Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89494
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃人則zh_TW
dc.contributor.advisorJoseph Jen-Tse Huangen
dc.contributor.author陳柏文zh_TW
dc.contributor.authorBryan Po-Wen Chenen
dc.date.accessioned2023-09-07T17:15:06Z-
dc.date.available2025-05-10-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-05-11-
dc.identifier.citation1. Fisch, M. H., Photochemistry of Santonin - Zwitterionic Intermediates. J Chem Soc Chem Comm 1969, (24), 1472-&.
2. Geerlings, P.; Ayers, P. W.; Toro-Labbe, A.; Chattaraj, P. K.; De Proft, F., The Woodward-Hoffmann rules reinterpreted by conceptual density functional theory. Acc Chem Res 2012, 45 (5), 683-95.
3. Nishijima, M.; Mutoh, K.; Shimada, R.; Sakamoto, A.; Abe, J., Controlling Diradical Character of Photogenerated Colored Isomers of Phenoxyl-Imidazolyl Radical Complexes. J Am Chem Soc 2022, 144 (37), 17186-17197.
4. Hwang, S. J.; Powers, D. C.; Maher, A. G.; Anderson, B. L.; Hadt, R. G.; Zheng, S. L.; Chen, Y. S.; Nocera, D. G., Trap-Free Halogen Photoelimination from Mononuclear Ni(III) Complexes. J Am Chem Soc 2015, 137 (20), 6472-5.
5. Han, Y.; Hamada, M.; Chang, I. Y.; Hyeon-Deuk, K.; Kobori, Y.; Kobayashi, Y., Fast T-Type Photochromism of Colloidal Cu-Doped ZnS Nanocrystals. J Am Chem Soc 2021, 143 (5), 2239-2249.
6. Qian, H.; Pramanik, S.; Aprahamian, I., Photochromic Hydrazone Switches with Extremely Long Thermal Half-Lives. J Am Chem Soc 2017, 139 (27), 9140-9143.
7. Bhattacharjee, U.; Freppon, D.; Men, L.; Vela, J.; Smith, E. A.; Petrich, J. W., Photoinduced Trans-to-cis Phase Transition of Polycrystalline Azobenzene at Low Irradiance Occurs in the Solid State. Chemphyschem 2017, 18 (18), 2526-2532.
8. Gonzalez, A.; Kengmana, E. S.; Fonseca, M. V.; Han, G. G. D., Solid-state photoswitching molecules: structural design for isomerization in condensed phase. Mater Today Adv 2020, 6.
9. Tang, Y. Y.; Zeng, Y. L.; Xiong, R. G., Contactless Manipulation of Write-Read-Erase Data Storage in Diarylethene Ferroelectric Crystals. J Am Chem Soc 2022, 144 (19), 8633-8640.
10. Turro, N. J.; Ramamurthy, V.; Scaiano, J. C., Modern Molecular Photochemistry of Organic Molecules. Photochem Photobiol 2012, 88 (4), 1033-1033.
11. Jablonski, A., Efficiency of anti-stokes fluorescence in dyes. Nature 1933, 131, 839-840.
12. Condon, E., A theory of intensity distribution in band systems. Phys Rev 1926, 28 (6), 1182-1201.
13. Guina, M.; Xiang, N.; Vainionpaa, A.; Okhotnikov, O. G.; Sajavaara, T.; Keinonen, J., Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers. Opt Lett 2001, 26 (22), 1809-1811.
14. Schmitz, F.; Glas, J.; Neutze, R.; Hedfalk, K., A bimolecular fluorescence complementation flow cytometry screen for membrane protein interactions. Sci Rep 2021, 11 (1), 19232.
15. Durdik, M.; Kosik, P.; Jakl, L.; Kozackova, M.; Markova, E.; Vigasova, K.; Beresova, K.; Jakubikova, J.; Horvathova, E.; Zastko, L.; Fekete, M.; Zavacka, I.; Pobijakova, M.; Belyaev, I., Imaging flow cytometry and fluorescence microscopy in assessing radiation response in lymphocytes from umbilical cord blood and cancer patients. Cytometry A 2021, 99 (12), 1198-1208.
16. Lee, H. W.; Juvekar, V.; Lee, D. J.; Kim, S. M.; Kim, H. M., Highly Stable Red-Emissive Ratiometric Probe for Monitoring beta-Galactosidase Activity Using Fluorescence Microscopy and Flow Cytometry. Anal Chem 2021, 93 (44), 14778-14783.
17. van Dijken, D. J.; Kovaricek, P.; Ihrig, S. P.; Hecht, S., Acylhydrazones as Widely Tunable Photoswitches. J Am Chem Soc 2015, 137 (47), 14982-14991.
18. Kuroiwa, H.; Inagaki, Y.; Mutoh, K.; Abe, J., On-Demand Control of the Photochromic Properties of Naphthopyrans. Adv Mater 2019, 31 (2), e1805661.
19. Roubinet, B.; Weber, M.; Shojaei, H.; Bates, M.; Bossi, M. L.; Beloy, V. N.; Irie, M.; Hell, S. W., Fluorescent Photoswitchable Diarylethenes for Biolabeling and Single-Molecule Localization Microscopies with Optical Superresolution. J Am Chem Soc 2017, 139 (19), 6611-6620.
20. Carroll, E. C.; Berlin, S.; Levitz, J.; Kienzler, M. A.; Yuan, Z.; Madsen, D.; Larsen, D. S.; Isacoff, E. Y., Two-photon brightness of azobenzene photoswitches designed for glutamate receptor optogenetics. P Natl Acad Sci USA 2015, 112 (7), E776-E785.
21. Morneau, D., Optogenetics for light control of biological systems. Nat Rev Method Prime 2022, 2 (1).
22. Jayabharathi, J.; Thanikachalam, V.; Perumal, M. V.; Srinivasan, N., A physiochemical study of azo dyes: DFT based ESIPT process. Spectrochim Acta A Mol Biomol Spectrosc 2011, 83 (1), 200-6.
23. Takeuchi, S.; Ruhman, S.; Tsuneda, T.; Chiba, M.; Taketsugu, T.; Tahara, T., Spectroscopic Tracking of Structural Evolution in Ultrafast Stilbene Photoisomerization. Science 2008, 322 (5904), 1073-1077.
24. Harada, J.; Ogawa, K., Pedal motion in crystals. Chem Soc Rev 2009, 38 (8), 2244-52.
25. Maestre-Reyna, M.; Yang, C. H.; Nango, E.; Huang, W. C.; Putu, E. P. G. N.; Wu, W. J.; Wang, P. H.; Franz-Badur, S.; Saft, M.; Emmerich, H. J.; Wu, H. Y.; Lee, C. C.; Huang, K. F.; Chang, Y. K.; Liao, J. H.; Weng, J. H.; Gad, W.; Chang, C. W.; Pang, A. H.; Sugahara, M.; Owada, S.; Hosokawa, Y.; Joti, Y.; Yamashita, A.; Tanaka, R.; Tanaka, T.; Luo, F. J.; Tono, K.; Hsu, K. C.; Kiontke, S.; Schapiro, I.; Spadaccini, R.; Royant, A.; Yamamoto, J.; Iwata, S.; Essen, L. O.; Bessho, Y.; Tsai, M. D., Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat Chem 2022, 14 (6), 677-+.
26. Wang, S.; Chen, X. Z.; Chang, L.; Ding, M. A.; Xue, R. Y.; Duan, H. F.; Sun, Y. J., GMars-T Enabling Multimodal Subdiffraction Structural and Functional Fluorescence Imaging in Live Cells. Anal Chem 2018, 90 (11), 6626-6634.
27. Wang, Z. X.; Huang, C. R.; Liu, J. C.; Zeng, Y. L.; Xiong, R. G., Salicylideneaniline is a Photoswitchable Ferroelectric Crystal. Chem-Eur J 2021, 27 (60), 14831-14835.
28. Wakayama, Y.; Hayakawa, R.; Higashiguchi, K.; Matsuda, K., Photochromism for optically functionalized organic field-effect transistors: a comprehensive review. J Mater Chem C 2020, 8 (32), 10956-10974.
29. Yang, Q.; Peng, C.; Ren, J. T.; Zhao, W. P.; Zheng, W. J.; Zhang, C. Y.; Hu, Y. M.; Zhang, X. Q., A Near-Infrared Photoactuator Based on Shape Memory Semicrystalline Polymers toward Light-Fueled Crane, Grasper, and Walker. Adv Opt Mater 2019, 7 (21).
30. Ishiguro, Y.; Hayakawa, R.; Yasuda, T.; Chikyow, T.; Wakayama, Y., Unique Device Operations by Combining Optical-Memory Effect and Electrical-Gate Modulation in a Photochromism-Based Dual-Gate Transistor. Acs Appl Mater Inter 2013, 5 (19), 9726-9731.
31. Yang, J.; Zhao, Z. Y.; Wang, S.; Guo, Y. L.; Liu, Y. Q., Insight into High-Performance Conjugated Polymers for Organic Field-Effect Transistors. Chem-Us 2018, 4 (12), 2748-2785.
32. Levine, I. N., Physical chemistry. 6th ed.; McGraw-Hill: Boston, 2009; p xviii, 989 p.
33. Hosur, R. V.; Kakita, V. M. R.; SpringerLink, A Graduate Course in NMR Spectroscopy. 1st 2022. ed.; Springer International Publishing : Imprint: Springer: Cham, 2022.
34. Skoog, D. A.; Holler, F. J.; Crouch, S. R., Principles of instrumental analysis. 6th ed.; Thomson Brooks/Cole: Belmont, CA, 2007; p xv, 1039 p.
35. Merrifield, B., Life during a golden age of peptide chemistry : the concept and development of solid-phase peptide synthesis. American Chemical Society: Washington, DC, 1993; p xxi, 297 p.
36. Waseda, Y.; Matsubara, E.; Shinoda, K., X-Ray diffraction crystallography : introduction, examples and solved problems. Springer: Heidelberg Germany ; New York, 2011; p xi, 310 p.
37. Born, M.; Oppenheimer, R., Quantum theory of molecules. Ann Phys-Berlin 1927, 84 (20), 0457-0484.
38. Slater, J. C., The self consistent field and the structure of atoms. Phys Rev 1928, 32 (3), 0339-0348.
39. Becke, A. D., A New Mixing of Hartree-Fock and Local Density-Functional Theories. J Chem Phys 1993, 98 (2), 1372-1377.
40. Yanai, T.; Tew, D. P.; Handy, N. C., A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 2004, 393 (1-3), 51-57.
41. Hehre, W. J.; Stewart, R. F.; Pople, J. A., Self-Consistent Molecular-Orbital Methods .I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. J Chem Phys 1969, 51 (6), 2657-+.
42. Dunning, T. H., Gaussian-Basis Sets for Use in Correlated Molecular Calculations .1. The Atoms Boron through Neon and Hydrogen. J Chem Phys 1989, 90 (2), 1007-1023.
43. Chai, J. D.; Head-Gordon, M., Systematic optimization of long-range corrected hybrid density functionals. J Chem Phys 2008, 128 (8).
44. Li, F.; Sun, C. L.; Wang, N. N., Catalytic Acceptorless Dehydrogenative Coupling of Arylhydrazines and Alcohols for the Synthesis of Arylhydrazones. J Org Chem 2014, 79 (17), 8031-8039.
45. Barrett, I. C.; Langille, J. D.; Kerr, M. A., Facile preparation of hydrazones by the treatment of azides with hydrazines catalyzed by FeCl3 center dot 6H(2)O. J Org Chem 2000, 65 (19), 6268-6269.
46. Zimin, D. P.; Dar'in, D. V.; Rassadin, V. A.; Kukushkin, V. Y., Gold-Catalyzed Hydrohydrazidation of Terminal Alkynes. Org Lett 2018, 20 (16), 4880-4884.
47. Hu, Y.; Li, S.; Wang, Z. L.; Yao, Y. B.; Li, T. J.; Yu, C. X.; Yao, C. S., NHC-Catalyzed Hetero-Diels-Alder Reaction of Allenoate with Chalcone: Synthesis of Polysubstituted Pyranyl Carboxylate. J Org Chem 2018, 83 (6), 3361-3366.
48. Kolmel, D. K.; Kool, E. T., Oximes and Hydrazones in Bioconjugation: Mechanism and Catalysis. Chem Rev 2017, 117 (15), 10358-10376.
49. Williams, K. R.; Blayney, A. W., An optical and electron microscopy study of materials implanted in the rat middle ear. I Carbon. Biomaterials 1986, 7 (4), 283-6.
50. Saedi, M.; de Voogd, J. M.; Sjardin, A.; Manikas, A.; Galiotis, C.; Jankowski, M.; Renaud, G.; La Porta, F.; Konovalov, O.; van Baarle, G. J. C.; Groot, I. M. N., Development of a reactor for the in situ monitoring of 2D materials growth on liquid metal catalysts, using synchrotron x-ray scattering, Raman spectroscopy, and optical microscopy. Rev Sci Instrum 2020, 91 (1), 013907.
51. Adelizzi, B.; Aloi, A.; Van Zee, N. J.; Palmans, A. R. A.; Meijer, E. W.; Voets, I. K., Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy. Acs Nano 2018, 12 (5), 4431-4439.
52. Onogi, S.; Shigemitsu, H.; Yoshii, T.; Tanida, T.; Ikeda, M.; Kubota, R.; Hamachi, I., In situ real-time imaging of self-sorted supramolecular nanofibres. Nat Chem 2016, 8 (8), 743-752.
53. Lee, M. K.; Rai, P.; Williams, J.; Twieg, R. J.; Moerner, W. E., Small-Molecule Labeling of Live Cell Surfaces for Three-Dimensional Super-Resolution Microscopy. J Am Chem Soc 2014, 136 (40), 14003-14006.
54. Kim, D.; Jeong, K.; Kwon, J. E.; Park, H.; Lee, S.; Kim, S.; Park, S. Y., Dual-color fluorescent nanoparticles showing perfect color-specific photoswitching for bioimaging and super-resolution microscopy. Nat Commun 2019, 10, 3089.
55. Pujals, S.; Feiner-Gracia, N.; Delcanale, P.; Voets, I.; Albertazzi, L., Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019, 3 (2), 68-84.
56. Torra, J.; Bondia, P.; Gutierrez-Erlandsson, S.; Sot, B.; Flors, C., Long-term STED imaging of amyloid fibers with exchangeable Thioflavin T. Nanoscale 2020, 12 (28), 15050-15053.
57. Devetak, M.; Persin, Z.; Stana-Kleinschek, K.; Maver, U., Utilization of optical polarization microscopy in the study of sorption characteristics of wound dressing host materials. Microsc Microanal 2014, 20 (2), 561-5.
58. Huang, B.; Babcock, H.; Zhuang, X., Breaking the diffraction barrier: super-resolution imaging of cells. Cell 2010, 143 (7), 1047-58.
59. Dempsey, G. T.; Bates, M.; Kowtoniuk, W. E.; Liu, D. R.; Tsien, R. Y.; Zhuang, X. W., Photoswitching Mechanism of Cyanine Dyes. Biophys J 2010, 98 (3), 393a-393a.
60. Dempsey, G. T.; Vaughan, J. C.; Chen, K. H.; Zhuang, X. W., Evaluation of Fluorophores for Optimal Performance in Localization-Based Super-Resolution Imaging. Biophys J 2012, 102 (3), 725a-725a.
61. Vaughan, J. C.; Dempsey, G. T.; Sun, E.; Zhuang, X. W., Phosphine Quenching of Cyanine Dyes as a Versatile Tool for Fluorescence Microscopy. J Am Chem Soc 2013, 135 (4), 1197-1200.
62. Lelek, M.; Gyparaki, M. T.; Beliu, G.; Schueder, F.; Griffie, J.; Manley, S.; Jungmann, R.; Sauer, M.; Lakadamyali, M.; Zimmer, C., Single-molecule localization microscopy. Nat Rev Methods Primers 2021, 1.
63. Matsumoto, B.; American Society for Cell, B., Cell biological applications of confocal microscopy. Academic Press: Amsterdam ; London, 2002; p xii, 507 p., [16] p. of plates : ill. (some col.).
64. Weiss, P. S., Nobel prizes for super-resolution imaging. Acs Nano 2014, 8 (10), 9689-90.
65. Chai, X. Z.; Han, H. H.; Sedgwick, A. C.; Li, N.; Zang, Y.; James, T. D.; Zhang, J. J.; Hu, X. L.; Yu, Y.; Li, Y.; Wang, Y.; Li, J.; He, X. P.; Tian, H., Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. J Am Chem Soc 2020, 142 (42), 18005-18013.
66. Uno, S. N.; Kamiya, M.; Yoshihara, T.; Sugawara, K.; Okabe, K.; Tarhan, M. C.; Fujita, H.; Funatsu, T.; Okada, Y.; Tobita, S.; Urano, Y., A spontaneously blinking fluorophore based on intramolecular spirocyclization for live-cell super-resolution imaging. Nat Chem 2014, 6 (8), 681-689.
67. Berbasova, T.; Santos, E. M.; Nosrati, M.; Vasileiou, C.; Geiger, J. H.; Borhan, B., Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch. Chembiochem 2016, 17 (5), 407-14.
68. Shao, Y. H.; Gan, Z. T.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X. T.; Ghosh, D.; Goldey, M.; Horn, P. R.; Jacobson, L. D.; Kaliman, I.; Khaliullin, R. Z.; Kus, T.; Landau, A.; Liu, J.; Proynov, E. I.; Rhee, Y. M.; Richard, R. M.; Rohrdanz, M. A.; Steele, R. P.; Sundstrom, E. J.; Woodcock, H. L.; Zimmerman, P. M.; Zuev, D.; Albrecht, B.; Alguire, E.; Austin, B.; Beran, G. J. O.; Bernard, Y. A.; Berquist, E.; Brandhorst, K.; Bravaya, K. B.; Brown, S. T.; Casanova, D.; Chang, C. M.; Chen, Y. Q.; Chien, S. H.; Closser, K. D.; Crittenden, D. L.; Diedenhofen, M.; DiStasio, R. A.; Do, H.; Dutoi, A. D.; Edgar, R. G.; Fatehi, S.; Fusti-Molnar, L.; Ghysels, A.; Golubeva-Zadorozhnaya, A.; Gomes, J.; Hanson-Heine, M. W. D.; Harbach, P. H. P.; Hauser, A. W.; Hohenstein, E. G.; Holden, Z. C.; Jagau, T. C.; Ji, H. J.; Kaduk, B.; Khistyaev, K.; Kim, J.; Kim, J.; King, R. A.; Klunzinger, P.; Kosenkov, D.; Kowalczyk, T.; Krauter, C. M.; Lao, K. U.; Laurent, A. D.; Lawler, K. V.; Levchenko, S. V.; Lin, C. Y.; Liu, F.; Livshits, E.; Lochan, R. C.; Luenser, A.; Manohar, P.; Manzer, S. F.; Mao, S. P.; Mardirossian, N.; Marenich, A. V.; Maurer, S. A.; Mayhall, N. J.; Neuscamman, E.; Oana, C. M.; Olivares-Amaya, R.; O'Neill, D. P.; Parkhill, J. A.; Perrine, T. M.; Peverati, R.; Prociuk, A.; Rehn, D. R.; Rosta, E.; Russ, N. J.; Sharada, S. M.; Sharma, S.; Small, D. W.; Sodt, A.; Stein, T.; Stuck, D.; Su, Y. C.; Thom, A. J. W.; Tsuchimochi, T.; Vanovschi, V.; Vogt, L.; Vydrov, O.; Wang, T.; Watson, M. A.; Wenzel, J.; White, A.; Williams, C. F.; Yang, J.; Yeganeh, S.; Yost, S. R.; You, Z. Q.; Zhang, I. Y.; Zhang, X.; Zhao, Y.; Brooks, B. R.; Chan, G. K. L.; Chipman, D. M.; Cramer, C. J.; Goddard, W. A.; Gordon, M. S.; Hehre, W. J.; Klamt, A.; Schaefer, H. F.; Schmidt, M. W.; Sherrill, C. D.; Truhlar, D. G.; Warshel, A.; Xu, X.; Aspuru-Guzik, A.; Baer, R.; Bell, A. T.; Besley, N. A.; Chai, J. D.; Dreuw, A.; Dunietz, B. D.; Furlani, T. R.; Gwaltney, S. R.; Hsu, C. P.; Jung, Y. S.; Kong, J.; Lambrecht, D. S.; Liang, W. Z.; Ochsenfeld, C.; Rassolov, V. A.; Slipchenko, L. V.; Subotnik, J. E.; Van Voorhis, T.; Herbert, J. M.; Krylov, A. I.; Gill, P. M. W.; Head-Gordon, M., Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 2015, 113 (2), 184-215.
69. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
70. Lee, C. T.; Yang, W. T.; Parr, R. G., Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys Rev B 1988, 37 (2), 785-789.
71. Walton, J. C., Functionalised Oximes: Emergent Precursors for Carbon-, Nitrogen- and Oxygen-Centred Radicals. Molecules 2016, 21 (1), 63.
72. Rettig, W., Photophysical and Photochemical Switches Based on Twisted Intramolecular Charge-Transfer (Tict) States. Appl Phys B-Photo 1988, 45 (3), 145-149.
73. Su, X.; Aprahamian, I., Hydrazone-based switches, metallo-assemblies and sensors. Chem Soc Rev 2014, 43 (6), 1963-1981.
74. Hadjoudis, E.; Mavridis, I. M., Photochromism and thermochromism of Schiff bases in the solid state: structural aspects. Chem Soc Rev 2004, 33 (9), 579-588.
75. Li, K.; Xiang, Y.; Wang, X. Y.; Li, J.; Hu, R. R.; Tong, A. J.; Tang, B. Z., Reversible Photochromic System Based on Rhodamine B Salicylaldehyde Hydrazone Metal Complex. J Am Chem Soc 2014, 136 (4), 1643-1649.
76. Avadanei, M.; Kus, N.; Cozan, V.; Fausto, R., Structure and Photochemistry of N-Salicylidene-p-carboxyaniline Isolated in Solid Argon. J Phys Chem A 2015, 119 (34), 9121-32.
77. Li, K.; Li, Y.; Tao, J.; Liu, L.; Wang, L.; Hou, H.; Tong, A., Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix. Sci Rep 2015, 5, 14467.
78. Ziaunys, M.; Sneideris, T.; Smirnovas, V., Exploring the potential of deep-blue autofluorescence for monitoring amyloid fibril formation and dissociation. Peerj 2019, 7, e7554.
79. Tikhonova, T. N.; Rovnyagina, N. R.; Zherebker, A. Y.; Sluchanko, N. N.; Rubekina, A. A.; Orekhov, A. S.; Nikolaev, E. N.; Fadeev, V. V.; Uversky, V. N.; Shirshin, E. A., Dissection of the deep-blue autofluorescence changes accompanying amyloid fibrillation. Arch Biochem Biophys 2018, 651, 13-20.
80. Goldschmidt, L.; Teng, P. K.; Riek, R.; Eisenberg, D., Identifying the amylome, proteins capable of forming amyloid-like fibrils. P Natl Acad Sci USA 2010, 107 (8), 3487-3492.
81. Kumaraswamy, P.; Sethuraman, S.; Krishnan, U. M., Hierarchical self-assembly of Tjernberg peptide at nanoscale. Soft Matter 2013, 9 (9), 2684-2694.
82. Eisenberg, D.; Jucker, M., The Amyloid State of Proteins in Human Diseases. Cell 2012, 148 (6), 1188-1203.
83. Amimoto, K.; Kawato, T., Photochromism of organic compounds in the crystal state. J Photoch Photobio C 2005, 6 (4), 207-226.
84. Ishii, N.; Kato, T.; Abe, J., A real-time dynamic holographic material using a fast photochromic molecule. Sci Rep 2012, 2, 819.
85. Kang, M. J.; Santoro, E. G.; Kang, Y. S., Enhanced Efficiency of Functional Smart Window with Solar Wavelength Conversion Phosphor-Photochromic Hybrid Film. ACS Omega 2018, 3 (8), 9505-9512.
86. Suzuki, Y.; Kato, T.; Huang, H. Y.; Yoshikawa, I.; Mutai, T.; Houjou, H., Photochromism of salicylideneanilines bearing super bulky substituents: Single-crystal UV-vis spectroscopic examination of bleaching under variable temperature and visible-light irradiation. J Photoch Photobio A 2019, 385.
87. Sugiyama, H.; Uekusa, H., Relationship between crystal structures and photochromic properties of N-salicylideneaminopyridine derivatives. Crystengcomm 2018, 20 (15), 2144-2151.
88. Mercier, G. M.; Robeyns, K.; Tumanov, N.; Champagne, B.; Wouters, J.; Leyssens, T., New Insights into Photochromic Properties of N-Salicylideneaniline Derivatives Using a Cocrystal Engineering Approach. Cryst Growth Des 2019, 19 (10), 5544-5556.
89. Johmoto, K.; Sekine, A.; Uekusa, H., Photochromism Control of Salicylideneaniline Derivatives by Acid-Base Co-Crystallization. Cryst Growth Des 2012, 12 (10), 4779-4786.
90. Chevalier, K.; Wolf, M. M.; Funk, A.; Andres, M.; Gerhards, M.; Diller, R., Transient IR spectroscopy and ab initio calculations on ESIPT in 3-hydroxyflavone solvated in acetonitrile. Phys Chem Chem Phys 2012, 14 (43), 15007-20.
91. Chung, M. W.; Lin, T. Y.; Hsieh, C. C.; Tang, K. C.; Fu, H.; Chou, P. T.; Yang, S. H.; Chi, Y., Excited-state intramolecular proton transfer (ESIPT) fine tuned by quinoline-pyrazole isomerism: pi-conjugation effect on ESIPT. J Phys Chem A 2010, 114 (30), 7886-91.
92. Sakai, K.; Takahashi, S.; Kobayashi, A.; Akutagawa, T.; Nakamura, T.; Dosen, M.; Kato, M.; Nagashima, U., Excited state intramolecular proton transfer (ESIPT) in six-coordinated zinc(ii)-quinoxaline complexes with ligand hydrogen bonds: their fluorescent properties sensitive to axial positions. Dalton Trans 2010, 39 (8), 1989-95.
93. Avadanei, M.; Tigoianu, R.; Serpa, C.; Pina, J.; Cozan, V., Conformational aspects of the photochromic reactivity of two N-salicylidene aniline derivatives in a polymer matrix. J Photoch Photobio A 2017, 332, 475-486.
94. Kawato, T.; Koyama, H.; Kanatomi, H.; Yonetani, K.; Matsushita, H., N-Salicylidene-2-Aminopyridine as a Photochromic Guest for Deoxycholic-Acid Crystal-Lattice Cavities. Chem Lett 1994, (4), 665-668.
95. Kawato, T.; Koyama, H.; Kanatomi, H.; Tagawa, H.; Iga, K., Photoisomerization and Thermoisomerization .3. Tert-Butyl Method of Selective Preparation of Photochromic Crystalline Salicylideneanilines and Elucidation of Substituent Effects on the Kinetics of the Color-Change Process. J Photoch Photobio A 1994, 78 (1), 71-77.
96. Kawato, T.; Kanatomi, H.; Koyama, H.; Igarashi, T., Photoisomerization and Thermoisomerization .2. Steric Requirements for Photochromism and Thermochromism of N,N'-Bis(Salicylidene)Diamines. J Photochem 1986, 33 (2), 199-208.
97. Kawato, T.; Koyama, H.; Kanatomi, H.; Isshiki, M., Photoisomerization and Thermoisomerization .1. Unusual Photochromism of N-(3,5-Di-Tert-Butylsalicylidene)Amines. J Photochem 1985, 28 (1), 103-110.
98. Grimme, S., Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 2006, 27 (15), 1787-1799.
99. Polavarapu, P. L., Ab initio Vibrational Raman and Raman Optical-Activity Spectra. J Phys Chem-Us 1990, 94 (21), 8106-8112.
100. Spackman, P. R.; Turner, M. J.; McKinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A., CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis o molecular crystals. J Appl Crystallogr 2021, 54, 1006-1011.
101. Turner, M. J.; McKinnon, J. J.; Jayatilaka, D.; Spackman, M. A., Visualisation and characterisation of voids in crystalline materials. Crystengcomm 2011, 13 (6), 1804-1813.
102. Chang, Y. F.; Lu, Z. Y.; An, L. J.; Zhang, J. P., From Molecules to Materials: Molecular and Crystal Engineering Design of Organic Optoelectronic Functional Materials for High Carrier Mobility. J Phys Chem C 2012, 116 (1), 1195-1199.
103. Yu, P. P.; Zhen, Y. G.; Dong, H. L.; Hu, W. P., Crystal Engineering of Organic Optoelectronic Materials. Chem-Us 2019, 5 (11), 2814-2853.
104. Ziller, J. W.; Schaber, P. M.; Dinan, F. J., Structure of 5,5'-Dimethylsilanediyldi(Phthalic Anhydride) - a Model System for Aromatic Polyimides. Acta Crystallographica Section C-Crystal Structure Communications 1993, 49, 1430-1432.
105. Dobson, A. J.; Gerkin, R. E., Hydrogen bonding and C-H...O interactions in 3-(3-aminophthalimido)phthalic acid dihydrate. Acta Crystallogr C 2000, 56, 1021-1023.
106. Safin, D. A.; Babashkina, M. G.; Robeyns, K.; Garcia, Y., C-H…Br-C vs. C-Br…Br-C vs. C-Br…N bonding in molecular self-assembly of pyridine-containing dyes. Rsc Adv 2016, 6 (59), 53669-53678.
107. Kato, M.; Ito, H.; Hasegawa, M.; Ishii, K., Soft Crystals: Flexible Response Systems with High Structural Order. Chem-Eur J 2019, 25 (20), 5105-5112.
108. Bondi, A., Van Der Waals Volumes + Radii. J Phys Chem-Us 1964, 68 (3), 441-+.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89494-
dc.description.abstract光致變色化合物被光激發後,能產生可逆的光化學異構化,而異構化通常伴隨著顏色變化,稱之為光致變色。當中,有機光致變色化合物容易做化學修飾,因此容易調整性質,進而滿足不同光學領域的各種需求,如:光儲存元件、超解析顯微技術、可複寫材料或太陽能儲存等。在此論文中,我們設計並開發了兩類,分別在液相及固相中,能有光致變色性質的腙類衍生物,而這兩類腙類衍生物分別被應用在類澱粉胜肽的超解析度成像技術以及光學可複寫材料。
第一部分研究,是以水楊醛衍伸物和含有肼基之類澱粉胜肽反應,形成可光異構化之腙類化合物。此含有腙類化合物之類澱粉胜肽,不需要任何添加劑或高功率雷射,即能在照光後變色(顯色),且在生理條件下光穩定性佳。因為光致變色的性質,使此腙類化合物可被用於超解析度成像顯微技術,讓以腙類化合物修飾之類澱粉胜肽,能以光學方式顯現出在超越繞射極限的奈米尺度下,不同的培養條件下導致的胜肽結構多型性。更進一步,由於此光致變色系統不需要任何添加劑,本研究也成功地將超解析顯微技術應用在活體細胞影像。
第二部分,我們設計了一系列平面及非平面的腙類化合物,並研究其在固相中的光致變色及熱能回復性質(T型光致變色)。非平面的腙類化合物由於晶體堆疊較為鬆散、晶體中有較多空間異構化,因此光致變色性質好,且室溫下回復速率極快。在平面腙類化合物中,光異構化在平面、緊密堆疊的固相中通常不易發生,而透過修飾極性較高的芳香環(N-氨基鄰苯二甲酰亞胺、4-氨基脲唑),能使芳香環在晶體中堆疊性質改變。在平面分子特定方式的緊密堆疊下,分子在晶體中仍有足夠的空間產生光異構化,因此即使分子為緊密堆疊,仍保有光致變色性質。而此類平面分子也擁有較長的熱能回復時間(秒至小時)。進一步,我們展示了此類腙類化合物可應用於低功率雷射複寫、製圖。
總括來說,我們展示了透過對腙類化合物的簡單修飾,能使這些化合物在固相及液相中都有光致變色的性質,我們也試著找出化合物的結構與光致變色性質的關聯,並且對這些化合物在固相及液相做不同的應用。
zh_TW
dc.description.abstractPhotoisomerizable molecules are the class of compounds that undergo reversible photoisomerization reactions under light irradiations. Such isomerizations are normally accompanied by absorption shifting, and hence is referred to as photochromism. Organic photochromic compounds are easy to modify to satisfy the needs in different fields, such as optical storage, superresolution imaging, rewritable materials, solar energy storage, etc. In this thesis, we aim to develop two series of photochromic hydrazone derivatives which are photoisomerizable in liquid and solid phases. The two series of hydrazones were used for (1) superresolution imaging on amyloidogenic peptides and (2) optically rewritable materials, respectively.
In the first part of this dissertation, we report the incorporation of salicylaldehyde derivatives onto the hydrazine-tagged amyloidogenic peptides by forming photoisomerizable hydrazones. These hydrazones are photostable under physiological conditions and undergo photoisomerization without the need of addition of external reductants or high-power irradiation for quenching. By applying them in superresolution microscopy, the polymorphic nanostructures of the hydrazone-incorporated peptides distinguished in vitro under different buffering conditions. Moreover, the additive-free condition of this protocol allows the detailed characterization of the amyloid-aggregate morphologies in live cells.
In the second part, several planar and non-planar hydrazones were prepared and their photochromism and thermal recovery properties (T-type photochromism) in solid state were characterized. The non-planar hydrazones were found highly photochromic with ultrafast thermal recovery rate, for the loosely packed crystal structures contain more free space for isomerization. For the planar hydrazones, where the photoisomerization were normally obstructed in planarly close-packed structure, polar aromatic hydrazides (i.e., N-aminophthalimide and urazine) were introduced to alter the nature of aromatic stacking. In this way, the optimized molecular packing in planar hydrazones still bore enough crystalline free spaces for photoisomerizations, and therefore the photochromism properties were conserved in the close-packed structures. The thermal recovery lifetimes for the planar hydrazones (sec–hours) were found much longer than the non-planar ones. With the photochromic property, we demontrated that all the hydrazones were optically rewritable and could be patterened with low power laser.
In summary, we showcased that through brief and simple modifications, the hydrazones derivatives exhibited photochromic properties in solid or liquid phases. Further, the photochorimicty could be correlated to the molecular structure or packing in solid state. These derivatives were then applied for respective applications in liquid or solid state.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:15:06Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T17:15:06Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 I
PUBLICATIONS II
ACKNOWLEDGEMENTS III
摘要 XII
ABSTRACT XIII
TABLE OF CONTENTS XV
LIST OF FIGURES XVIII
LIST OF EQUATIONS XXIV
LIST OF TABLES XXVI
CHAPTER 1. INTRODUCTION 1
1-1 The concept of photochemistry and photophysics 2
1-1-1 Photon energy: A highly condensed and powerful energy source 2
1-1-2 General ideas of photochemical reactions in organic molecules 4
1-1-3 Photophysical properties and the applications of organic molecules 5
1-2 Reversible Photoisomerization of Organic Molecules 9
1-2-1 The diversity of reversible photoisomerization reactions in organic molecules. 9
1-2-2 Complementing Experimental and Computational Methods for Investigating Reversible Photoisomerization Reactions. 11
1-2-3 Applications of photoisomerizable compounds 12
1-3 Motives of thesis 15
CHAPTER 2. EXPERIMENTAL BACKGROUND 17
2-1 Solution state NMR 18
2-2 Absorption spectroscopy 22
2-3 Fluorescence spectroscopy 24
2-4 Solid phase peptide synthesis 26
2-5 Electron microscope 28
2-6 Raman Spectroscopy 30
2-7 Single crystal X-ray crystallography 33
2-8 Quantum mechanics simulation 36
2-8-1 The Schrödinger equation and the Born-Oppenheimer approximation. 37
2-8-2 Linear combination of atomic orbitals 39
2-8-3 Hartree-Fock method and corrections 40
2-8-4 Basis sets 43
2-8-5 Geometry optimization 44
2-9 Preparation of hydrazone derivatives 46
CHAPTER 3. DEVELOPMENT OF PHOTOCHROMIC HYDRAZONE DERIVATIVES FOR PEPTIDE LABELLING AND SUPERRESOLUTION MICROSCOPY. 48
3-1 Introduction 49
3-1-1 Diffraction limit in optical microscopy 49
3-1-2 Superresolution microscopy based on single molecular localization. 51
3-1-3 Chemical methods for fluorophore labeling and intermittent single molecule fluorescence emission. 54
3-1-4 Photoisomerizable/photochromic compounds for dSTORM/PALM. 56
3-1-5 Rationale and specific aims 57
3-2 Materials and Experimental Details 58
3-2-1 Materials 58
3-2-2 Syntheses of hydrazone derivatives 58
3-2-3 Liquid Phase NMR 60
3-2-4 Absorption and Fluorescence Spectroscopies 60
3-2-5 Irradiation Experiments 60
3-2-6 Peptide Synthesis and Fluorophore Labelling 61
3-2-7 TEM and SEM 61
3-2-8 Preparation of hydrazone-tagged peptides for in vitro and in vivo imaging. 62
3-2-9 Cell culture and viability assay 62
3-2-10 Superresolution Image Acquisition 63
3-2-11 Spectral Simulations by Quantum Calculations 63
3-3 Results and Discussion 65
3-3-1 Developments of photostable photochromic imine derivatives with desirable spectral changes for dSTORM/PALM. 65
3-3-2 Synthesis of hydrazide-tagged peptides. 77
3-3-3 Synthesis of photochromic KLVFF-Sali-NNAc peptide for in vitro imaging. 79
3-3-4 Synthesis of photochromic GGVVIA-Sali-NNAc-Furan peptide for in vivo imaging. 83
3-4 Conclusions 87
CHAPTER 4. THE IMPACT OF SOLID-STATE MOLECULAR PACKING OF THE HYDRAZONE DERIVATIVES ON THEIR PHOTOCHROMICITIES AND KINETICS OF THERMAL RECOVERIES. 89
4-1 Introduction 90
4-1-1 The applications of T-type photochromic materials in solid state. 90
4-1-2 Solid-state photochromism and salicylideneaniline. 93
4-1-3 Rationale and specific aims 97
4-2 Materials and Experimental Methods 98
4-2-1 Quantum simulations 98
4-2-2 Syntheses of photochromic hydrazones 98
4-2-3 Single-crystal x-ray diffraction crystallography 100
4-2-4 Irradiation experiments 101
4-2-5 Optical spectroscopy 101
4-2-6 Low-temperature Raman spectroscope 101
4-2-7 Void analyses 102
4-2-8 Confocal Microscopy 102
4-3 Results and Discussion 103
4-3-1 The design of photochromic compounds and the spectroscopic properties in solid state. 103
4-3-2 The correlation between photochromic property and crystal packing for the planarly close-packed hydrazones. 110
4-3-3 Planarly Close-packed photochromic hydrazones as rewritable micro-patterning materials. 117
4-4 Conclusions 119
5. CONCLUSIONS AND OUTLOOK 121
APPENDIX A 124
APPENDIX B – COMPOUND CHARACTERIZATIONS 138
APPENDIX C – INPUT FILES IN Q-CHEM AND CODES IN PYTHON 162
REFERENCE 168
-
dc.language.isoen-
dc.subject超解析度顯微zh_TW
dc.subjectT 型光致變色zh_TW
dc.subject胜肽修飾zh_TW
dc.subject腙類化合物zh_TW
dc.subject光異構化zh_TW
dc.subjectPhotoisomerizationen
dc.subjectpeptide labellingen
dc.subjectT-type photochromismen
dc.subjectacyl hydrazoneen
dc.subjectsuperresolution imagingen
dc.title研究並開發可應用於生物影像及微米製圖之光致變色腙類衍生物zh_TW
dc.titleThe development of photochromic hydrazone derivatives for bio-imaging and micro-patterningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.coadvisor陳振中zh_TW
dc.contributor.coadvisorJerry Chun Chung Chanen
dc.contributor.oralexamcommittee許昭萍;孫世勝;楊吉水zh_TW
dc.contributor.oralexamcommitteeChao-Ping Hsu;Shih-Sheng Sun;Jye-Shane Yangen
dc.subject.keyword光異構化,超解析度顯微,腙類化合物,胜肽修飾,T 型光致變色,zh_TW
dc.subject.keywordPhotoisomerization,superresolution imaging,acyl hydrazone,peptide labelling,T-type photochromism,en
dc.relation.page175-
dc.identifier.doi10.6342/NTU202300784-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-05-12-
dc.contributor.author-college理學院-
dc.contributor.author-dept化學系-
dc.date.embargo-lift2025-05-10-
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved