatic-based rehabilitation and training for the elite athlete. J Orthop Sports Phys Ther, 27(1), 32-41. https://doi.org/10.2519/jospt.1998.27.1.32 Thein, J. M. & Brody, L. T. (2000). Aquatic-based rehabilitation and training for the shoulder. J Athl Train, 35(3), 382-389. https://www.ncbi.nlm.nih.gov/pubmed/16558651 Tse, D. H., Kwok, W.Y. & So, B. C. (2022). Investigation of Underwater Shoulder Muscle Activity during Manikin-Carrying in Young Elite Lifesaving Athletes. Sensors, 22(6):2143, 1-15. https://doi.org/10.3390/s22062143 Tsuruike, M. & Ellenbecker, T. S. (2015). Serratus anterior and lower trapezius muscle activities during multi-joint isotonic scapular exercises and isometric contractions. J Athl Train, 50(2), 199-210. https://doi.org/10.4085/1062-6050-49.3.80 Turgut, E., Pedersen, O., Duzgun, I., et al. (2016). Three-dimensional scapular kinematics during open and closed kinetic chain movements in asymptomatic and symptomatic subjects. J Biomech, 49(13), 2770-2777. https://doi.org/10.1016/j.jbiomech.2016.06.015 Umehara, J., Kusano, K., Nakamura, M., et al. (2018). Scapular kinematic and shoulder muscle activity alterations after serratus anterior muscle fatigue. J Shoulder Elbow Surg, 27(7), 1205-1213. https://doi.org/10.1016/j.jse.2018.01.009 Voight, M. L. & Thomson, B. C. (2000). The role of the scapula in the rehabilitation of shoulder injuries. J Athl Train, 35(3), 364-372. https://pubmed.ncbi.nlm.nih.gov/16558649 Yamauchi, T., Hasegawa, S., Matsumura, A., et al. (2015). The effect of trunk rotation during shoulder exercises on the activity of the scapular muscle and scapular kinematics. J Shoulder Elbow Surg, 24(6), 955-964. https://doi.org/10.1016/j.jse.2014.10.010 Zanca, G. G., Oliveira, A. B., Ansanello, W., et al. (2014). EMG of upper trapezius--electrode sites and association with clavicular kinematics. J Electromyogr Kinesiol, 24(6), 868-874. https://doi.org/10.1016/j.jelekin.2014.06.012 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89639 | - |
dc.description.abstract | 肩胛區域肌群,包含上斜方肌、下斜方肌和前鋸肌,對於肩胛的穩定和肩膀的運動至關重要。然而,過肩運動員常常存在肩胛骨穩定肌群肌力較弱的問題,在功能性的肩胛穩定訓練運動,可能導致上斜方肌過度活化。因此,本研究旨在調查過肩運動員肩胛動作異常者在水中和陸地上進行水中太極運動時,肩胛區域肌肉的活化情形。本實驗有二十一名肩胛動作異常的過肩運動員,在水中與陸地進行水中太極運動,同時使用表面肌電圖測量上斜方肌、下斜方肌、前鋸肌和闊背肌的肌肉活化,並計算肩胛區域的肌肉平衡比值:上斜方肌/下斜方肌、上斜方肌/前鋸肌和下斜方肌/前鋸肌,以評估肩胛穩定的控制能力。研究結果顯示,在水中進行水中太極運動時,上斜方肌的收縮力全面衰退,平均降至1.6-3.0%最大自主收縮(p < .001),而下斜方肌與前鋸肌略為減弱(下斜方肌:4.3-12.7%最大自主收縮,前鋸肌:6.3-11.7%最大自主收縮) 。這導致上斜方肌/下斜方肌比值降為0.4至0.7(p < .001),上斜方肌/前鋸肌比值降為0.3至1.0(p < .001)。當水中太極的進程達到更高穩定需求的動作時,便增進了肩胛穩定肌群的活化效果,與陸上環境的肌肉活化效果無顯著差異,這些動作包含:1)下斜方肌在水中太極的展翅運動(水中vs.陸地:5.9±0.7 vs. 9.4±1.5,p = .014),2)下斜方肌在水中太極的內折運動(水中vs.陸地:9.4±1.4 vs. 12.2±1.8,p = .033),3)前鋸肌在水中太極的內折運動(水中vs.陸地:6.9±1.9 vs. 5.8±2.1,p = .434)。慢速的水中運動,通常會導致水中測得的肌肉活化較陸地更低,但由於不成比例的肌力下降,水中環境使肩胛區域呈現較陸地上更理想的發力表現,平日過度活化的上斜方肌於此時被抑制,下斜方肌與前鋸肌皆因水中運動的促進而接近陸上表現。並且水中太極的水中肌肉顯示較高的下斜方肌/前鋸肌比值(水中vs.陸地的展翅運動:2.3 ± 0.6 vs. 0.6 ± 0.1,p < .001 和水中vs.陸地的匯集運動:2.2 ± 0.4 vs. 1.2 ± 0.2,p = .009),這代表下斜方肌與前鋸肌對肩胛作用的力偶旋轉軸往胸椎靠近,呈現肩胛內收的穩定姿勢,有助於肩胛胸椎關節的穩定性。在水中進行的水中太極運動,有效抑制過肩運動員的上斜方肌活化,改善肩胛肌肉平衡比值,提升肩胛穩定控制力。本研究結果指出,水中的水中太極運動在執行手臂運動時,能使肩胛肌群以適當的發力表現,控制肩胛處於較為內收的穩定位置,水中太極應為良好的肌肉再教育的運動形式,有助於提升肩胛動作異常的過肩運動員的肩胛區域健康。 | zh_TW |
