Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李亞芸zh_TW
dc.contributor.advisorYa-Yun Leeen
dc.contributor.author張簡卉絜zh_TW
dc.contributor.authorHuei-Jie Jhang Jianen
dc.date.accessioned2023-09-08T16:10:03Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-08-
dc.date.issued2023-
dc.date.submitted2023-08-08-
dc.identifier.citation1. Bloem BR, Okun MS, Klein C. Parkinson's disease. Lancet. 2021;397(10291):2284-303.
2. Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol. 2020;27(1):27-42.
3. Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, et al. Gait impairments in Parkinson's disease. Lancet Neurol. 2019;18(7):697-708.
4. Tan D, Danoudis M, McGinley J, Morris ME. Relationships between motor aspects of gait impairments and activity limitations in people with Parkinson's disease: A systematic review. Parkinsonism Relat Disord. 2012;18(2):117-24.
5. Tan DM, McGinley JL, Danoudis ME, Iansek R, Morris ME. Freezing of gait and activity limitations in people with Parkinson's disease. Arch Phys Med Rehabil. 2011;92(7):1159-65.
6. Zanardi APJ, da Silva ES, Costa RR, Passos-Monteiro E, dos Santos IO, Kruel LFM, et al. Gait parameters of Parkinson’s disease compared with healthy controls: a systematic review and meta-analysis. Sci Rep. 2021;11(1):752.
7. McNeely ME, Duncan RP, Earhart GM. Medication improves balance and complex gait performance in Parkinson disease. Gait Posture. 2012;36(1):144-8.
8. Herman T, Giladi N, Gruendlinger L, Hausdorff JM. Six weeks of intensive treadmill training improves gait and quality of life in patients with Parkinson’s disease: a pilot study. Arch Phys Med Rehabil. 2007;88(9):1154-8.
9. Behrman AL, Cauraugh JH, Light KE. Practice as an intervention to improve speeded motor performance and motor learning in Parkinson’s disease. J Neurol Sci. 2000;174(2):127-36.
10. Jöbges M, Heuschkel G, Pretzel C, Illhardt C, Renner C, Hummelsheim H. Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson’s disease. J Neurol Neurosurg Psychiatry Res. 2004;75(12):1682-7.
11. Olson M, Lockhart TE, Lieberman A. Motor learning deficits in Parkinson's disease (PD) and their effect on training response in gait and balance: a narrative review. Front Neurol. 2019:62.
12. Abbruzzese G, Marchese R, Avanzino L, Pelosin E. Rehabilitation for Parkinson's disease: Current outlook and future challenges. Parkinsonism Relat Disord. 2016;22:S60-S4.
13. Doyon J, Bellec P, Amsel R, Penhune V, Monchi O, Carrier J, et al. Contributions of the basal ganglia and functionally related brain structures to motor learning. Behav Brain Res. 2009;199(1):61-75.
14. Roig M, Skriver K, Lundbye-Jensen J, Kiens B, Nielsen JB. A single bout of exercise improves motor memory. PLoS One. 2012;7(9):e44594.
15. Holman SR, Staines WR. The effect of acute aerobic exercise on the consolidation of motor memories. Exp Brain Res. 2021;239(8):2461-75.
16. Statton MA, Encarnacion M, Celnik P, Bastian AJ. A single bout of moderate aerobic exercise improves motor skill acquisition. PLOS ONE. 2015;10(10):e0141393.
17. Thomas R, Beck MM, Lind RR, Korsgaard Johnsen L, Geertsen SS, Christiansen L, et al. Acute exercise and motor memory consolidation: The role of exercise timing. Neural Plast. 2016;2016:6205452.
18. Thomas R, Johnsen LK, Geertsen SS, Christiansen L, Ritz C, Roig M, et al. Acute exercise and motor memory consolidation: The role of exercise intensity. PLoS One. 2016;11(7):e0159589.
19. Steib S, Wanner P, Adler W, Winkler J, Klucken J, Pfeifer K. A single bout of aerobic exercise improves motor skill consolidation in Parkinson's disease. Front Aging Neurosci. 2018;10:328.
20. Wanner P, Winterholler M, Gaßner H, Winkler J, Klucken J, Pfeifer K, et al. Acute exercise following skill practice promotes motor memory consolidation in Parkinson’s disease. Neurobiol Learn Mem. 2021;178:107366.
