請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 梁啟德 | zh_TW |
| dc.contributor.advisor | Chi-Te Liang | en |
| dc.contributor.author | 蔡鵬穎 | zh_TW |
| dc.contributor.author | Peng-Ying Tsai | en |
| dc.date.accessioned | 2023-09-11T16:26:49Z | - |
| dc.date.available | 2025-08-01 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-13 | - |
| dc.identifier.citation | 1. M. Neupane, S. -Y. Xu, R. Sankar, N. Alidoust, G. Bian, C. Liu, I. Belopolski, T. -R. Chang, H. -T. Jeng, H. Lin, A. Bansil, F. Chou, and M. Zahid Hasan, Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 5 (2014) 3786.
2. Z. K. Liu, B. Zhou, Y. Zhang, Z. J. Wang, H. M. Weng, D. Prabhakaran, S.-K. Mo, Z. X. Shen, Z. Fang, X. Dai, Z. Hussain, and Y. L. Chen, Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343 (2014) 864. 3. Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Three-dimensional Dirac semimetal and quantum transport in Cd3As2. Phys. Rev. B 88 (2013) 125427. 4. Z. K. Liu, J. Jiang, B. Zhou, Z. J. Wang, Y. Zhang, H. M. Weng, D. Prabhakaran, S. -K. Mo, H. Peng, P. Dudin, T. Kim, M. Hoesch, Z. Fang, X. Dai, Z. X. Shen, D. L. Feng, Z. Hussain, and Y. L. Chen, A stable three-dimensional topological Dirac semimetal Cd3As2. Nat. Mater. 13 (2014) 677. 5. Z. Zhu and J. E. Hoffman, Catching relativistic electrons. Nature 513 (2014) 319. 6. O. Shoron, T. Schumann, M. Goyal, D. Kealhofer, S. Stemmer, Demonstration of FETs with 3D Dirac Semimetal, Cd3As2. 2019 Device Research Conference (DRC) (2019) 201. 7. S. M. Young, S. Zaheer, J. C. Y. Teo, C. L. Kane, E. J. Mele, and A. M. Rappe, Dirac semimetal in three dimensions. Phys. Rev. Lett. 108 (2012) 140405. 8. C.-Z. Li, L.-X. Wang, H. Liu, J. Wang, Z. -M. Liao, and D. -P. Yu, Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires. Nat. Commun. 6 (2015) 10137. 9. J. Chen, T. Zhang, J. Wang, N. Zhang, W. Ji, S. Zhou, and Y. Chai, Field‐Effect Chiral Anomaly Devices with Dirac Semimetal. Adv. Funct. Mater. 31 (2021) 2104192. 10. T. Schumann, M. Goyal, H. Kim, and S. Stemmer Molecular beam epitaxy of Cd3As2 on a III-V substrate. APL Mater. 4 (2016) 126110. 11. R. Xiao, J. Zhang, J. Chamorro, J. Kim, T. M. McQueen, D. Vanderbilt, M. Kayyalha, Y. Li, and N. Samarth, Integer quantum Hall effect and enhanced g factor in quantum-confined Cd3As2 films. Phys. Rev. B 106 (2022) L201101. 12. D. A. Kealhofer, H. Kim, T. Schumann, M. Goyal, L. Galletti, and S. Stemmer, Basal-plane growth of cadmium arsenide by molecular beam epitaxy. Phys. Rev. Mater. 3 (2019) 031201. 13. B. Q. Lv, T. Qian, and H. Ding, Experimental perspective on three-dimensional topological semimetals. Rev. Mod. Phys. 93 (2021) 025002. 14. B. -J. Yang, and N. Nagaosa, Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5 (2014) 4898. 15. Z. Wang, Y. Sun, X. -Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Dirac semimetal and topological phase transitions in A3Bi (A = Na, K, Rb). Phys. Rev. B 85 (2012) 195320. 16. P. Narang, C. A. C. Garcia, and C. Felser, The topology of electronic band structures. Nat. Mater. 20 (2021) 293. 17. P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath, and J. G. Analytis, Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd3As2. Nature 535 (2016) 266. 18. J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M. Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350 (2015) 413. 19. M. Uchida, Y. Nakazawa, S. Nishihaya, K. Akiba, M. Kriener, Y. Kozuka, A. Miyake, Y. Taguchi, M. Tokunaga, N. Nagaosa, Y. Tokura, and M. Kawasaki, Quantum Hall states observed in thin films of Dirac semimetal Cd3As2. Nat. Commun. 8 (2017) 2274. 20. V. Arjona, M. N. Chernodub, and M. A. H. Vozmediano, Fingerprints of the conformal anomaly in the thermoelectric transport in Dirac and Weyl semimetals. Phys. Rev. B 99 (2019) 235123. 21. A. C. Potter, I. Kimchi, and A. Vishwanath, Quantum oscillations from surface Fermi arcs in Weyl and Dirac semimetals. Nat. Commun. 5 (2014) 5161. 22. H. -J. Kim, K. -S. Kim, J.-F. Wang, M. Sasaki, N. Satoh, A. Ohnishi, M. Kitaura, M. Yang, and L. Li, Dirac versus Weyl fermions in topological insulators: Adler-Bell-Jackiw anomaly in transport phenomena. Phys. Rev. Lett. 111 (2013) 246603. 23. M. N. Ali, Q. Gibson, S. Jeon, B. B. Zhou, A. Yazdani, and R. J. Cava, The crystal and electronic structures of Cd3As2, the three-dimensional electronic analogue of graphene. Inorg. Chem. 53 (2014) 4062. 24. S. Roth, H. Lee, A. Sterzi, M. Zacchigna, A. Politano, R. Sankar, F. C. Chou, G. Di Santo, L. Petaccia, O. V. Yazyev, and A. Crepaldi, Reinvestigating the surface and bulk electronic properties of Cd3As2. Phys. Rev. B 97 (2018) 165439. 25. G. Zheng, J. Lu, X. Zhu, W. Ning, Y. Han, H. Zhang, J. Zhang, C. Xi, J Yang, H. Du, K. Yang, Y. Zhang, and M. Tian, Transport evidence for the three-dimensional Dirac semimetal phase in ZrTe5. Phys. Rev. B 93 (2016) 115414. 26. E. Zhang, Y. Liu, W. Wang, C. Zhang, P. Zhou, Z. -G. Chen, J. Zou, and F. Xiu, Magnetotransport properties of Cd3As2 nanostructures. ACS Nano 9 (2015) 8843. 27. C. Zhang, Y. Zhang, X. Yuan, S. Lu, J. Zhang, A. Narayan, Y. Liu, H. Zhang, Z. Ni, R. Liu, E. S. Choi, A. Suslov, S. Sanvito, L. Pi, H. -Z. Lu, A. C. Potter, and F. Xiu, Quantum Hall effect based on Weyl orbits in Cd3As2. Nature 565 (2019) 331. 28. S. Nishihaya, M. Uchida, Y. Nakazawa, R. Kurihara, K. Akiba, M. Kriener, A. Miyake, Y. Taguchi, M. Tokunaga, and M. Kawasaki, Quantized surface transport in topological Dirac semimetal films. Nat. Commun. 10 (2019) 2564. 29. P. Cheng, C. Zhang, Y. Liu, X. Yuan, F. Song, Q. Sun, P. Zhou, D. W. Zhang, and F. Xiu, Thickness-dependent quantum oscillations in Cd3As2 thin films. New J. Phys. 18 (2016) 083003. 30. M. Goyal, L. Galletti, S. Salmani-Rezaie, T. Schumann, D. A. Kealhofe, S. Stemmer, Thickness dependence of the quantum Hall effect in films of the three-dimensional Integer Dirac semimetal Cd3As2. APL Mater. 6 (2018) 026105. 31. H. Li, H. -W. Wang, Y. Li, H. Zhang, S. Zhang, X. -C. Pan, B. Jia, F. Song, and J. Wang, Quantitative analysis of weak antilocalization effect of topological surface states in topological insulator BiSbTeSe2. Nano Lett. 19 (2019) 2450. 32. J. Liao, Y. Ou, H. Liu, K. He, X. Ma, Q. -K. Xue, and Y. Li, Enhanced electron dephasing in three-dimensional topological insulators. Nat. Commun. 8 (2017) 16071. 33. Y. Nakazawa, M. Uchida, S. Nishihaya, M. Ohno, S. Sato, and M. Kawasaki, Enhancement of spin-orbit coupling in Dirac semimetal Cd3As2 films by Sb doping. Phys. Rev. B 103 (2021) 045109. 34. B. Zhao, P. Cheng, H. Pan, S. Zhang, B. Wang, G. Wang, F. Xiu, and F. Song, Weak antilocalization in Cd3As2 thin films. Sci. Rep. 6 (2016) 22377. 35. X. Huang, L. Zhao, Y. Long, P. Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5 (2015) 031023. 36. Z. Xie, X. Wei, S. Cao, Y. Zhang, S. Yan, G. D. Gu, Q. Li, and J. -H. Chen, Electron-electron interactions and weak antilocalization in few-layer ZrTe5 devices. Phys. Rev. B 103 (2021) 155408. 37. H.-Z. Lu and S.-Q. Shen, Weak localization and weak anti-localization in topological insulators. Proc. SPIE 9167 (2014) 91672E. 38. Y. A. Salawu, J. H. Yun, J.-S. Rhyee, M. Sasaki, and H.-J. Kim, Weak antilocalization, spin–orbit interaction, and phase coherence length of a Dirac semimetal Bi0. 97Sb0. 03. Sci. Rep. 12 (2022) 2845. 39. R. Gracia-Abad, S. Sangiao, C. Bigi, S. K. Chaluvadi, P. Orgiani, and J. M. D. Teresa, Omnipresence of weak antilocalization (WAL) in Bi2Se3 thin films: a review on its origin. Nanomaterials 11 (2021) 1077. 40. S. Hikami, A. I. Larkin, and Y. Nagaoka, Spin-orbit interaction and magnetoresistance in the two dimensional random system. Prog. Theor. Phys. 63 (1980) 707. 41. J. Zeng, S.-J. Liang, A. Gao, Y. Wang, C. Pan, C. Wu, E. Liu, Li. Zhang, T. Cao, Xi. Liu, Y. Fu, Y. Wang, K. Watanabe, T. Taniguchi, H. Lu, and F. Miao, Gate-tunable weak antilocalization in a few-layer InSe. Phys. Rev. B 98 (2018) 125414. 42. J. J. Lin and J. P. Bird, Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures. J. Phys. Condens. Matter 14 (2002) R501. 43. H. B. Nielsen and M. Ninomiya, The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Rev. B 130 (1983) 389. 44. Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla, Chiral magnetic effect in ZrTe5. Nat. Phys. 12 (2016) 550. 45. N. P. Ong and S. Liang, Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals Nat. Rev. Phys. 3 (2021) 394. 46. D. T. Son and B. Z. Spivak, Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88 (2013) 104412. 47. H. Chi, C. Zhang, G. Gu, D. E Kharzeev, X. Dai, and Q. Li, Lifshitz transition mediated electronic transport anomaly in bulk ZrTe5. New J. Phys. 19 (2017) 015005. 48. H. Li, H. He, H. -Z. Lu, H. Zhang, H. Liu, R. Ma, Z. Fan, S.-Q. Shen, and J. Wang, Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun. 7 (2016) 10301. 49. W. Braun, Applied RHEED: reflection high-energy electron diffraction during crystal growth. (1999). 50. L. Morresi, Silicon Based Thin Film Solar Cells: Molecular beam epitaxy (MBE), (2013). 51. S. S. Franchi, Molecular beam epitaxy: fundamentals, historical background and future prospects. (2013). 52. S. Hasegawa, Characterization of Materials: Reflection high-energy electron diffraction. (2012). 53. A. D. Rice, J. Nelson, A. G. Norman, P. Walker, and K. Alberi, High Mobility Cd3As2 (112) on GaAs (001) Substrates Grown via Molecular Beam Epitaxy. ACS Appl. Electron. Mater. 4 (2022) 729. 54. N. H. Balshaw, Practical cryogenics. An introduction to laboratory cryogenics. (1966).J. Wang, A. M. DaSilva, C. -Z. Chang, K. He, J. K. Jain, N. Samarth, X. -C. Ma, Q. -K. Xue, and M. H. W. Chan, Evidence for electron-electron interaction in topological insulator thin films. Phys. Rev. B 83 (2011) 245438. 55. J. Feng, Y. Pang, D. Wu, Z. Wang, H. Weng, J. Li, X. Dai, Z. Fang, Y. Shi, and L. Lu, Large linear magnetoresistance in Dirac semimetal Cd3As2 with Fermi surfaces close to the Dirac points. Phys. Rev. B 92 (2015) 081306. 56. A. Narayanan, M. D. Watson, S. F. Blake, N. Bruyant, L. Drigo, Y. L. Chen, D. Prabhakaran, B. Yan, C. Felser, T. Kong, P. C. Canfield, and A. I. Coldea, Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2. Phys. Rev. Lett. 114 (2015) 117201. 57. M. M. Parish and P. B. Littlewood, Non-saturating magnetoresistance in heavily disordered semiconductors. Nature 426 (2003) 162. 58. A. L. Friedman, J. L. Tedesco, P. M. Campbell, J. C. Culbertson, E. Aifer, F. K. Perkins, R. L. Myers-Ward, J. K. Hite, C. R. Eddy, Jr., G. G. Jernigan, and D. Kurt Gaskill, Quantum linear magnetoresistance in multilayer epitaxial graphene. Nano Lett. 10 (2010) 3962. 59. Z. Ogorelec, A. Hamzić, and M. Basletić, On the optimization of the large magnetoresistance of Ag2Se. EPL 46 (1999) 56. 60. A. A. Abrikosov, Quantum magnetoresistance. Phys. Rev. B 58 (1998) 2788. 61. C. M. Wang and X. L. Lei, Linear magnetoresistance on the topological surface. Phys. Rev. B 86 (2012) 035442. 62. S. Jeon, B. B. Zhou, A. Gyenis, B. E. Feldman, I. Kimchi, A. C. Potter, Q. D. Gibson, R. J. Cava, A. Vishwanath, and A. Yazdani, Landau quantization and quasiparticle interference in the three-dimensional Dirac semimetal Cd3As2. Nat. Mater. 13 (2014) 851. 63. P. R. Wallace, Electronic g-factor in Cd3As2. Phys. Status Solidi B Basic Res. 92 (1979) 49. 64. H. Murakawa, M. S. Bahramy, M. Tokunaga, Y. Kohama, C. Bell, Y. Kaneko, N. Nagaosa, H. Y. Hwang, and Y. Tokura, Detection of Berry’s phase in a bulk Rashba semiconductor. Science 342 (2013) 1490. 65. A. Pariari, P. Dutta, and P. Mandal, Probing the Fermi surface of three-dimensional Dirac semimetal Cd3As2 through the de Haas–van Alphen technique. Phys. Rev. B 91 (2015) 155139. 66. W. -Z. Zheng, X. -G. Ye, B. -C. Lin, R. -R. Li, D. -P. Yu, and Z. -M. Liao Magnetotransport evidence for topological phase transition in a Dirac semimetal. Appl. Phys. Lett. 115 (2019) 183103. 67. G. Xu, W. Wang, X. Zhang, Y. Du, E. Liu, S. Wang, G. Wu, Z. Liu, and Xi Xiang Zhang, Weak antilocalization effect and noncentrosymmetric superconductivity in a topologically nontrivial semimetal LuPdBi. Sci. Rep. 4 (2014) 5709. 68. J. Zhang, Z. Hou, C. Zhang, J. Chen, P. Li, Y. Wen, Q. Zhang, W. Wang, and X. Zhang, Weak antilocalization effect and high-pressure transport properties of ScPdBi single crystal. Appl. Phys. Lett. 115 (2019) 172407. 69. S. Sasmal, V. Saini, N. Bruyant, R. Mondal, R. Kulkarni, B. Singh, V. Tripathi, and A. Thamizhavel, Weak antilocalization and Shubnikov–de Haas oscillations in single crystal CaCuSb. Phys. Rev. B 104 (2021) 205135. 70. K. Shrestha, M. Chou, D. Graf, H. D. Yang, B. Lorenz, and C. W. Chu, Extremely large nonsaturating magnetoresistance and ultrahigh mobility due to topological surface states in the metallic Bi2Te3 topological insulator. Phys. Rev. B 95 (2017) 195113. 71. Z. Li, T. Chen, H. Pan, F. Song, B. Wang, J. Han, Y. Qin, X. Wang, R. Zhang, J. Wan, D. Xing, and G. Wang, Two-dimensional universal conductance fluctuations and the electron-phonon interaction of surface states in Bi2Te2Se microflakes. Sci. Rep. 2 (2012) 595. 72. C. -L. Zhang, S. -Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C. -C. Lee, S. -M. Huang, T. -R. Chang, G. Chang, C. -H. Hsu, H. -T. Jeng, M. Neupane, D. S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H. -Z. Lu, S. -Q. Shen, T. Neupert, M. Zahid Hasan, and S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7 (2016) 1. 73. F. Arnold, C. Shekhar, S. -C. Wu, Yan Sun, R. D. d. Reis, N. Kumar, M. Naumann, M. O. Ajeesh, M. Schmidt, A. G. Grushin, J. H. Bardarson, M. Baenitz, D. Sokolov, H. Borrmann, M. Nicklas, C. Felser, E. Hassinger, and B. Yan, Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun.7 (2016) 11615. 74. Y. -Y. Lv, L. Cao, Q. -Q. Yuan, S. -S. Chen, Z. -Q. Shi, Q. -Y. Li, Y. B. Chen, S. -H. Yao, J. Zhou, H. Wang, H. Zhang, S. -C Li, D. Liu, and Yan-Feng Chen, Theoretical and experimental evidence for the intrinsic three-dimensional Dirac state in Cu2HgSnSe4. Phys. Rev. B 100 (2019) 195147. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89601 | - |
| dc.description.abstract | 本論文主要探討在矽基板上成長的砷化鎘薄膜之磁傳輸行為。當外加垂直於平面的磁場時,線性正磁阻現象被觀察到,而當外加平行電流方向的磁場時,則會產生負磁阻行為,並且可以歸因於手性異常效應,藉此證實三維狄拉克半金屬在外加磁場時,會因為時間反演對稱性被破壞而轉變為具有外爾半金屬相。除此之外,在垂直和平行磁場中都可以觀察到弱侷域化效應,並根據相位相干長度的溫度依賴性,我們推測在系統中的量子擴散傳輸行為是由電子-電子交互作用所主導。 | zh_TW |
| dc.description.abstract | In this thesis, the magnetotransport behavior of a Cd3As2 film grown on Si substrate with a ZnTe buffer layer has been discussed. Positive linear magnetoresistance appears in the presence of the perpendicular magnetic field, and negative magnetoresistance under a parallel magnetic field has been observed, which is attributed to the chiral anomaly effect. The appearance of the chiral anomaly effect provides evidence of the realization of the Weyl semimetal phase in 3D Dirac semimetal caused by time-reversal symmetry breaking. Besides, the weak antilocalization effect can be observed in both perpendicular and parallel magnetic fields. Based on the temperature dependence of phase coherence length, we concluded that the electron-electron interaction dominates the quantum diffusive transport in the system. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-11T16:26:49Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-11T16:26:49Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
致謝 iii 中文摘要 iv ABSTRACT v Contents vi List of Figures vii Chapter 1 Introduction 1 Chapter 2 Theoretical Background and Literature Review 5 2.1 Dirac and Weyl semimetal 5 2.2 Cadmium arsenide (Cd3As2) 8 2.2.1 Band structure of Cd3As2 8 2.2.2 Angular dependence of transport properties in Cd3As2 11 2.2.3 Thickness dependence of properties in Cd3As2 films 12 2.3 Weak antilocalization effect 14 2.4 Chiral anomaly effect 17 Chapter 3 Fabrication and Measurement Techniques 26 3.1 Molecular beam epitaxy and RHEED 26 3.2 Fabrication of Cd3As2 device 28 3.3 Measurement techniques 32 Chapter 4 Results and Discussion 36 4.1 Magnetotransport under a perpendicular magnetic field (B∥c) 37 4.2 Magnetotransport under a parallel magnetic field (B∥a) 49 Chapter 5 Conclusion 59 | - |
| dc.language.iso | en | - |
| dc.subject | 弱侷域化效應 | zh_TW |
| dc.subject | 砷化鎘 | zh_TW |
| dc.subject | 三維狄拉克半金屬 | zh_TW |
| dc.subject | 外爾半金屬 | zh_TW |
| dc.subject | 手性異常效應 | zh_TW |
| dc.subject | 3D Dirac semimetal | en |
| dc.subject | Cd3As2 | en |
| dc.subject | weak antilocalization | en |
| dc.subject | chiral anomaly | en |
| dc.subject | Weyl semimetal | en |
| dc.title | 矽基板上成長的砷化鎘薄膜之磁傳輸 | zh_TW |
| dc.title | Magnetotransport in Cd3As2 films grown on Si | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡宗惠;莊家翔 | zh_TW |
| dc.contributor.oralexamcommittee | Tsung-Hui Tsai;Chia-Shain Chuang | en |
| dc.subject.keyword | 砷化鎘,三維狄拉克半金屬,外爾半金屬,手性異常效應,弱侷域化效應, | zh_TW |
| dc.subject.keyword | Cd3As2,3D Dirac semimetal,Weyl semimetal,chiral anomaly,weak antilocalization, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202301395 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-07-13 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 13.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