dc.description.abstract | The periscapular muscles, which include the upper trapezius (UT), lower trapezius (LT), and serratus anterior (SA), are crucial for scapular stabilization and shoulder movement. However, overhead athletes are known to have weak scapular stabilizers, and certain functional training exercises may primarily activate the UT muscles rather than the LT and SA. Therefore, this study aims to investigate the activation of periscapular muscles during Ai Chi exercises in water and on land for overhead athletes with scapular dyskinesis. Twenty-one overhead athletes with scapular dyskinesis performed Ai Chi exercises in water/on land while surface electromyography was used to measure muscle activation of the UT, LT, SA and latissimus dorsi (LD). The UT/LT, UT/SA, and LT/SA ratios were calculated to evaluate the scapular stability control. The findings revealed that during Ai Chi exercises in water, there was a significant decrease in UT activation (1.6-3.0% maximal voluntary isometric contraction, MVIC, p < .001). In contrast, the LT and SA showed a slight reduction in activation (LT: 4.3-12.7% of MVIC; SA:6.3-11.7% of MVIC), leading to a decreased UT/LT (0.4 to 0.7, p < .001) and UT/SA (0.3 to 1.0, p < .001). As the Ai Chi exercises progressed to movements with higher stability demands, the activation of the scapular stabilizing muscle group showed no significant difference between aquatic and land environments in the following: 1) LT during the Uplifting exercises (aquatic vs. land: 5.9 ± 0.7 vs 9.4 ± 1.5, p= .014), 2) LT during the Folding exercises (aquatic vs. land: 9.4 ± 1.4 vs 12.2 ± 1.8, p = .033), and 3) SA muscle during the Folding exercises (aquatic vs. land: 6.9 ± 1.9 vs 5.8 ± 2.1, p =.434). This can be attributed to the slow arm motions during Ai Chi exercises in water, leading to lower muscle activations compared to land-based exercises. However, as the exercises progressed and higher levels of stabilization were required, the activation of LT and SA increased, facilitating power transfer from the trunk to the arms in the water environment. The disproportionate decrease in periscapular muscle activations of UT, LT and SA in the aquatic environment led to better force performance compared to land exercises. Additionally, the aquatic Ai Chi exercises demonstrated higher LT/SA ratio (aquatic vs. land during the Uplifting exercises: 2.3 ± 0.6 vs. 0.6 ± 0.1, p < .001 and during the Gathering exercises: 2.2 ± 0.4 vs. 1.2 ± 0.2, p = .009), indicating improved thoracoscapular stabilization for the individuals with scapular dyskinesis. The aquatic Ai Chi exercises effectively inhibited the overactive UT and promoted appropriate muscle activation in the scapular region. These findings suggested that aquatic Ai Chi exercises may reeducate the periscapular muscles to stabilize the thoracoscapular joint and improve the scapular control in overhead athletes with scapular dyskinesis. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:11:37Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-13T16:11:37Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | CHAPTER 1: INTRODUCTION 1
BACKGROUND 1 STATEMENT OF THE PROBLEMS 3 PURPOSE OF THE STUDY 5 HYPOTHESIS 5 CHAPTER 2: LITERATURE REVIEW 7 SCAPULAR DYSKINESIS (SD) AND KINETIC CHAIN (KC) DEFICITS IN OVERHEAD ATHLETES 7 ANATOMY OF PERISCAPULAR MUSCLES AND ITS FUNCTION 10 KINETIC CHAIN (KC) EXERCISES FOR PERISCAPULAR MUSCLE ACTIVATION 12 AQUATIC SHOULDER REHABILITATION AND AI CHI EXERCISES 16 UNDERWATER MUSCLE ACTIVATION OF CORE AND SHOULDER REGIONS 19 CHAPTER 3: METHODS 22 STUDY DESIGN 22 SUBJECTS 22 Sample size estimation 22 Criteria 22 INSTRUMENTATION 23 PROCEDURES 24 OUTCOME MEASURES 26 DATA REDUCTION 26 STATISTICAL ANALYSIS 26 CHAPTER 4: RESULTS 28 CHAPTER 5: DISCUSSION 31 CHAPTER 6: CONCLUSION 37 REFERENCE 38 APPENDIX 1. SMOOTHING RMS ANALYSIS 88 APPENDIX 2. PERMISSION OF INSTITUTIONAL REVIEW BOARD AND CONSENT 89 Figure 1. Flowchart of the experiment 50 Figure 2. Posterior and lateral views of electrodes placement 51 Figure 3. Scapular dyskinesis test (SDT) 52 Figure 4. Maximal voluntary isometric contraction test of upper trapezius (UT) 53 Figure 5. Maximal voluntary isometric contraction test of serratus anterior (SA) 54 Figure 6. Maximal voluntary isometric contraction test of lower trapezius (LT) 55 Figure 7 Maximal voluntary isometric contraction test of latissimus dorsi (LD) 56 Figure 8. Ai Chi – Floating exercise 57 Figure 9. Ai Chi – Uplifting exercise 58 Figure 10 Ai Chi – Folding exercise 59 Figure 11. Ai Chi – Gathering exercise 60 Figure 12 Aquatic Ai Chi exercises 61 Figure 13. Upper Trapezius activations during Ai Chi exercises 62 Figure 14. Lower Trapezius activations during Ai Chi exercises 63 Figure 15. Serratus Anterior activations during Ai Chi exercises 64 Figure 16. Latissimus Dorsi activations during Ai Chi exercises 65 Figure 17. Upper Trapezius activation during aquatic Ai Chi exercises 66 Figure 18. Lower Trapezius activation during aquatic Ai Chi exercises 67 Figure 19. Serratus Anterior activation during aquatic Ai Chi exercises 68 Figure 20. Latissimus Dorsi activation during aquatic Ai Chi exercises 69 Figure 21. The land-based and aquatic sEMG data collection setup 70 Figure 22. Selected sEMG signals 71 Figure 23. Data processing of the sEMG 72 Figure 24. Rectification of the sEMG signals 73 Figure 25. RMS of the sEMG signals 74 Table 1. The anatomy and muscle function of periscapular muscle 75 Table 2. Locations and orientations of electrodes on target muscles 76 Table 3. Maximal voluntary isometric contraction test on target muscles 77 Table 4. The descriptions of kinetic chain exercises, Ai Chi 78 Table 5. The components of Ai Chi movement patterns 79 Table 6. The demographic data (n=21) 80 Table 7. Test-retest and intra-rater reliability of Ai Chi exercises and maximal voluntary isometric contraction (MVIC) 81 Table 8. Scapular muscle activation in Land-based Ai Chi and Aquatic Ai Chi 82 Table 9. Scapular muscle activation ratios in Land-based Ai Chi and Aquatic Ai Chi 83 Table 10. Comparisons of the Land/ Aquatic Ai Chi exercises of the Upper Trapezius 84 Table 11. Comparisons of the Land/ Aquatic Ai Chi exercises of the Lower Trapezius 85 Table 12. Comparisons of the Land/ Aquatic Ai Chi exercises of the Serratus Anterior 86 Table 13. Comparisons of the Land/ Aquatic Ai Chi exercises of the Latissimus Dorsi 87 | - |
dc.language.iso | en | - |
dc.title | 肩胛動作異常的過肩運動員在水中太極運動的肩胛肌肉活化探究 | zh_TW |
dc.title | Effects of Ai Chi on scapular muscles activation in overhead athletes with scapular dyskinesis | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張家豪;朱柏青;黃崇舜 | zh_TW |
dc.contributor.oralexamcommittee | Jia-Hao Chang ;Po-Ching Chu ;Tsun-Shun Huang | en |
dc.subject.keyword | 動力鍊,肩胛動作異常,水療,水中太極,過肩運動員,肌電圖, | zh_TW |
dc.subject.keyword | Ai Chi,scapular dyskinesis,overhead athletes,kinetic chain,hydrotherapy,surface EMG, | en |
dc.relation.page | 93 | - |
dc.identifier.doi | 10.6342/NTU202302157 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2023-07-27 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 物理治療學研究所 | - |
顯示於系所單位: | 物理治療學系所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf | 2.61 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。