21. Chan ST, Tai CH, Wang LY, Luh JJ, Lee YY. Influences of aerobic exercise on motor sequence learning and corticomotor excitability in people with Parkinson’s disease. Neurorehabil Neural Repair. 2023;37(1):37-45.
22. Nicolini C, Fahnestock M, Gibala MJ, Nelson AJ. Understanding the neurophysiological and molecular mechanisms of exercise-induced neuroplasticity in cortical and descending motor pathways: Where do we stand? NeuroSci. 2021;457:259-82.
23. Singh AM, Duncan RE, Neva JL, Staines WR. Aerobic exercise modulates intracortical inhibition and facilitation in a nonexercised upper limb muscle. BMC Sports Sci Med Rehabil. 2014;6:23.
24. Valls-Solé J, Pascual-Leone A, Brasil-Neto J, Cammarota A, McShane L, Hallett M. Abnormal facilitation of the response to transcranial magnetic stimulation in patients with Parkinson's disease. Neurol. 1994;44(4):735-.
25. Lefaucheur J-P. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol. 2005;116(2):244-53.
26. Ni Z, Chen R. Transcranial magnetic stimulation to understand pathophysiology and as potential treatment for neurodegenerative diseases. Transl Neurodegener. 2015;4(1):1-12.
27. Morris ME, Huxham F, McGinley J, Dodd K, Iansek R. The biomechanics and motor control of gait in Parkinson disease. Clin Biomech. 2001;16(6):459-70.
28. Gilat M, Dijkstra BW, D'Cruz N, Nieuwboer A, Lewis SJG. Functional MRI to study gait impairment in Parkinson's disease: a systematic review and exploratory ALE meta-analysis. Curr Neurol Neurosci Rep. 2019;19(8):49.
29. Vacherot F, Attarian S, Vaugoyeau M, Azulay JP. A motor cortex excitability and gait analysis on Parkinsonian patients. Mov Disord. 2010;25(16):2747-55.
30. Lee YY, Li MH, Tai CH, Luh JJ. Corticomotor excitability changes associated with freezing of gait in people with Parkinson disease. Front Hum Neurosci. 2020;14:190.
31. Frazzitta G, Maestri R, Uccellini D, Bertotti G, Abelli P. Rehabilitation treatment of gait in patients with Parkinson's disease with freezing: A comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov Disord. 2009;24(8):1139-43.
32. Lim I, van Wegen E, de Goede C, Deutekom M, Nieuwboer A, Willems A, et al. Effects of external rhythmical cueing on gait in patients with Parkinson's disease: a systematic review. Clin Rehabil. 2005;19(7):695-713.
33. Spaulding SJ, Barber B, Colby M, Cormack B, Mick T, Jenkins ME. Cueing and gait improvement among people with Parkinson's disease: A meta-analysis. Arch Phys Med Rehabil. 2013;94(3):562-70.
34. Herman T, Giladi N, Hausdorff JM. Treadmill training for the treatment of gait disturbances in people with Parkinson’s disease: a mini-review. J Neural Transm. 2009;116(3):307-18.
35. Mehrholz J, Kugler J, Storch A, Pohl M, Hirsch K, Elsner B. Treadmill training for patients with Parkinson's disease. Cochrane Database Syst Rev. 2015(9).
36. Bello O, Sánchez JA, Lopez-Alonso V, Márquez G, Morenilla L, Castro X, et al. The effects of treadmill or overground walking training program on gait in Parkinson's disease. Gait Posture. 2013;38(4):590-5.
37. Miyai I, Fujimoto Y, Yamamoto H, Ueda Y, Saito T, Nozaki S, et al. Long-term effect of body weight–supported treadmill training in Parkinson's disease: A randomized controlled trial. Arch Phys Med Rehabil. 2002;83(10):1370-3.
38. Nadeau A, Pourcher E, Corbeil P. Effects of 24 weeks of treadmill training on gait performance in Parkinson disease. Med Sci Sports Exerc. 2014;46(4):645-55.
39. Rose MH, Løkkegaard A, Sonne-Holm S, Jensen BR. Improved clinical status, quality of life, and walking capacity in Parkinson's disease after body weight-supported high-intensity locomotor training. Arch Phys Med Rehabil. 2013;94(4):687-92.
40. Tseng J, Yuan R-Y, Jeng C. Treadmill training improves forward and backward gait in early Parkinson disease. Am J Phys Med Rehabil. 2015;94(10):811-9.
41. Nackaerts E, D'Cruz N, Dijkstra BW, Gilat M, Kramer T, Nieuwboer A. Towards understanding neural network signatures of motor skill learning in Parkinson’s disease and healthy aging. Br J Radiol. 2019;92(1101):20190071.
42. Ghilardi M-F, Eidelberg D, Silvestri G, Ghez C. The differential effect of PD and normal aging on early explicit sequence learning. Neurol. 2003;60(8):1313-9.
43. Nieuwboer A, Rochester L, Müncks L, Swinnen SP. Motor learning in Parkinson's disease: limitations and potential for rehabilitation. Parkinsonism Relat Disord. 2009;15:S53-S8.
44. Kantak SS, Winstein CJ. Learning–performance distinction and memory processes for motor skills: A focused review and perspective. Behav Brain Res. 2012;228(1):219-31.
45. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG. Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol. 1998;79(2):1117-23.
46. Krakauer JW, Shadmehr R. Consolidation of motor memory. Trends Neurosci. 2006;29(1):58-64.
47. Robertson EM, Cohen DA. Understanding consolidation through the architecture of memories. Neuroscientist. 2006;12(3):261-71.
48. Marinelli L, Quartarone A, Hallett M, Frazzitta G, Ghilardi MF. The many facets of motor learning and their relevance for Parkinson's disease. Clin Neurophysiol. 2017;128(7):1127-41.
49. Marinelli L, Crupi D, Di Rocco A, Bove M, Eidelberg D, Abbruzzese G, et al. Learning and consolidation of visuo-motor adaptation in Parkinson's disease. Parkinsonism Relat Disord. 2009;15(1):6-11.
50. Walker MP, Stickgold R, Alsop D, Gaab N, Schlaug G. Sleep-dependent motor memory plasticity in the human brain. Neurosci. 2005;133(4):911-7.
51. Al-Sharman A, Siengsukon CF. Sleep enhances learning of a functional motor task in young adults. Phys Ther. 2013;93(12):1625-35.
52. Walker MP, Brakefield T, Morgan A, Hobson JA, Stickgold R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron. 2002;35(1):205-11.
53. Backhaus W, Kempe S, Hummel FC. The effect of sleep on motor learning in the aging and stroke population – a systematic review. Restor Neurol Neurosci. 2016;34:153-64.
54. Nitsche MA, Schauenburg A, Lang N, Liebetanz D, Exner C, Paulus W, et al. Facilitation of implicit motor learning by weak transcranial direct current stimulation of the primary motor cortex in the human. J Cogn Neurosci. 2003;15(4):619-26.
55. Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, et al. Effects of tDCS on motor learning and memory formation: A consensus and critical position paper. Clin Neurophysiol. 2017;128(4):589-603.
56. Fregni F, Pascual-Leone A. Technology Insight: noninvasive brain stimulation in neurology—perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol. 2007;3(7):383-93.
57. Hübner L, Voelcker-Rehage C. Does physical activity benefit motor performance and learning of upper extremity tasks in older adults? – A systematic review. Eur Rev Aging Phys Act. 2017;14(1):15.
58. Duchesne C, Lungu O, Nadeau A, Robillard ME, Boré A, Bobeuf F, et al. Enhancing both motor and cognitive functioning in Parkinson's disease: Aerobic exercise as a rehabilitative intervention. Brain Cogn. 2015;99:68-77.
59. Wanner P, Cheng F-H, Steib S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: A systematic review with meta-analysis. Neurosci Biobehav Rev. 2020;116:365-81.
60. Taubert M, Villringer A, Lehmann N. Endurance exercise as an “endogenous” neuro-enhancement strategy to facilitate motor learning. Front Hum Neurosci. 2015;9.
61. Mellow ML, Goldsworthy MR, Coussens S, Smith AE. Acute aerobic exercise and neuroplasticity of the motor cortex: A systematic review. J Sci Med Sport. 2020;23(4):408-14.
62. Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, et al. Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem. 2014;116:46-58.
63. Singh AM, Staines WR. The effects of acute aerobic exercise on the primary motor cortex. J Mot Behav. 2015;47(4):328-39.
64. McDonnell MN, Buckley JD, Opie GM, Ridding MC, Semmler JG. A single bout of aerobic exercise promotes motor cortical neuroplasticity. J Appl Physiol. 2013;114(9):1174-82.
65. Stagg Charlotte J, Bachtiar V, Johansen-Berg H. The role of GABA in human motor learning. Curr Biol. 2011;21(6):480-4.
66. Duchesne C, Gheysen F, Bore A, Albouy G, Nadeau A, Robillard ME, et al. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals. Neuroimage Clin. 2016;12:559-69.
67. Lefaucheur JP. Motor cortex dysfunction revealed by cortical excitability studies in Parkinson's disease: influence of antiparkinsonian treatment and cortical stimulation. Clin Neurophysiol. 2005;116(2):244-53.
68. Fisher BE, Wu AD, Salem GJ, Song J, Lin C-HJ, Yip J, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson's disease. Arch Phys Med Rehabil. 2008;89(7):1221-9.
69. Medicine ACoS. ACSM's guidelines for exercise testing and prescription. Lippincott williams & wilkins. 2013.
70. Roberson KB, Signorile JF, Singer C, Jacobs KA, Eltoukhy M, Ruta N, et al. Hemodynamic responses to an exercise stress test in Parkinson’s disease patients without orthostatic hypotension. Appl Physiol Nutr Metab. 2019;44(7):751-8.
71. Penko AL, Barkley JE, Koop MM, Alberts JL. Borg scale is valid for ratings of perceived exertion for individuals with Parkinson’s disease. Int J Exerc Sci. 2017;10(1):76.
72. Hart SG and Staveland LE. Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. Adv Psychol. 1988;52:139-183.
73. Movement Disorder Society Task Force on Rating Scales for Parkinson's Disease. The unified Parkinson's disease rating scale (UPDRS): status and recommendations. Mov Disord. 2003;18(7): 738-50.
74. Richards M, Marder K, Cote L, Mayeux R. Interrater reliability of the Unified Parkinson's Disease Rating Scale motor examination. Mov Disord. 1994;9(1):89-91.
75. Martínez‐Martín P, Gil‐Nagel A, Gracia LM, Gómez JB, Martinez‐Sarries J, Bermejo F, et al. Unified Parkinson's disease rating scale characteristics and structure. Mov Disord. 1994;9(1):76-83.
76. Metman LV, Myre B, Verwey N, Hassin‐Baer S, Arzbaecher J, Sierens D, et al. Test–retest reliability of UPDRS‐III, dyskinesia scales, and timed motor tests in patients with advanced Parkinson's disease: an argument against multiple baseline assessments. Mov Disord. 2004;19(9):1079-84.
77. Podsiadlo D, Richardson S. The Timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142-8.
78. Csuka M, McCarty DJ. Simple method for measurement of lower extremity muscle strength. Am J Med. 1985;78(1):77-81.
79. Whitney SL, Wrisley DM, Marchetti GF, Gee MA, Redfern MS, Furman JM. Clinical measurement of sit-to-stand performance in people with balance disorders: validity of data for the Five-Times-Sit-to-Stand Test. Phys Ther. 2005;85(10):1034-45.
80. Enright PL. The six-minute walk test. Respi Care. 2003;48(8):783-5.
81. Gill DJ, Freshman A, Blender JA, Ravina B. The montreal cognitive assessment as a screening tool for cognitive impairment in Parkinson's disease. Mov Disord. 2008;23(7):1043-6.
82. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, et al. The Montreal Cognitive Assessment, MoCA: A Brief Screening Tool For Mild Cognitive Impairment. J Am Geriatr Soc. 2005;53(4):695-9.
83. Jenkinson C, Fitzpatrick R, Peto V, Greenhall R, Hyman N. The Parkinson's Disease Questionnaire (PDQ-39): development and validation of a Parkinson's disease summary index score. Age Ageing. 1997;26(5):353-7.
84. Trigueiro LCdL, Gama GL, Simão CR, Sousa AVCd, Godeiro Júnior CdO, Lindquist ARR. Effects of treadmill training with load on gait in Parkinson disease: A Randomized Controlled Clinical Trial. Am J Phys Med Rehabil. 2015;94(10S).
85. Fisher BE, Lee YY, Davenport TE, Reischl SF, Ruckert E, Kulig K. Within-day test-retest reliability of transcranial magnetic stimulation measurements of corticomotor excitability for gastrocnemius and tibialis anterior muscles. Ortho Phys Ther Pract. 2014;26(3):166.
86. Marin Bosch B, Bringard A, Logrieco MG, Lauer E, Imobersteg N, Thomas A, et al. Effect of acute physical exercise on motor sequence memory. Sci Rep. 2020;10(1):15322.
87. Wanner P, Winterholler M, Gaßner H, Winkler J, Klucken J, Pfeifer K, et al. Acute exercise following skill practice promotes motor memory consolidation in Parkinson's disease. Neurobiol Learn Mem. 2021;178:107366.
88. Greeley B, Chau B, Jones CB, Neva JL, Kraeutner SN, Campbell KL, et al. Multiple bouts of high-intensity interval exercise reverse age-related functional connectivity disruptions without affecting motor learning in older adults. Sci Rep. 2021;11(1):17108.
89. Carron AV. Physical fatigue and motor learning. Res Q. 1969;40(4):682-6.
90. Carron AV, Ferchuk AD. The effect of fatigue on learning and performance of a gross motor task. J Mot Behav. 1971;3(1):62-8.
91. Branscheidt M, Kassavetis P, Anaya M, Rogers D, Huang HD, Lindquist MA, et al. Fatigue induces long-lasting detrimental changes in motor-skill learning. eLife. 2019;8:e40578.
92. Bonuzzi GMG, Bastos FH, Schweighofer N, Wade E, Winstein CJ, Torriani-Pasin C. Moderate-intensity cardiovascular exercise performed before motor practice attenuates offline implicit motor learning in stroke survivors but not age-matched neurotypical adults. Exp Brain Res. 2023:1-14.
93. Yoshii F, Takahashi H, Kumazawa R, Kobori S. Parkinson's disease and fatigue. J Neurol. 2006;253 Suppl 7:Vii48-53.
94. Kataoka H, Sugie K. Association between fatigue and Hoehn-Yahr staging in Parkinson's disease: eight-year follow-up study. Neurol Int. 2021;13(2):224-31.
95. Siciliano M, Trojano L, Santangelo G, De Micco R, Tedeschi G, Tessitore A. Fatigue in Parkinson's disease: A systematic review and meta-analysis. Mov Disord. 2018;33(11):1712-23.
96. Ellis T, Boudreau JK, DeAngelis TR, Brown LE, Cavanaugh JT, Earhart GM, et al. Barriers to exercise in people with Parkinson disease. Phys Ther. 2013;93(5):628-36.
97. Mak MK, Wong-Yu IS, Shen X, Chung CL. Long-term effects of exercise and physical therapy in people with Parkinson disease. Nat Rev Neurol. 2017;13(11):689-703.
98. Mak MK, Pang MY. Balance self-efficacy determines walking capacity in people with Parkinson's disease. Mov Disord. 2008;23(13):1936-9.
99. Falvo MJ, Earhart GM. Six-minute walk distance in persons with Parkinson disease: a hierarchical regression model. Arch Phys Med Rehabil. 2009;90(6):1004-8.
100. Steffen T, Seney M. Test-retest reliability and minimal detectable change on balance and ambulation tests, the 36-item short-form health survey, and the Unified Parkinson Disease Rating Scale in people with Parkinsonism. Phys Ther. 2008;88(6):733-46.
101. Ferraz DD, Trippo KV, Duarte GP, Neto MG, Bernardes Santos KO, Filho JO. The effects of functional training, bicycle exercise, and exergaming on walking capacity of elderly patients with Parkinson disease: A pilot randomized controlled single-blinded trial. Arch Phys Med Rehabil. 2018;99(5):826-33.
102. Shearin S, Medley A, Trudelle-Jackson E, Swank C, Querry R. Differences in predictors for gait speed and gait endurance in Parkinson’s disease. Gait Posture. 2021;87:49-53.
