Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89501
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王振穎zh_TW
dc.contributor.advisorChen-Ying Wangen
dc.contributor.author林台揚zh_TW
dc.contributor.authorTai-Yang Linen
dc.date.accessioned2023-09-07T17:16:46Z-
dc.date.available2023-11-09-
dc.date.copyright2023-09-07-
dc.date.issued2023-
dc.date.submitted2023-07-29-
dc.identifier.citationMiller PD, Jr. Regenerative and reconstructive periodontal plastic surgery. Mucogingival surgery. Dental clinics of North America 1988;32:287-306.
Langer L, Langer B. The subepithelial connective tissue graft for treatment of gingival recession. Dental clinics of North America 1993;37:243-264.
Azzi R, Takei HH, Etienne D, Carranza FA. Root coverage and papilla reconstruction using autogenous osseous and connective tissue grafts. The International journal of periodontics & restorative dentistry 2001;21:141-147.
Khoury F, Happe A. The palatal subepithelial connective tissue flap method for soft tissue management to cover maxillary defects: a clinical report. The International journal of oral & maxillofacial implants 2000;15:415-418.
Landsberg CJ. Socket seal surgery combined with immediate implant placement: a novel approach for single-tooth replacement. The International journal of periodontics & restorative dentistry 1997;17:140-149.
Harris RJ. The connective tissue and partial thickness double pedicle graft: a predictable method of obtaining root coverage. Journal of periodontology 1992;63:477-486.
Wiesner G, Esposito M, Worthington H, Schlee M. Connective tissue grafts for thickening peri-implant tissues at implant placement. One-year results from an explanatory split-mouth randomised controlled clinical trial. Eur J Oral Implantol 2010;3:27-35.
Kydd WL, Daly CH, Wheeler JB, 3rd. The thickness measurement of masticatory mucosa in vivo. Int Dent J 1971;21:430-441.
Uchida H, Kobayashi K, Nagao M. Measurement in vivo of masticatory mucosal thickness with 20 MHz B-mode ultrasonic diagnostic equipment. J Dent Res 1989;68:95-100.
Studer SP, Allen EP, Rees TC, Kouba A. The thickness of masticatory mucosa in the human hard palate and tuberosity as potential donor sites for ridge augmentation procedures. Journal of periodontology 1997;68:145-151.
Wara-aswapati N, Pitiphat W, Chandrapho N, Rattanayatikul C, Karimbux N. Thickness of palatal masticatory mucosa associated with age. Journal of periodontology 2001;72:1407-1412.
Ueno D, Sato J, Igarashi C, et al. Accuracy of oral mucosal thickness measurements using spiral computed tomography. Journal of periodontology 2011;82:829-836.
Ogawa M, Katagiri S, Koyanagi T, et al. Accuracy of cone beam computed tomography in evaluation of palatal mucosa thickness. J Clin Periodontol 2020;47:479-488.
Eger T, Müller HP, Heinecke A. Ultrasonic determination of gingival thickness. Subject variation and influence of tooth type and clinical features. J Clin Periodontol 1996;23:839-845.
Müller HP, Schaller N, Eger T. Ultrasonic determination of thickness of masticatory mucosa: a methodologic study. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 1999;88:248-253.
Song JE, Um YJ, Kim CS, et al. Thickness of posterior palatal masticatory mucosa: the use of computerized tomography. Journal of periodontology 2008;79:406-412.
Barriviera M, Duarte WR, Januário AL, Faber J, Bezerra AC. A new method to assess and measure palatal masticatory mucosa by cone-beam computerized tomography. J Clin Periodontol 2009;36:564-568.
Vu T, Bayome M, Kook YA, Han SH. Evaluation of the palatal soft tissue thickness by cone-beam computed tomography. Korean J Orthod 2012;42:291-296.
Ueno D, Sekiguchi R, Morita M, et al. Palatal mucosal measurements in a Japanese population using cone-beam computed tomography. J Esthet Restor Dent 2014;26:48-58.
Yilmaz HG, Boke F, Ayali A. Cone-beam computed tomography evaluation of the soft tissue thickness and greater palatine foramen location in the palate. J Clin Periodontol 2015;42:458-461.
Verstreken K, Van Cleynenbreugel J, Martens K, Marchal G, van Steenberghe D, Suetens P. An image-guided planning system for endosseous oral implants. IEEE transactions on medical imaging 1998;17:842-852.
Watzinger F, Birkfellner W, Wanschitz F, et al. Positioning of dental implants using computer-aided navigation and an optical tracking system: case report and presentation of a new method. Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery 1999;27:77-81.
Brief J, Edinger D, Hassfeld S, Eggers G. Accuracy of image-guided implantology. Clinical oral implants research 2005;16:495-501.
Jokstad A, Winnett B, Fava J, Powell D, Somogyi-Ganss E. Investigational Clinical Trial of a Prototype Optoelectronic Computer-Aided Navigation Device for Dental Implant Surgery. The International journal of oral & maxillofacial implants 2018;33:679-692.
Gambarini G, Galli M, Morese A, et al. Precision of Dynamic Navigation to Perform Endodontic Ultraconservative Access Cavities: A Preliminary In Vitro Analysis. Journal of endodontics 2020;46:1286-1290.
Jain SD, Carrico CK, Bermanis I, Rehil S. Intraosseous Anesthesia Using Dynamic Navigation Technology. Journal of endodontics 2020;46:1894-1900.
Somogyi-Ganss E, Holmes HI, Jokstad A. Accuracy of a novel prototype dynamic computer-assisted surgery system. Clinical oral implants research 2015;26:882-890.
Tahmaseb A, Wismeijer D, Coucke W, Derksen W. Computer technology applications in surgical implant dentistry: a systematic review. The International journal of oral & maxillofacial implants 2014;29 Suppl:25-42.
Tahmaseb A, Wu V, Wismeijer D, Coucke W, Evans C. The accuracy of static computer-aided implant surgery: A systematic review and meta-analysis. Clinical oral implants research 2018;29 Suppl 16:416-435.
Block MS, Emery RW, Cullum DR, Sheikh A. Implant Placement Is More Accurate Using Dynamic Navigation. Journal of oral and maxillofacial surgery : official journal of the American Association of Oral and Maxillofacial Surgeons 2017;75:1377-1386.
Block MS, Emery RW, Lank K, Ryan J. Implant Placement Accuracy Using Dynamic Navigation. The International journal of oral & maxillofacial implants 2017;32:92-99.
Stefanelli LV, DeGroot BS, Lipton DI, Mandelaris GA. Accuracy of a Dynamic Dental Implant Navigation System in a Private Practice. The International journal of oral & maxillofacial implants 2019;34:205–213.
Stefanelli LV, Mandelaris GA, DeGroot BS, Gambarini G, De Angelis F, Di Carlo S. Accuracy of a Novel Trace-Registration Method for Dynamic Navigation Surgery. The International journal of periodontics & restorative dentistry 2020;40:427-435.
Aydemir CA, Arısan V. Accuracy of dental implant placement via dynamic navigation or the freehand method: A split-mouth randomized controlled clinical trial. Clinical oral implants research 2020;31:255-263.
Chen JT. A Novel Application of Dynamic Navigation System in Socket Shield Technique. J Oral Implantol 2019;45:409-415.
Stefanelli LV, Pranno N, De Angelis F, La Rosa S, Polimeni A, Di Carlo S. Navigated Antral Bone Expansion (NABE): a prospective study on 35 patients with 4 months of follow-up post implant loading. BMC Oral Health 2020;20:273.
Lawson RB, Jones ML. An evaluation of a noninvasive method of assessing alveolar bone levels in an experimental model of cleft lip and palate. Cleft Palate Craniofac J 1998;35:1-8.
Gupta P, Jan SM, Behal R, Mir RA, Shafi M. Accuracy of cone-beam computerized tomography in determining the thickness of palatal masticatory mucosa. J Indian Soc Periodontol 2015;19:396-400.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89501-
dc.description.abstract牙周美容手術目前廣泛應用在有美或是功能需求的病人,上顎顎側咀嚼黏膜常為提供軟組織的來源,已經有很多方式被提出來測量顎側咀嚼黏膜厚度,然而這些方式多為侵入性或測量的可重複性不高,本臨床研究希望以非侵入之方式,評估使用動態導航系統下,動態評估顎側咀嚼黏膜厚度相較於標準穿刺探測的精準度,目標期待能提供新的非侵入性手術前診斷評估方式,更精準且穩定即時的確認每位病患顎側軟組織實際厚度。
本研究收案12位牙周健康且需要做上顎植牙也有照過錐狀斷層掃描的病人,每位病人在犬齒到第二大臼齒區域(C、P1、P2、M1、M2),分別在距離牙齦不同位置(A:4mm、B:8mm、C:12mm),總共測量15個點,實驗組使用動態導航系統(安適準Navident, ClaroNav, Canada)進行測量,對照組以牙周探針搭配橡皮定位在該點以垂直軟組織穿刺進行量測,之後進行分析導航系統的測量相對於直接以牙周探針測量之精準度。
平均誤差為0.32 ± 0.39 mm,使用動態導航系統測量通常高估真實厚度,在性別、左右側與不同齒位間沒有顯著差異,但誤差在距離牙齦越近越大,在A (0.42 ± 0.34 mm)顯著高於C (0.23 ± 0.44 mm)。
平均顎側咀嚼黏膜厚度為3.47 ± 1.34 mm,在性別與不同齒位間沒有顯著差異,但在左側(3.61 ± 1.42 mm)顯著比右側(3.18 ± 1.12 mm)厚,且厚度隨著距離牙齦越遠顯著越厚(A: 2.46 ± 0.77 mm; B: 3.40 ± 0.92 mm; C: 4.54 ± 1.33 mm)。
動態導航系統是個非侵入性且精準的測量顎側咀嚼黏膜厚度的工具,可以精準且即時的執行測量,讓牙周美容手術提升安全與效率,本研究也是第一個提出此方法來測量軟組織厚度的團隊。
zh_TW
dc.description.abstractPeriodontal plastic surgery is widely used to improve patients' esthetic and functional demands. The palatal masticatory mucosa is the main donor area. Periodontists used many methods to evaluate the thickness of palatal soft tissue. However, the techniques published before were invasive or non-reproducible. Therefore, this study aimed to investigate the accuracy of the novel invasive approach to evaluate the thickness of palatal masticatory mucosa.
Twelve periodontally healthy patients with CBCT on the maxilla for implant surgery were recruited in this study. We measured each patient at 15 points of palatal masticatory mucosa from the canine to the second molar area (C, P1, P2, M1, M2) on the right or the left side at 4 (A), 8 (B), and 12(C) mm from the gingival margin. All procedures were done by a dynamic navigation system (test group) and periodontal probe piercing (control group). In addition, we analyzed data to evaluate the accuracy of dynamic navigation in measuring palatal masticatory mucosa thickness.
The overall mean measurement difference was 0.32 ± 0.39 mm. The navigation system generally overestimated the thickness of the palatal masticatory mucosa. The mean measurement difference was not statistically significant, according to tooth site, gender, and different sides. However, the mean measurement difference decreased as the distance from the gingival margin. The difference at A (0.42 ± 0.34 mm) was more significant than C (0.23 ± 0.44 mm).
The average thickness of the palatal mucosa was 3.47 ± 1.34 mm. The mean thickness of the palatal mucosa did not show a statistically significant difference according to tooth site and gender. However, the mean masticatory mucosa thickness on the left side (3.61 ± 1.42 mm) was more significant than on the right side (3.18 ± 1.12 mm). The thickness increased as the distance from the gingival margin. The mean thickness exhibited a significant difference at A (2.46 ± 0.77 mm), B (3.40 ± 0.92 mm), and C (4.54 ± 1.33 mm).
Dynamic navigation is a noninvasive and accurate tool for measuring palatal masticatory mucosal thickness. Obtaining precise thickness in real-time of palatal masticatory mucosa could provide significant benefits, particularly in performing periodontal plastic surgery with improved safety and effectiveness. This is the first study to use dynamic navigation to measure and assess palatal mucosal thickness.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:16:46Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T17:16:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Periodontal plastic surgery 1
1.2 Tools to measure palatal mucosa thickness 1
1.2.1 Periodontal probe 1
1.2.2 Endodontic file and reamer 2
1.2.3 Ultrasonic device 2
1.2.4 Computed Tomography, CT 3
1.3 Navigation system 5
Chapter 2 Aim 8
Chapter 3 Method and Materials 9
3.1 Subjects 9
3.2 Measurement sites and planning 9
3.3 Examination procedures 10
3.3.1 Clinical periodontal examination 10
3.3.2 Measurement of palatal masticatory mucosa thickness 10
3.4 Statistical analysis 11
Chapter 4 Results 13
4.1 The actual thickness of the palatal masticatory mucosa 13
4.2 The difference between measuring by the navigation system and the periodontal probe. 14
Chapter 5 Discussion 17
Chapter 6 Conclusions 21
FIGURES 22
TABLES 29
REFERENCE 42
-
dc.language.isoen-
dc.title利用動態導航系統測量顎側咀嚼黏膜-一種新的非侵入性方法zh_TW
dc.titleA new noninvasive method to assess and measure palatal masticatory mucosa using the dynamic navigation systemen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭彥彬;杜裕康;張晉豪;簡肇何zh_TW
dc.contributor.oralexamcommitteeYen-Ping Kuo;Yu-Kang Tu;Chin-Hao Chang;Chao-Ho Chienen
dc.subject.keyword非侵入性,動態導航,顎側咀嚼黏膜厚度,軟組織厚度,錐狀斷層掃描,zh_TW
dc.subject.keywordNoninvasive,Dynamic navigation,Palatal masticatory mucosa thickness,Soft tissue thickness,Cone beam computed tomography,en
dc.relation.page44-
dc.identifier.doi10.6342/NTU202301958-
dc.rights.note未授權-
dc.date.accepted2023-07-31-
dc.contributor.author-college醫學院-
dc.contributor.author-dept臨床醫學研究所-
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
6.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved