請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89621完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳焜裕 | zh_TW |
| dc.contributor.advisor | Kuen-Yuh Wu | en |
| dc.contributor.author | 趙珮辰 | zh_TW |
| dc.contributor.author | Pei-Chen Chao | en |
| dc.date.accessioned | 2023-09-13T16:06:32Z | - |
| dc.date.available | 2023-11-09 | - |
| dc.date.copyright | 2023-09-13 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-03 | - |
| dc.identifier.citation | Abdel-Hadi, A., Schmidt-Heydt, M., Parra, R., Geisen, R., & Magan, N. (2012). A systems approach to model the relationship between aflatoxin gene cluster expression, environmental factors, growth and toxin production by Aspergillus flavus. Journal of the Royal Society Interface, 9(69), 757-767.
Ajuwon, B. I., Yujuico, I., Roper, K., Richardson, A., Sheel, M., & Lidbury, B. A. (2021). Hepatitis B virus infection in Nigeria: a systematic review and meta-analysis of data published between 2010 and 2019. BMC Infectious Diseases, 21, 1-15. Battilani, P., Toscano, P., der Fels-Klerx, V., Moretti, A., Camardo Leggieri, M., Brera, C., . . . Robinson, T. (2016). Aflatoxin B1 contamination in maize in Europe increases due to climate change. Scientific reports, 6(1), 1-7. Belyhun, Y., Maier, M., Mulu, A., Diro, E., & Liebert, U. G. (2016). Hepatitis viruses in Ethiopia: a systematic review and meta-analysis. BMC Infectious Diseases, 16, 1-14. Benford, D., Bolger, P. M., Carthew, P., Coulet, M., DiNovi, M., Leblanc, J.-C., . . . Smith, B. (2010). Application of the Margin of Exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food and chemical Toxicology, 48, S2-S24. Bernaldez, V., Cordoba, J. J., Delgado, J., Bermudez, E., & Rodriguez, A. (2018). Gene expression analysis to predict aflatoxins B1 and G1 contamination in some plant origin foods. LWT, 93, 517-524. Bernaldez, V., Cordoba, J. J., Magan, N., Peromingo, B., & Rodriguez, A. (2017). The influence of ecophysiological factors on growth, aflR gene expression and aflatoxin B1 production by a type strain of Aspergillus flavus. LWT-Food Science and Technology, 83, 283-291. Betts, R. (2021). Met Office: Atmospheric CO2 now hitting 50% higher than pre-industrial levels. Paper presented at the World Economic Forum: Cologny, Switzerland. Carnalla, M., Vidaña-Pérez, D., Alpuche-Aranda, C., Chávez-Tapia, N. C., Romero-Martínez, M., Shamah-Levy, T., & Barrientos-Gutiérrez, T. (2022). Hepatitis B infection in Mexican adults: Results of a nationally representative survey. Annals of Hepatology, 27, 100583. CDAF. (2020). CDA Foundation. Retrieved from https://cdafound.org/polaris-countries-dashboard/ Chain, E. P. o. C. i. t. F., Schrenk, D., Bignami, M., Bodin, L., Chipman, J. K., del Mazo, J., . . . Leblanc, J. C. (2020). Risk assessment of aflatoxins in food. Efsa Journal, 18(3), e06040. Chakraborty, S., Tiedemann, A., & Teng, P. S. (2000). Climate change: potential impact on plant diseases. Environmental pollution, 108(3), 317-326. Climate-Data. (2023). Climate Data For Cities Worldwide. Retrieved from https://en.climate-data.org/ ClimaTemps. (2017). ClimaTemps. Retrieved from http://www.climatemps.com/ Coumou, D., & Rahmstorf, S. (2012). A decade of weather extremes. Nature climate change, 2(7), 491-496. Delcour, I., Spanoghe, P., & Uyttendaele, M. (2015). Literature review: Impact of climate change on pesticide use. Food research international, 68, 7-15. Dhanasekaran, D., Shanmugapriya, S., Thajuddin, N., & Panneerselvam, A. (2011). Aflatoxins and aflatoxicosis in human and animals. Aflatoxins-Biochemistry and Molecular Biology, 10(22717), 221-254. Duchenne-Moutien, R. A., & Neetoo, H. (2021). Climate change and emerging food safety issues: a review. Journal of Food Protection, 84(11), 1884-1897. EFSA, E. F. S. A. (2022). consumption rates of maize and body weight. Retrieved from https://www.efsa.europa.eu Elbahrawy, A., Ibrahim, M. K., Eliwa, A., Alboraie, M., Madian, A., & Aly, H. H. (2021). Current situation of viral hepatitis in Egypt. Microbiology and immunology, 65(9), 352-372. FAO. (2020). Climate Change : Unpacking the Burden on Food Safety. FAO—Food and Agriculture Organization of the United Nations: Rome, Italy. Field, C. B., & Barros, V. R. (2014). Climate change 2014–Impacts, adaptation and vulnerability: Regional aspects: Cambridge University Press. Gallagher, E. P., Kunze, K. L., Stapleton, P. L., & Eaton, D. L. (1996). The kinetics of aflatoxin B1oxidation by human cDNA-expressed and human liver microsomal cytochromes P450 1A2 and 3A4. Toxicology and applied pharmacology, 141(2), 595-606. Gallo, A., Solfrizzo, M., Epifani, F., Panzarini, G., & Perrone, G. (2016). Effect of temperature and water activity on gene expression and aflatoxin biosynthesis in Aspergillus flavus on almond medium. International journal of food microbiology, 217, 162-169. Gilbert, M. K., Medina, A., Mack, B. M., Lebar, M. D., Rodríguez, A., Bhatnagar, D., . . . Payne, G. (2017). Carbon dioxide mediates the response to temperature and water activity levels in Aspergillus flavus during infection of maize kernels. Toxins, 10(1), 5. Giray, B., Girgin, G., Engin, A. B., Aydın, S., & Sahin, G. (2007). Aflatoxin levels in wheat samples consumed in some regions of Turkey. Food control, 18(1), 23-29. Gnonlonfin, G., Adjovi, C., Katerere, D., Shephard, G., Sanni, A., & Brimer, L. (2012). Mycoflora and absence of aflatoxin contamination of commercialized cassava chips in Benin, West Africa. Food control, 23(2), 333-337. Goudeau, A., & Dubois, F. (1995). Incidence and prevalence of hepatitis B in France. Vaccine, 13, S22-S25. GOV.UK. (2021). Hepatitis B: migrant health guide. Retrieved from https://www.gov.uk/guidance/hepatitis-b-migrant-health-guide Groopman, J. D., Croy, R. G., & Wogan, G. N. (1981). In vitro reactions of aflatoxin B1-adducted DNA. Proceedings of the National Academy of Sciences, 78(9), 5445-5449. Groopman, J. D., Kensler, T. W., & Wild, C. P. (2008). Protective interventions to prevent aflatoxin-induced carcinogenesis in developing countries. Annual Reviews. Public Health, 29, 187-203. Guimarães, L. C. d. C., Brunini, S., Guimarães, R. A., Galdino-Júnior, H., Minamisava, R., da Cunha, V. E., . . . de Oliveira, V. L. B. (2019). Epidemiology of hepatitis B virus infection in people living in poverty in the central-west region of Brazil. BMC Public Health, 19, 1-11. Hafsa, T., & Tanzila, K. (2021). Molecular Prevalence and Causes of Hepatitis B Virus Infection in District Bannu Khyber Pakhtunkhwa, Pakistan. Global Journal of Clinical Virology 1-6. Hallsworth, J., & Nomura, Y. (1999). A simple method to determine the water activity of ethanol‐containing samples. Biotechnology and bioengineering, 62(2), 242-245. Henley, J. (2021). Death toll exceeds 180 as Germany and Belgium hit by devastating floods. The Guardian. Retrieved from https://www.theguardian.com/world/2021/jul/16/western-germany-floods-angela-merkel-horror-catastrophe-deaths-missing-search-flooding-belgium Hockstad, L., & Hanel, L. (2018). Inventory of US greenhouse gas emissions and sinks. Retrieved from IARC. (2002). Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. Lyon, France: IARC Press. Inan, F., Pala, M., & Doymaz, I. (2007). Use of ozone in detoxification of aflatoxin B1 in red pepper. Journal of Stored Products Research, 43(4), 425-429. IPCC. (2014). Impacts, adaptation and vulnerability. Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental Panel on Climate Change, 1132. Iyer, R. S., Coles, B. F., Raney, K. D., Thier, R., Guengerich, F. P., & Harris, T. M. (1994). DNA adduction by the potent carcinogen aflatoxin B1: mechanistic studies. Journal of the American chemical society, 116(5), 1603-1609. Johnsen, A. R., & Kroer, N. (2007). Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS microbiology ecology, 59(3), 718-728. Johnson, W. W., & Guengerich, F. P. (1997). Reaction of aflatoxin B1 exo-8, 9-epoxide with DNA: kinetic analysis of covalent binding and DNA-induced hydrolysis. Proceedings of the National Academy of Sciences, 94(12), 6121-6125. Juan M. Cevallos-Cevallos, G. G., Michelle D. Danyluk, Nicholas S. Dufault, Ariena H.C. van Bruggen (2012). Salmonella can reach tomato fruits on plants exposed to aerosols formed by rain. International journal of food microbiology, 158(2), 140-146. Knoema. (2020). maize supply for food. Retrieved from https://knoema.com/atlas Kweku, D., Bismark, O., Maxwell, A., Desmond, K., Danso, K., Oti-Mensah, E., . . . Adormaa, B. (2018). Greenhouse effect: greenhouse gases and their impact on global warming. Journal of Scientific research and reports, 17(6), 1-9. Lien, K.-W., Wang, X., Pan, M.-H., & Ling, M.-P. (2019). Assessing aflatoxin exposure risk from peanuts and peanut products imported to Taiwan. Toxins, 11(2), 80. Lim, J. K., Nguyen, M. H., Kim, W. R., Gish, R., Perumalswami, P., & Jacobson, I. M. (2020). Prevalence of chronic hepatitis B virus infection in the United States. Official journal of the American College of Gastroenterology| ACG, 115(9), 1429-1438. Lindsey, R., & Dahlman, L. (2020). Climate change: Global temperature. Climate. gov, 16. Lubchenco, J., & Karl, T. R. (2012). Extreme weather events. Phys. Today, 65(3), 31. Lusa. (2022). Portugal hits 47ºC. News. Retrieved from https://www.theportugalnews.com/news/2022-07-15/portugal-hits-47c/68702 Lutkevich, B. (2023). Monte Carlo simulation. Retrieved from https://www.techtarget.com/searchcloudcomputing/definition/Monte-Carlo-simulation Mace, K., Aguilar, F., Wang, J.-S., Vautravers, P., Gomez-Lechon, M., Gonzalez, F. J., . . . Pfeifer, A. (1997). Aflatoxin B1-induced DNA adduct formation and p53 mutations in CYP450-expressing human liver cell lines. Carcinogenesis, 18(7), 1291-1297. Maisa, A., Kollan, C., An Der Heiden, M., Van Bömmel, F., Cornberg, M., Mauss, S., . . . Dudareva, S. (2021). Increasing number of individuals receiving hepatitis B nucleos (t) ide analogs therapy in Germany, 2008–2019. Frontiers in Public Health, 9, 667253. Marques, A., Nunes, M. L., Moore, S. K., & Strom, M. S. (2010). Climate change and seafood safety: Human health implications. Food research international, 43(7), 1766-1779. Medina, A., Rodríguez, A., Sultan, Y., & Magan, N. (2015). Climate change factors and Aspergillus flavus: effects on gene expression, growth and aflatoxin production. World Mycotoxin Journal, 8(2), 171-179. Moretti, A., Pascale, M., & Logrieco, A. F. (2019). Mycotoxin risks under a climate change scenario in Europe. Trends in Food Science & Technology, 84, 38-40. Mousa, W., Ghazali, F., Jinap, S., Ghazali, H., & Radu, S. (2011). Modelling the effect of water activity and temperature on growth rate and aflatoxin production by two isolates of Aspergillus flavus on paddy. Journal of applied microbiology, 111(5), 1262-1274. Muljono, D. H. (2017). Epidemiology of hepatitis B and C in Republic of Indonesia. Euroasian journal of hepato-gastroenterology, 7(1), 55. Norlia, M., Jinap, S., Nor-Khaizura, M. A. R., Radu, S., John, J. M., Rahman, M. A. H., . . . Sharif, Z. (2020). Modelling the effect of temperature and water activity on the growth rate of Aspergillus flavus and aflatoxin production in peanut meal extract agar. International journal of food microbiology, 335, 108836. NRC, N. R. C. (1983). Risk assessment in the federal government: managing the process. Parikka, P., Hakala, K., & Tiilikkala, K. (2012). Expected shifts in Fusarium species’ composition on cereal grain in Northern Europe due to climatic change. Food Additives & Contaminants: Part A, 29(10), 1543-1555. Peraica, M., Domijan, A.-M., Jurjević, Ž., & Cvjetković, B. (2002). Prevention of exposure to mycotoxins from food and feed. Arhiv za higijenu rada i toksikologiju, 53(3), 229-237. Pulido, O. (2016). Phycotoxins by harmful algal blooms (HABS) and human poisoning: an overview. Int. Clin. Pathol. J, 2(6), 145-152. Raney, K. D., Coles, B., Guengerich, F. P., & Harris, T. M. (1992). The endo-8, 9-epoxide of aflatoxin B1: a new metabolite. Chemical research in toxicology, 5(3), 333-335. Rushing, B. R., & Selim, M. I. (2019). Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food and chemical Toxicology, 124, 81-100. Salehi-Vaziri, M., Sadeghi, F., Hashiani, A. A., Fesharaki, M. G., & Alavian, S. M. (2016). Hepatitis B virus infection in the general population of Iran: an updated systematic review and meta-analysis. Hepatitis Monthly, 16(4). Schmidt-Heydt, M., Abdel-Hadi, A., Magan, N., & Geisen, R. (2009). Complex regulation of the aflatoxin biosynthesis gene cluster of Aspergillus flavus in relation to various combinations of water activity and temperature. International journal of food microbiology, 135(3), 231-237. Schmidt-Heydt, M., Rüfer, C. E., Abdel-Hadi, A., Magan, N., & Geisen, R. (2010). The production of aflatoxin B 1 or G 1 by Aspergillus parasiticus at various combinations of temperature and water activity is related to the ratio of aflS to afl R expression. Mycotoxin Research, 26, 241-246. Smela, M. E., Hamm, M. L., Henderson, P. T., Harris, C. M., Harris, T. M., & Essigmann, J. M. (2002). The aflatoxin B1 formamidopyrimidine adduct plays a major role in causing the types of mutations observed in human hepatocellular carcinoma. Proceedings of the National Academy of Sciences, 99(10), 6655-6660. Steven Thur, E. M., Gary Matlock. (2021). Despite pandemic shutdowns, carbon dioxide and methane surged in 2020. Retrieved from https://research.noaa.gov/article/ArtMID/587/ArticleID/2742/Despite-pandemic-shutdowns-carbon-dioxide-and-methane-surged-in-2020 Tirado, M. C., Clarke, R., Jaykus, L. A., McQuatters-Gollop, A., & Franke, J. M. (2010). Climate change and food safety: A review. Food research international, 43(7), 1745-1765. doi:10.1016/j.foodres.2010.07.003 TNFCD. (2017 & 2019). National Food Consumption Database. Retrieved from http://tnfcds.nhri.edu.tw/ Ueng, Y.-F., Shimada, T., Yamazaki, H., & Guengerich, F. P. (1995). Oxidation of aflatoxin B1 by bacterial recombinant human cytochrome P450 enzymes. Chemical research in toxicology, 8(2), 218-225. USEPA. (2022). Climate Change and Harmful Algal Blooms. Retrieved from United States Environmental Protection Agency: https://www.epa.gov/nutrientpollution/climate-change-and-harmful-algal-blooms Uyttendaele, M., Liu, C., Hofstra, N., Uyttendaele, M., Liu, C., & Hofstra, N. (2015). Special issue on the impacts of climate change on food safety. Food research international(68), 1-6. Wacoo, A. P., Wendiro, D., Vuzi, P. C., & Hawumba, J. F. (2014). Methods for detection of aflatoxins in agricultural food crops. WeatherSpark. (2022). The Weather Year Round Anywhere on Earth. Retrieved from https://weatherspark.com/ WHO, W. H. O. (2017). World Hepatitis Day 2016: know Hepatitis-Act Now. In: SEARO. WHO, W. H. O. (2018). Hepatitis data and statistics in the Western Pacific. WorldData.info. (2023). Average height and weight by country. Retrieved from https://www.worlddata.info/ Wu, X. X., Lu, Y. M., Zhou, S., Chen, L. F., & Xu, B. (2016). Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environment international, 86, 14-23. doi:10.1016/j.envint.2015.09.007 Xiaoxu Wu, Y. L., Sen Zhou, Lifan Chen a, Bing Xu (2016). Impact of climate change on human infectious diseases: Empirical evidence and human adaptation. Environment international, 86, 14-23. Zartarian, Ott, W., & Duan, N. (2007). Basic concepts and definitions of exposure and dose. Exposure analysis, 33-63. Zilfou, J. T., & Lowe, S. W. (2009). Tumor suppressive functions of p53. Cold Spring Harbor perspectives in biology, 1(5), a001883. Zingales, V., Taroncher, M., Martino, P. A., Ruiz, M.-J., & Caloni, F. (2022). Climate change and effects on molds and mycotoxins. Toxins, 14(7), 445. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89621 | - |
| dc.description.abstract | 面對氣候變遷影響日益加劇,本研究在預估氣溫升高攝氏2度的氣候變化情境下,評估因透過飲食尤其是玉米的攝食,而暴露於黃麴毒素(AFs)和AFB1導致健康風險以及全球疾病負擔的提升。本研究主要針對台灣、歐盟,以及17個資料充足、人口數以及B型肝炎感染率高的國家進行風險評估。研究結果揭示,在台灣和歐洲各年齡群體的AFs和AFB1暴露量大幅的增加,平均和95百分位暴露量皆增加超過350%。此外,計算出的癌症風險大多數超過了1 x 10-6,超過可接受風險,此數據顯然指出這些黴菌毒素的存在明顯增加了肝癌的風險與負擔。
本研究運用了一種包含溫度、水活性、CO2濃度等參數的預測模型,來預估未來氣候變化情境下的AFB1殘留狀況。其後,我們進行機率風險評估以估計每個國家的肝癌風險和疾病負擔。結果顯示,預估的未來黃麴毒素濃度將大幅的增長,從伊朗的6.82%提升至印尼的15.72%。本研究明確地顯示,在當前和預估的氣候情況下,每個被評估的國家的癌症風險都超過了1 x 10-6,並預期所有國家的癌症負擔將大幅增加。 這些發現強調了要保護食品安全,以防止氣候變遷的破壞性影響,需要進行集體的努力並採取主動的措施。這些措施包括發展能抵抗氣候變遷的農業規範、改進收穫後的處理和儲存技術,以及研究創新技術以檢測和管理食品污染物。也必須建立完善的食品安全和品質監管框架,並加強研究人員、政策制定者和產業利害關係人間的國際合作和知識分享。 本研究在氣候變化、食品安全和全球健康之間的交互作用的理解上作出了重要的貢獻,為對抗氣候變遷對我們食品系統的影響提供了關鍵的見解,確保了所有人能享有更健康、更安全的未來。 | zh_TW |
| dc.description.abstract | In the face of escalating climate change impacts, this study evaluates the intensifying risks and global disease burdens attributed to dietary exposure to aflatoxins (AFs) and AFB1, particularly through maize consumption, under an estimated +2°C climate change scenario. The study primarily targets Taiwan, the European Union, and the 17 most populous countries exhibiting a high prevalence of hepatitis B infection and sufficient data availability for risk assessment.
The study’s results reveal an alarming escalation in AFs and AFB1 exposure levels across various age groups in Taiwan and Europe, with the mean and 95th percentile exposures increasing by over 350%. Furthermore, the majority of the calculated cancer risks exceed the universally accepted threshold of 10-6, signifying a substantial cancer risk associated with these mycotoxins. A predictive model, integrating parameters such as temperature, water activity, and CO2 concentration, was utilized to forecast future AFB1 residues under climate change conditions. A probabilistic assessment was subsequently implemented to estimate liver cancer risks and burdens in each country. The projected future aflatoxin levels demonstrated a substantial increase, ranging from a 6.82% in Iran to 15.72% in Indonesia. The study clearly reveals that every country assessed possesses a cancer risk greater than 10-6, both under current and estimated climate scenarios. Furthermore, there is an anticipated significant increase in cancer burdens across all countries. These findings underscore the urgent need for collaborative efforts and proactive measures to protect food safety from the damaging consequences of climate change. Such measures include the development of climate-resilient agricultural practices, enhancement of post-harvest handling and storage techniques, and the deployment of innovative technologies for food contaminant detection and management. Furthermore, the establishment of robust food safety and quality regulatory frameworks, and the intensification of international collaboration and knowledge sharing amongst researchers, policymakers, and industry stakeholders, are imperative. This research significantly enriches our comprehension of the interplay between climate change, food safety, and global health, offering crucial insights to counteract the effects of climate change on our food systems, thereby ensuring a healthier and safer future for all. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-13T16:06:32Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-13T16:06:32Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書.................................................................................ii
誌謝..................................................................................................iii 中文摘要............................................................................................iv Abstract..............................................................................................vi 目錄.................................................................................................vii 圖目錄.............................................................................................xii 表目錄.............................................................................................xiv Chapter 1 Introduction ...................................................................................................... 1 1.1 Climate Change ................................................................................................... 1 1.1.1 Rising temperature .................................................................................... 1 1.1.2 Carbon dioxide (CO2) emission................................................................ 2 1.1.3 Extreme Weather Events........................................................................... 3 1.2 Impacts of Climate Change on Food Safety........................................................ 4 1.2.1 Microbiological Hazards and Climate Change ......................................... 5 1.2.2 Chemical Hazards and Climate Change ................................................... 6 1.2.3 Natural Toxins Hazards and Climate Change ........................................... 7 1.3 Aflatoxin (AF) characteristics ............................................................................. 8 1.3.1 Aflatoxigenic Fungi .................................................................................. 8 1.3.2 Common Foods Contaminated by Aflatoxins........................................... 9 1.3.3 Toxicokinetics of Aflatoxins..................................................................... 9 1.3.4 Interaction Between Hepatitis B Virus (HBV) and Aflatoxins............... 11 1.3.5 Impact of Climate Change on Aflatoxin Production............................... 12 1.3.6 Mathematical Models to Predict Aflatoxins Residues............................ 13 1.4 Risk Assessment ................................................................................................ 16 1.4.1 Hazard Identification .............................................................................. 17 1.4.2 Exposure Assessment.............................................................................. 17 1.4.3 Dose-response Assessment ..................................................................... 17 1.4.4 Risk Characterization.............................................................................. 18 1.4.5 Probabilistic Assessment......................................................................... 18 1.5 Research Background and Purpose ................................................................... 19 Chapter 2 Methods.......................................................................................................... 22 2.1 Conceptual Framework ..................................................................................... 22 2.2 Distributions of Food Intake Rates and Body Weight....................................... 22 2.2.1 Distributions of Food Intake Rates and Body Weight of the Taiwanese Population........................................................................................... 22 2.2.2 Distributions of Food Intake Rates and Body Weight in the European Population........................................................................................... 23 2.2.3 Distributions of Food Intake Rates and Body Weight Among Populations in 17 Other Populous Countries.......................................................... 24 2.3 Construction of Distributions of Aflatoxins and Aflatoxin B1 Residues in Food...................................................................................................................... 25 2.3.1 The Current Distributions of AFB1 and AFs.......................................... 25 2.3.2 The Distributions of AFB1 and AF Residues in Maize in Taiwan and Europe Under Climate Change........................................................... 26 2.3.3 Mathematical Model to Predict AFB1 Residues in Maize Influenced by Climate Change in the 18 Studied Countries...................................... 27 2.4 Exposure assessment ......................................................................................... 32 2.5 Probabilistic assessment of liver cancer risk and liver cancer burdens............. 33 Chapter 3 Results............................................................................................................ 36 3.1 Impact of Exposure to AFs and AFB1 in Maize, Peanuts, and Peanut Products within Current MRLs in Taiwan .................................................................. 36 3.1.1 Distribution of AFs and AFB1 Exposures in Maize, Peanuts, and Peanut Products in Taiwan.............................................................................. 36 3.1.2 Distributions of cancer risk and burdens in Maize, Peanuts, and Peanut Products in Taiwan.............................................................................. 36 3.2 Impact of Exposure to AFs and AFB1 in Maize Under Climate Change in Taiwan and Europe....................................................................................... 38 3.2.1 Percentage Increase in Distribution of AFs and AFB1 Exposures in Maize Across Taiwan and Europe ................................................................. 38 3.2.2 Enhanced Distribution of Cancer Risk and Burden Associated with Maize Consumption in Taiwan and Europe................................................... 44 3.3 The Impact of Exposure to AFs and AFB1 in Maize under Climate Change on the Top-17 Countries and Taiwan ................................................................ 46 3.3.1 The Fit Model for AFB1 and AFs Residues in Maize under Climate Change Scenario ................................................................................. 47 3.3.2 The Predicted Increases in AFB1 and AFs Residues and Percentage Exceeding MRLs in Maize in the 18 Countries ................................. 47 3.3.3 Anticipated Exposure Distribution of AFB1 and AFs Under Climate Change Across Various Countries ...................................................... 49 3.3.4 Anticipated Distribution of Cancer Risk and Burdens Under Climate Change Across Various Countries ...................................................... 51 Chapter 4 Discussion ...................................................................................................... 55 Chapter 5 Conclusion...................................................................................................... 58 Reference ........................................................................................................................ 60 | - |
| dc.language.iso | en | - |
| dc.subject | 食品安全 | zh_TW |
| dc.subject | 黃麴毒素 | zh_TW |
| dc.subject | 預測模型 | zh_TW |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 風險評估 | zh_TW |
| dc.subject | Predictive Model | en |
| dc.subject | Aflatoxins | en |
| dc.subject | Food Safety | en |
| dc.subject | Climate Change | en |
| dc.subject | Risk Assessment | en |
| dc.title | 氣候變遷下透過飲食暴露於黃麴毒素引起的風險和全球疾病負擔之評估 | zh_TW |
| dc.title | Assessment of Risk and Global Disease Burdens Caused by Aflatoxins via Dietary Exposures Under Climate Change | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 鄭尊仁;盧冠宏;羅宇軒 | zh_TW |
| dc.contributor.oralexamcommittee | Tsun-Jen Cheng;Kuan-Hung Lu;Yu-Syuan Luo | en |
| dc.subject.keyword | 氣候變遷,食品安全,黃麴毒素,預測模型,風險評估, | zh_TW |
| dc.subject.keyword | Climate Change,Food Safety,Aflatoxins,Predictive Model,Risk Assessment, | en |
| dc.relation.page | 108 | - |
| dc.identifier.doi | 10.6342/NTU202302876 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-04 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 食品安全與健康研究所 | - |
| 顯示於系所單位: | 食品安全與健康研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 5.82 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
