請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89472完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林寶秀 | zh_TW |
| dc.contributor.advisor | Bau-Show Lin | en |
| dc.contributor.author | 丁容 | zh_TW |
| dc.contributor.author | Jung Ting | en |
| dc.date.accessioned | 2023-09-07T17:09:38Z | - |
| dc.date.available | 2025-07-29 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-07-29 | - |
| dc.identifier.citation | 丁育群、朱佳仁(2000)。高層建築物風場環境評估準則研議。內政部建築研究所研究計劃報告。
王安強、林子平(2018) 。跨不同地況區域之風廊建置分析及都市通風環境評估。內政部建築研究所協同研究報告。 朱佳仁(2003) 。環境流體力學。科技圖書股份有限公司。 李偉誠、謝俊民(2011) 。連棟住宅之街廓比對街谷內風環境之影響-以台南市氣象資料爲例。建築學報(75),135-153。 朱佳仁(2006) 。風工程概論」。科技圖書出版公司。 林家伃、邱英浩 、游振偉(2016) 。植栽與建築物配置對風環境之影響。建築學報(95),87-102。 林衍良、吳建璋(2016)。城市地貌對人行步道舒適度之影響研究-以台中市柳川為例。台中市政府。 邱英浩、吳孟芳(2010) 。不同街道尺度對環境風場之影響。都市與計劃,37(4),501-528。 邱英浩、吳孟芳 、譚政泓(2008) 。不同街谷形式對都市風場之影響 。建築與規劃學報,9(2),141-165。 張瑋如(2005) 。植栽的風擋作用-住宅建築的自然通風研究。中華建築學刊,1(2),51-59。 戚啟勳(1986) 。探討臺北盆地對季風之修正效應。氣象學報,32(3),89-98。 Adamek, K., Vasan, N., Elshaer,A., English, E., Bitsuamlak, G.(2017). Pedestrian level wind assessment through city development: A study of the financial district in Toronto. Sustainable Cities and Society, 35, 178-190 Arnfield, A. J. (2003). Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. International Journal of Climatology, 23(1), 1-26. Bady, M., Kato, S., Huang, H. (2008). Towards the application of indoor ventilation efficiency indices to evaluate the air quality of urban areas. Building and environment, 43, 1991-2004. Barlow, J. F., Harman, I. N., & Belcher, S. E. (2004). Scalar fluxes from urban street canyons. Part I: Laboratory simulation. Boundary-Layer Meteorology, 113(3), 369-385. Deng, Q., He, G., Lu, C., Liu, W. (2012). Urban ventilation - a new concept and lumped model. International Journal of Ventilation, 11(2), 131 – 140 Doering, C. R., (2020). Turning up the heat in turbulent thermal convection. APPLIED PHYSICAL SCIENCES, 117(18), 9671-9673. Emmanuel, R. (2005). An Urban Approach to Climate Sensitive Design: Strategies for the Tropics. Taylor & Francis. Edward, N.g. (2009). Policies and technical guidelines for urban planning of high-density cities – air ventilation assessment (AVA) of Hong Kong. Building and environment, 44(7), 1478-1488. Gago, E.J., Roldan, J., Pacheco-Torres, R., Ordonez, J., (2013). The city and urban heat islands: A review of strategies to mitigate adverse effects. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 25, 749-758 Gromke, C., & Ruck, B. (2007). Influence of trees on the dispersion of pollutants in an urban street canyon - Experimental investigation of the flow and concentration field. Atmospheric Environment, 41(16), 3287-3302. Hsieh, C. M., & Huang, H. C. (2016). Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Computers Environment and Urban Systems, 57, 130-143. Jayalakshmy, M. S., Philip, J. (2010). Thermophysical Properties of Plant Leaves and Their Influence on the Environment Temperature. International Journal of Thermophysics, 31, 2295-2304. Memari, A. M., Iulo, L. D., Solnosky ,R. L., Stultz, C. R. (2014). Building Integrated Photovoltaic Systems for Single Family Dwellings: Innovation Concepts. Open Journal of Civil Engineering, 4, 102-119. Memon, R.A., Leung, D.Y.C., Liu, C.-H.(2010). Effects of building aspect ratio and wind speed on air temperatures in urban-like street canyons. Building and environment, 45 (1), 176-188 Mills, G. M. (1993). Simulation of the energy budget of an urban canyon—I. Model structure and sensitivity test. Atmospheric Environment. Part B. Urban Atmosphere, 27(2), 157-170. Mirzaei, P. A., Olsthoorn, O., Torjan, M., Haghighat, F. (2015). Urban neighborhood characteristics influence on a building indoor environment. Sustainable Cities and Society, 19, 403-413. National Civil Aviation Agency. Turbulence. (2018). Retrieved from https://www.anac.gov.br/en/safety/aeronautical-meteorology/conditions/turbulence (May. 18, 2021) Ng, W., Chau, C. (2014). A modeling investigation of the impact of street and building configurations on personal air pollutant exposure in isolated deep urban canyons. Science of the Total Environment, 429-448. Ng, E. (2009). Policies and technical guidelines for urban planning of high-density cities - air ventilation assessment (AVA) of Hong Kong. Building and environment, 44 (7), 1478-1488. Norton, B., Bosomworth, K., Coutts, A., Williams, N., Livesley, S., Trundle, A., Harris, R., McEvoy, D. (2013). Planning for a cooler future: green infrastructure to reduce urban heat. Centre for Climate Change Adaptation / University of Melbourne, Monash University, RMIT University. Oke, T. R. (1976). The distinction between canopy and boundary‐layer urban heat islands. Atmosphere, 14(4), 268-277. Oke, T. R. (1987). Boundary Layer Climates (2nd ed.). Routledge. Penwarden,A.D. (1973). Acceptable wind speeds in towns. Building Science, 8(3), 259-267. Plate, E. J. (1971). Aerodynamic Characteristics of Atmospheric Boundary Layers. Journal of Fluid Mechanics, 51(3), 619-623. Rodler, A., Guernouti, S., Musy, M., Bouyer, J. (2018). Thermal behaviour of a building in its environment: Modelling, experimentation, and comparison. Energy and Buildings, 168, 19-34. Takebayashi, H., Moriyama, M. (2012). Relationships between the properties of an urban street canyon and its radiant environment: Introduction of appropriate urban heat island mitigation technologies. Solar Energy, 86(9), 2255-2262. Wu, S.H., Wang, Y., Chen, C.W., Cao, Z.X., Cao, J.X., Yu, Z.L., Song, H., (2021). Valley city ventilation under the calm and stable weather conditions: A review. Building and environment, vol. 194. p.107668. Xie, X., Huang, Z., Wang, J., Xie, Z. (2005). The impact of solar radiation and street layout on pollutant dispersion in street canyon. Building and Environment, vol. 40, 201-212. Yakhot, V., Orszag, S. A., Thangam, S., Gatski, T. B., & Speziale, C. G. (1992). DEVELOPMENT OF TURBULENCE MODELS FOR SHEAR FLOWS BY A DOUBLE EXPANSION TECHNIQUE. Physics of Fluids a-Fluid Dynamics, 4(7), 1510-1520. Yang, F., Qian, F., Lau, S.S.Y. (2013). Urban form and density as indicators for summertime outdoor ventilation potential: a case study on high-rise housing in Shanghai. Building and environment, 70, 122-137. Yuan, C., Ng, E., Norford, L.K. (2014). Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Building and environment, 71, 245-258. Zhang, Y.W., Gu, Z.L. (2013). Air quality by urban design. Nature Geoscience, 6 (7), 506–506. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89472 | - |
| dc.description.abstract | 隨著全球都市化、熱島效應增強,都市熱環境成為一重要課題,都市風場亦成為廣泛討論的議題之一。人類頻繁活動之街道空間中,對流傳熱率受到都市冠層(urban canopy layer, UCL)內風速影響,密集的都市建築會對街谷內通風狀況產生負面影響,進而影響街谷的散熱效果,導致都市局部溫度增加。同時,街谷中1.5m高度之行人風場亦與行人之舒適性息息相關。由此可知都市冠層內風場之重要性。
都市冠層內風場受到街道結構影響,目前已有許多研究各別針對基礎風速、建築排列形式、街谷尺度或植栽配置等因子,對風場進行探討,然卻少有研究綜合考量不同街谷形式、植栽配置對風場產生之整體影響,且先前研究中多以氣流遇上形體所產生的機械湍流(mechanical turbulence)為切入角度,而沒有進一步考量街谷空間內溫差所形成之熱湍流(thermal turbulence),未能對都市風場做出較詳盡切實之模擬。故本研究欲更深入了解不同基礎風速、街谷高寬比以及行道樹排數對街谷風場的影響。本研究以計算流體力學(Computational Fluid Dynamics,CFD)數值模擬方法作為研究工具,針對不同基礎風速、街谷高寬比以及行道樹排數等共18個方案進行風場模擬。 結果顯示,(1)在基礎風速與行道樹排數相同的情況下,淺型街谷內風速高於深型街谷,而街谷高寬比與行道樹排數相同的情況下基礎風速越大街谷內風速亦越大,(2)隨著街谷吸收太陽輻射,熱湍流確實在街谷內形成,並且受到街谷高寬比、行道樹排數與基礎風速的影響,行道樹排數越多,街谷內熱湍流強度越大,而行道樹排數對熱湍流的影響在淺型街谷中較明顯,深型街谷中則較微弱。(3)不同基礎風速下,行道樹排數對街谷內風場強弱的影響不同。當基礎風速為4m/s時,栽植兩排樹木之方案其街谷內垂直剖面平均風速高於另外兩種栽植排數;基礎風速為12m/s時,無栽植樹木之方案其垂直剖面平均風速高於另外兩種栽植排數。(4)在不同街谷高寬比下,基礎風速以及行道樹排數對街谷內風場的影響度不同,在同樣植栽排數下,淺型街谷較深形街谷更容易受不同基礎風速之影響,而在同樣基礎風速下,植栽排數對熱湍流的影響在淺型街谷中較明顯。在淺型街谷下,基礎風速4m/s的方案中1.5m水平剖面之平均風速以栽植兩排行道樹時最高,栽植四排行道樹之方案次之,無栽植行道樹之方案最低;基礎風速12m/s的方案中1.5m水平剖面之平均風速以栽植兩排行道樹時最高,栽植四排行道樹之方案次之,無栽植行道樹之方案最低;在深型街谷下,基礎風速4m/s的方案中1.5m水平剖面之平均風速隨行道樹排數增加而增加;基礎風速12m/s的方案中1.5m水平剖面之平均風速隨行道樹排數增加而降低。 | zh_TW |
| dc.description.abstract | As urbanization and the urban heat island effect continue to increase, the urban wind farm have become significant considerations. In street environments where human activities are concentrated, the convection heat transfer rate is influenced by the wind speed within the urban canopy layer (UCL). Dense urban buildings negatively impact ventilation in street canyons, affecting cooling efficiency and bringing about localized temperature rises. The pedestrian wind field at a height of 1.5-2m within street canyons is closely linked to pedestrian comfort. As mentioned above, the wind field within the urban canopy layer is an important issue.
The wind field within the UCL is influenced by street structure. While previous studies have examined factors like base wind speeds, street layout, street aspect ratio and vegetation configuration individually, a comprehensive analysis of their combined impact on the wind field is lacking. Additionally, existing studies have mainly focused on analyzing mechanical turbulence and have not further considered thermal turbulence within the urban canopy layer. Consequently, a more thorough simulation of urban airflow is needed. Thus, this study aims to investigate the influence of base wind speeds, street aspect ratios, and tree rows on street canyon wind fields using Computational Fluid Dynamics (CFD) simulations. A total of 18 cases were simulated. Results show that, (1)under the same base wind speed and the number of rows of trees, avenue canyons exhibit higher wind speeds compared to deep canyons. When the street canyon aspect ratio and the number of rows of trees are the same, wind speeds within street canyons increase with higher base wind speeds. (2)Thermal turbulence forms within the canyons due to solar radiation, and it is influenced by street aspect ratios, the number of rows of trees, and base wind speeds. The impact of vegetation on thermal turbulence is more pronounced in avenue canyons than in deep canyons, with a greater number of tree rows resulting in higher thermal turbulence intensity. (3)The influence of tree rows on the wind field within street canyons varies with different base wind speeds. In avenue canyons with a base wind speed of 4m/s, the case with two rows of trees exhibits the highest average wind speed, followed by the case with four rows of trees, while the case without trees has the lowest wind speed. In deep canyons with a base wind speed of 12m/s, the case without trees has the highest average wind speed, while the cases with two and four rows of trees have lower wind speeds. (4) Under different street canyon aspect ratios, the impact of base wind speeds and the number of rows of trees on the wind field within the avenue canyon differs. With the same number of tree rows, avenue canyons are more susceptible to the influence of different base wind speeds, while in the case of the same base wind speed, the influence of vegetation on thermal turbulence is more pronounced in avenue canyons. In avenue canyons, at a base wind speed of 4m/s, the case with two rows of trees exhibits the highest average wind speed at the 1.5m horizontal profile, followed by the case with four rows of trees, and the case without any trees has the lowest wind speed. At a base wind speed of 12m/s, the case with two rows of trees has the highest average wind speed at the 1.5m horizontal profile, followed by the case with four rows of trees, and the case without any trees has the lowest wind speed. In deep canyons, at a base wind speed of 4m/s, the average wind speed at the 1.5m horizontal profile increases with the number of rows of trees, while at a base wind speed of 12m/s, the average wind speed at the 1.5m horizontal profile decreases with an increasing number of rows of trees. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:09:38Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T17:09:38Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 III 摘要 V ABSTRACT VII 目錄 IX 圖目錄 XI 表目錄 XIV 第一章 緒論 1 第一節 研究緣起 1 第二節 研究目的 1 第二章 文獻回顧 3 第一節 都市熱島與都市風場 3 一、都市熱島 3 二、都市風場 3 第二節 都市冠層內之風場 6 第三節 都市冠層內風場之影響因子 8 第三節 數值模擬 12 第三章 研究方法 19 第一節 研究架構 19 一、研究地點 19 二、變項定義 19 三、方案研擬 22 第二節 數值模擬 25 一、運用軟體 25 二、條件設定 25 第四章 研究結果 33 第一節 街谷風場 33 一、 街谷內風場分佈 33 二、 街谷內逐時平均風速 52 三、 街谷內平均風速 59 第二節 方案比較 60 一、基礎風速對街谷內風場之影響 60 二、 街谷高寬比對街谷內風場之影響 61 三、行道樹排數對街谷內風場之影響 62 四、街谷內之熱湍流 63 第五章 結論討論與建議 67 第一節 結論與討論 67 第二節 建議 69 一、實務應用 69 二、後續研究建議 69 第六章 參考文獻 71 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 計算流體力學 | zh_TW |
| dc.subject | 熱湍流 | zh_TW |
| dc.subject | 機械湍流 | zh_TW |
| dc.subject | 行道樹排數 | zh_TW |
| dc.subject | 基礎風速 | zh_TW |
| dc.subject | 街谷高寬比 | zh_TW |
| dc.subject | Inlet wind speed | en |
| dc.subject | Aspect ratio | en |
| dc.subject | The number of tree strips | en |
| dc.subject | Thermal turbulence | en |
| dc.subject | Computational fluid dynamics | en |
| dc.subject | Mechanical turbulence | en |
| dc.title | 街谷配置對街谷風場之影響 | zh_TW |
| dc.title | Effects of Street Canyon Configuration on the Airflow Field Inside Street Canyon | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 謝正義 | zh_TW |
| dc.contributor.coadvisor | Cheng-I Hsieh | en |
| dc.contributor.oralexamcommittee | 林晏州;歐聖榮;張俊彥 | zh_TW |
| dc.contributor.oralexamcommittee | Yann-Jou Lin;Sheng-jung Ou;Chun-Yen Chang | en |
| dc.subject.keyword | 街谷高寬比,基礎風速,行道樹排數,機械湍流,熱湍流,計算流體力學, | zh_TW |
| dc.subject.keyword | Aspect ratio,Inlet wind speed,The number of tree strips,Thermal turbulence,Mechanical turbulence,Computational fluid dynamics, | en |
| dc.relation.page | 74 | - |
| dc.identifier.doi | 10.6342/NTU202302370 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 園藝暨景觀學系 | - |
| dc.date.embargo-lift | 2025-07-29 | - |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 9.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