103. Kobayashi E, Himuro N, Takahashi M. Clinical utility of the 6-min walk test for patients with moderate Parkinson’s disease. IInt J Rehabil Res. 2017;40(1):66-70.
104. Picelli A, Varalta V, Melotti C, Zatezalo V, Fonte C, Amato S, et al. Effects of treadmill training on cognitive and motor features of patients with mild to moderate Parkinson's disease: a pilot, single-blind, randomized controlled trial. Funct Neurol. 2016;31(1):25-31.
105. MacDonald MA, Khan H, Kraeutner SN, Usai F, Rogers EA, Kimmerly DS, et al. Intensity of acute aerobic exercise but not aerobic fitness impacts on corticospinal excitability. Appl Physiol Nutr Metab. 2019;44(8):869-78.
106. Neva JL, Greeley B, Chau B, Ferris JK, Jones CB, Denyer R, et al. Acute high-intensity interval exercise modulates corticospinal excitability in older adults. Med Sci Sports Exerc. 2022;54(4):673-82.
107. Hendy AM, Andrushko JW, Della Gatta PA, Teo W-P. Acute effects of high-intensity aerobic exercise on motor cortical excitability and inhibition in sedentary adults. Front Psychol. 2022;13.
108. Singh AM, Neva JL, Staines WR. Aerobic exercise enhances neural correlates of motor skill learning. Behav Brain Res. 2016;301:19-26.
109. Chung CL, Mak MK, Hallett M. Transcranial magnetic stimulation promotes gait training in Parkinson disease. Ann Neurol. 2020;88(5):933-45.
110. Rozand V, Senefeld JW, Sundberg CW, Smith AE, Hunter SK. Differential effects of aging and physical activity on corticospinal excitability of upper and lower limb muscles. J Neurophysiol. 2019;122(1):241-50.
111. Priori A, Berardelli A, Inghilleri M, Accornero N, Manfredi M. Motor cortical inhibition and the dopaminergic system: Pharmacological changes in the silent period after transcranial brain stimulation in normal subjects, patients with Parkinson's disease and drug-induced parkinsonism. Brain. 1994;117(2):317-23.
112. Hung A, Roig M, Gillen JB, Sabiston CM, Swardfager W, Chen JL. Aerobic exercise and aerobic fitness level do not modify motor learning. Sci Rep. 2021;11(1):5366.
113. Snow NJ, Mang CS, Roig M, McDonnell MN, Campbell KL, Boyd LA. The effect of an acute bout of moderate-intensity aerobic exercise on motor learning of a continuous tracking task. PLoS One. 2016;11(2):e0150039.
114. Burtin C, Franssen FME, Vanfleteren L, Groenen MTJ, Wouters EFM, Spruit MA. Lower-limb muscle function is a determinant of exercise tolerance after lung resection surgery in patients with lung cancer. Respirol. 2017;22(6):1185-9.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89524-
dc.description.abstract背景:步態障礙為帕金森氏症患者常見的動作症狀。臨床上,步態訓練為改善帕金森氏症患者異常步態的主要方式。然而,由於動作學習能力的受損,帕金森氏症患者需要更高的訓練劑量才能達到臨床上有意義的進步量。因此,找到可以促進帕金森氏症患者動作學習的方法對於臨床復健是相當重要的。有氧運動已被證實可以促進健康人的動作學習能力,且背後的神經生理機制已被廣泛討論,但目前尚未有研究探討長期的動作技巧學習加上有氧運動對於帕金森氏症患者動作表現的效果。此外,也尚未有研究探討相關的神經生理變化。
研究目的:探討步態訓練後進行有氧運動對於帕金森氏症患者行走表現以及皮質興奮程度的效果。
研究方法:本研究為一單盲隨機控制試驗,召募了原發性帕金森氏症患者並隨機分配至有氧運動組或傳統物理治療組。每位受試者皆接受了12次的治療介入(每次一小時,每週2到3次)。每次治療的前30分鐘為跑步機步態訓練,接續5分鐘的地上步態訓練。步態訓練後,有氧運動組使用固定式腳踏車進行25分鐘的中等至高強度有氧運動,傳統物理治療組則進行25分鐘的傳統物理治療。主要的結果評量為步態參數,包括行走速度、步幅及步頻,並且會分別在單一與雙重任務情境下進行評估;次要的結果評量則包括統一帕金森氏症評定量表的動作功能部分 (UPDRS-III)、計時起走測試 (Timed Up-and-Go test)、五次坐站測試 (Five-Time Sit-to-Stand test)、六分鐘行走測試 (6-minute walking test)、蒙特利爾認知評估 (Montreal Cognitive Assessment)、帕金森病人生活品質量表 (Parkinson’s Disease Questionnaire)及皮質興奮程度變化。受試者於介入前 (前測)、完成12次介入後 (後測)、以及介入結束後一個月 (追蹤測試) 進行結果評量。
結果:本次實驗共召募了30位受試者,其中28位完成了介入以及追蹤測試。經過12次的治療介入後,有氧運動組與傳統物理治療組在單一任務行走的速度 (p < 0.001) 及步幅 (p < 0.001)、雙重任務行走的速度 (p = 0.014) 及步幅 (p = 0.018)皆有進步。兩組在步態表現的變化上沒有差異。在次要結果評量上,兩組在統一帕金森氏症評定量表的動作功能部分、計時起走測試、五次坐站測試以及蒙特利爾認知評估皆有明顯的進步,且兩組之間無顯著差異。至於皮質興奮程度在介入後的變化,兩組在任一評量時間點皆沒有顯著的改變,亦沒有組間差異。然而,有氧運動組在介入後皮質抑制性的增加程度高於最小可偵測變化值,顯示出長期進行有氧運動可能可以將皮質興奮程度正常化。由於並非所有在有氧運動組的受試者都有達到目標心跳,我們另外進行了次群組分析以了解運動強度的影響。結果發現有達到40%以上儲備心率的受試者在單一任務行走速度的進步程度高於沒有達到40%儲備心率的受試者。雖然因為樣本數太小而沒有統計上的顯著差異,步態表現在組別與時間的交互作用上具有中等程度的效果值。
結論:在步態訓練後加入有氧運動並沒有比加入傳統物理治療更為有效,只有能夠達到中等運動強度以上的受試者會因為加入有氧運動有更好的訓練效果。由於有氧運動對於動作學習的效果會受到運動強度的影響,以有氧運動作為促進步態訓練的方法不一定適合每一位帕金森氏症患者。因此,復健計畫仍需要考量個別狀況以達到最佳的治療效果。
zh_TW
dc.description.abstractBackground: Gait disability is a common motor symptom in people with Parkinson’s disease (PD), and gait training is the major approach to ameliorate gait disorders. Due to impairment in motor learning, people with PD tend to require higher repetitions of practice to achieve clinical meaningful improvement. Therefore, finding methods to facilitate motor learning may be helpful to enhance rehabilitation effects in people with PD. Aerobic exercise has been shown to improve motor learning in non-disabled adults, and the associated neurophysiological mechanisms have been well-demonstrated. Whether adding aerobic exercise after gait training for multiple sessions can facilitate gait performance in people with PD has not been investigated. Additionally, the associated neurophysiological mechanisms have not been established.
Study purpose: To determine the effects of adding aerobic exercise after gait training on walking performance and corticomotor excitability changes in people with PD.
Methods: This study was a single-blinded randomized control trial. People with idiopathic PD were recruited, and randomly assigned into the aerobic exercise (AEX) group or conventional physical therapy (CPT) group. Participants received 12 sessions of intervention (1 hour/session, 2 to 3 sessions/week). The intervention started from 30-minute treadmill gait training and 5-minute overground gait training. After that, the AEX group performed moderately high-intensity aerobic exercise for 25 minutes, and the CPT group received conventional physical therapy for 25 minutes. The primary outcome was gait performance, which included gait velocity, stride length and cadence under the single-task and dual-task conditions. Secondary outcomes included the motor subscale of Unified Parkinson’s Disease Rating Scale (UPDRS-III), Timed Up-and-Go (TUG) test, Five-Time Sit-to-Stand test (FTSST), 6-minute walking test (6MWT), Montreal Cognitive Assessment (MoCA), Parkinson’s Disease Questionnaire (PDQ-39), and corticomotor excitability changes. The outcomes were assessed before the intervention (pre-test), after 12 intervention sessions (post-test), and one month after the interventions (follow-up test). Two-way mixed repeated measure analysis of variance (ANOVA) was used to compare the changes of outcome measures in both groups after intervention.
Results: Thirty participants were recruited into the study, and 28 of them have completed all the intervention sessions and the follow-up test. After intervention, both groups showed significant improvement in gait velocity (p < 0.001) and stride length (p < 0.001) under the single-task condition, and also in gait velocity (p = 0.014) and stride length (p = 0.018) under the dual-task condition. There were no significant group differences in the change of gait performances. For the secondary outcomes, both groups showed significant improvements in the UPDRS-III, TUG test, FTSTS and MoCA without significant group differences. As for the corticomotor excitability, there were neither significant changes within the groups nor group differences found at different assessment time points. However, the changes in corticomotor inhibition (i.e., cortical silent period) in the AEX group exceeded the minimal detectable change reported in previous studies, which suggested a potential normalization of corticomotor excitability after long-term aerobic exercise. Since not every participant in the AEX group achieved the prescribed aerobic level during training, additional subgroup analysis was performed to determine whether the achieved exercise intensity would influence the results. The participants who achieved 40% or higher HRR during exercise seemed to have greater improvement in gait performances than those who did not achieve 40% HRR after intervention. Although there was no significant group difference due to the small sample size, the group by time interaction in gait velocity and stride length reached moderate effect size.
Conclusions: Our results showed that adding aerobic exercise after gait training was not more effective than conventional physical therapy. It was found that only the participants who were able to achieve moderate or higher intensity of aerobic exercise during training could benefit from the program. Since the effects of aerobic exercise on motor learning may be influenced by exercise intensity, applying aerobic exercise to facilitate gait training may not benefit every participant with PD. Therefore, personalized rehabilitation program is needed to optimize the treatment effects.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-08T16:10:03Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-08T16:10:03Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
Contents vii
List of tables ix
List of figures x
Chapter 1 Introduction 1
1.1. Background 1
1.2. Study purpose 4
1.3. Specific aims and hypotheses 4
Chapter 2 Literature review 5
2.1. Gait disability in people with Parkinson’s disease 5
2.2. Motor learning deficits in people with Parkinson’s disease 6
2.3. Effects of aerobic exercise on improving motor learning 8
2.4. Neurophysiological mechanisms of aerobic exercise on motor learning 10
2.5. Summary of review 13
Chapter 3 Methods 14
3.1. Participants 14
3.2. Study procedure 14
3.3. Intervention 15
3.4. Outcome measures 17
3.5. Statistical analysis 22
3.6. Sample size calculation 23
Chapter 4 Results 25
4.1. Demographic characteristics 25
4.2. Primary outcomes 25
4.3. Secondary outcomes 27
4.4. Subgroup analysis 31
Chapter 5 Discussion 34
Chapter 6 Conclusion 44
References 45
Appendix 1. The permission of the National Taiwan University Hospital Research Ethics Committee 76
-
dc.language.isoen-
dc.subject皮質興奮程度zh_TW
dc.subject步態障礙zh_TW
dc.subject帕金森氏症zh_TW
dc.subject動作學習zh_TW
dc.subject有氧運動zh_TW
dc.subjectgait disabilityen
dc.subjectmotor learningen
dc.subjectaerobic exerciseen
dc.subjectcorticomotor excitabilityen
dc.subjectParkinson's diseaseen
dc.title步態訓練後進行有氧運動對於促進帕金森氏症患者行走表現之效果zh_TW
dc.titleEffects of Gait Training Followed by Aerobic Exercise on Walking Performance in People with Parkinson's Diseaseen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee王儷穎;陸哲駒;戴春暉zh_TW
dc.contributor.oralexamcommitteeLi-Ying Wang;Jer-Junn Luh;Chun-Hwei Taien
dc.subject.keyword帕金森氏症,步態障礙,動作學習,有氧運動,皮質興奮程度,zh_TW
dc.subject.keywordParkinson's disease,gait disability,motor learning,aerobic exercise,corticomotor excitability,en
dc.relation.page76-
dc.identifier.doi10.6342/NTU202302838-
dc.rights.note未授權-
dc.date.accepted2023-08-08-
dc.contributor.author-college醫學院-
dc.contributor.author-dept物理治療學研究所-
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  未授權公開取用
3.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved