請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89468完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡欣穆 | zh_TW |
| dc.contributor.advisor | Hsin-Mu Tsai | en |
| dc.contributor.author | 詹鈞凱 | zh_TW |
| dc.contributor.author | Jyun-Kai Jhan | en |
| dc.date.accessioned | 2023-09-07T17:08:36Z | - |
| dc.date.available | 2025-08-31 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | [1] L. Da Xu, W. He, and S. Li, “Internet of things in industries: A survey,” IEEE Transactions on industrial informatics, vol. 10, no. 4, pp. 2233–2243, 2014.
[2] W. Liang, K.-C. Li, J. Long, X. Kui, and A. Y. Zomaya, “An industrial network intrusion detection algorithm based on multifeature data clustering optimiza tion model,” IEEE Transactions on Industrial Informatics, vol. 16, no. 3, pp. 2063–2071, 2019. [3] A. Esfahani, G. Mantas, R. Matischek, F. B. Saghezchi, J. Rodriguez, A. Bicaku, S. Maksuti, M. G. Tauber, C. Schmittner, and J. Bastos, “A lightweight authentication mechanism for m2m communications in industrial iot environment,” IEEE Internet of Things Journal, vol. 6, no. 1, pp. 288–296, 2017. [4] D. Wang, W. Li, and P. Wang, “Measuring two-factor authentication schemes for real-time data access in industrial wireless sensor networks,” IEEE Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4081–4092, 2018. [5] C. Labrado and H. Thapliyal, “Design of a piezoelectric-based physically unclonable function for iot security,” IEEE Internet of Things Journal, vol. 6, no. 2, pp. 2770–2777, 2018. [6] C. Herder, M.-D. Yu, F. Koushanfar, and S. Devadas, “Physical unclonable functions and applications: A tutorial,” Proceedings of the IEEE, vol. 102, no. 8, pp. 1126–1141, 2014. 60 [7] Y. Gao, S. F. Al-Sarawi, and D. Abbott, “Physical unclonable functions,” Nature Electronics, vol. 3, no. 2, pp. 81–91, 2020. [8] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing speech from gyroscope signals,” in 23rd USENIX Security Symposium (USENIX Security 14), 2014, pp. 1053–1067. [9] M. Gao, F. Lin, W. Xu, M. Nuermaimaiti, J. Han, W. Xu, and K. Ren, “Deaf-aid: mobile iot communication exploiting stealthy speaker-to-gyroscope channel,” in Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, 2020, pp. 1–13. [10] O. Willers, C. Huth, J. Guajardo, and H. Seidel, “Mems gyroscopes as physical unclonable functions,” in Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 2016, pp. 591–602. [11] J. Tian, J. Zhang, X. Li, C. Zhou, R. Wu, Y. Wang, and S. Huang, “Mobile device fingerprint identification using gyroscope resonance,” IEEE Access, vol. 9, pp. 160 855–160 867, 2021. [12] S. Lee and D. H. Lee, “From attack to identification: Mems sensor fingerprinting using acoustic signals,” IEEE Internet of Things Journal, 2022. [13] S. Jiao and R. P. Liu, “A survey on physical authentication methods for smart objects in iot ecosystem,” Internet of Things, vol. 6, p. 100043, 2019. [14] K. Rosenfeld, E. Gavas, and R. Karri, “Sensor physical unclonable functions,” in 2010 IEEE international symposium on hardware-oriented security and trust (HOST). IEEE, 2010, pp. 112–117. [15] A. Bojesomo, I. A. M. Elfadel, and O. Sinanoglu, “Piezo-puf: Physical unclonable functions for vacuum-packaged, piezoelectric mems,” in 2019 Symposium 61 on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP). IEEE, 2019, pp. 1–4. [16] A. Aysu, N. F. Ghalaty, Z. Franklin, M. P. Yali, and P. Schaumont, “Digital fingerprints for low-cost platforms using mems sensors,” in Proceedings of the Workshop on Embedded Systems Security, 2013, pp. 1–6. [17] H. Bojinov, Y. Michalevsky, G. Nakibly, and D. Boneh, “Mobile device identi fication via sensor fingerprinting,” arXiv preprint arXiv:1408.1416, 2014. [18] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accelprint: Imperfections of accelerometers make smartphones trackable.” in Network and Distributed System Security (NDSS), vol. 14. Citeseer, 2014, pp. 23–26. [19] A. Das, N. Borisov, and M. Caesar, “Tracking mobile web users through motion sensors: Attacks and defenses.” in Network and Distributed System Security (NDSS), 2016. [20] Y. Son, J. Noh, J. Choi, and Y. Kim, “Gyrosfinger: Fingerprinting drones for location tracking based on the outputs of mems gyroscopes,” ACM Transactions on Privacy and Security (TOPS), vol. 21, no. 2, pp. 1–25, 2018. [21] Y. Son, H. Shin, D. Kim, Y. Park, J. Noh, K. Choi, J. Choi, and Y. Kim, “Rocking drones with intentional sound noise on gyroscopic sensors,” in 24th USENIX Security Symposium (USENIX Security 15), 2015, pp. 881–896. [22] R. P. Leland, “Mechanical-thermal noise in mems gyroscopes,” IEEE Sensors Journal, vol. 5, no. 3, pp. 493–500, 2005. [23] I. D. Hopkin, C. P. Fell, K. Townsend, and T. R. Mason, “Vibrating structure gyroscope,” Aug. 3 1999, uS Patent 5,932,804. 62 [24] F. Lin, M. Gao, L. Zhang, Y. Li, W. Xu, J. Han, X. Xu, W. Xu, and K. Ren, “Mobile communication among cots iot devices via a resonant gyroscope with ultrasound,” IEEE/ACM Transactions on Networking, 2022. [25] V. Zega, A. Frangi, and G. Gattere, “Nonlinear dynamics of mems resonators: Numerical modelling and experiments,” in 2019 IEEE SENSORS. IEEE, 2019, pp. 1–4. [26] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain, “Machine learning-based network vulnerability analysis of industrial internet of things,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6822–6834, 2019. [27] J. Qian, X. Du, B. Chen, B. Qu, K. Zeng, and J. Liu, “Cyber-physical integrated intrusion detection scheme in scada system of process manufacturing industry,” IEEE Access, vol. 8, pp. 147 471–147 481, 2020. [28] R. M. G´oes, E. Kang, R. Kwong, and S. Lafortune, “Stealthy deception attacks for cyber-physical systems,” in 2017 IEEE 56th Annual Conference on Decision and Control (CDC). IEEE, 2017, pp. 4224–4230. [29] Y. Tu, Z. Lin, I. Lee, and X. Hei, “Injected and delivered: Fabricating implicit control over actuation systems by spoofing inertial sensors.” in USENIX Security Symposium, 2018, pp. 1545–1562. [30] P. Welch, “The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms,” IEEE Transactions on audio and electroacoustics, vol. 15, no. 2, pp. 70–73, 1967. [31] R. Y. Rubinstein and D. P. Kroese, Simulation and the Monte Carlo method. John Wiley & Sons, 2016. [32] E. Parzen, “On estimation of a probability density function and mode,” The annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962. 63 [33] D. W. Scott, Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, 2015. [34] J. Li, M. Broas, J. Makkonen, T. T. Mattila, J. Hokka, and M. PaulastoKrockel, “Shock impact reliability and failure analysis of a three-axis mems gyroscope,” Journal of microelectromechanical systems, vol. 23, no. 2, pp. 347–355, 2013. [35] R. N. Dean, G. T. Flowers, A. S. Hodel, G. Roth, S. Castro, R. Zhou, A. Moreira, A. Ahmed, R. Rifki, B. E. Grantham et al., “On the degradation of mems gyroscope performance in the presence of high power acoustic noise,” in 2007 IEEE International Symposium on Industrial Electronics. IEEE, 2007, pp. 1435–1440. [36] T. Invensense, “Mpu-6000/mpu-6050,” Datasheet. Ver, vol. 3, 2012. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89468 | - |
| dc.description.abstract | 智慧工廠在監測環境變化方面使用大量傳感器,以取代傳統人工操作的方式並降低錯誤風險。然而,攻擊者可能竄改感測器數據,導致自動控制系統做出錯誤判斷,進而對工廠造成損失。因此,對傳感器數據進行驗證具有重要性。本研究提出了一種基於挑戰-響應的驗證系統,利用MEMS陀螺儀對聲波的獨特響應作為驗證基礎。我們透過超聲波挑戰MEMS陀螺儀,並從其響應中提取特徵,與驗證系統中的資料進行比對,以驗證接收到的數據是否具備正確特徵。為了克服環境干擾對驗證過程的影響,我們提出了一個策略式演算法,用於計算特徵之間的相似度。我們在實驗室環境中進行了多種測試,包括改變喇叭與傳感器之間的距離,以及引入噪音和多路徑干擾等環境條件。實驗結果顯示,我們的策略式演算法具有一定程度的抗環境干擾能力。此外,我們通過與目前最新的MEMS陀螺儀辨識系統進行比較,在蒙地卡羅方法模擬中,我們的研究能將特徵重複發生的機率降低為之前研究的五十分之一。綜上所述,我們的方法在面對干擾以及區分特徵方面都展現出良好的表現。 | zh_TW |
| dc.description.abstract | Smart factories employ a multitude of sensors to monitor environmental changes, replacing traditional manual operations and reducing the risk of errors. However, attackers can manipulate sensor data, leading to erroneous decisions by the automated control systems and resulting in losses for the factory. Therefore, it is crucial to verify the integrity of sensor data. In this study, we propose a challenge-response-based verification system that utilizes the unique response of MEMS gyroscopes to acoustic signals as a basis for authentication. We challenge the MEMS gyroscope using ultrasonic signals and extract features from its response, comparing them with the data in the verification system to confirm the presence of correct features in the received data. To overcome the impact of environmental interference on the verification process, we introduce a heuristic algorithm for computing the similarity between features. We conducted various tests in a laboratory environment, including varying the distance between the speaker and sensor, and introducing noise and multipath interference. The experimental results demonstrate that our heuristic algorithm exhibits sufficient robustness against environmental interference. Furthermore, compared to the latest MEMS gyroscope recognition systems, our research achieves a 50-fold reduction in the occurrence of feature duplication, as confirmed by Monte Carlo simulations. In summary, our approach demonstrates excellent performance in terms of resistance to interference and feature discrimination capabilities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:08:36Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T17:08:36Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 1 Introduction 1
2 Related Works 5 2.1 Encoding Characteristics for Key Derivation . . . . . . . . . . . . . . 5 2.2 Direct Verification of Sensor Data . . . . . . . . . . . . . . . . . . . . 6 3 Sensor Fingerprint 9 3.1 Frequency Response . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 Center Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.3 Complementary peak . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Intermodulation Peak . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5 Nonlinearity of Response Power Density . . . . . . . . . . . . . . . . 20 4 Threat Model 23 4.1 Capabilities of Attackers . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2 Attack Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 5 System Design 27 5.1 Challenge Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5.2 Response Derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3 Response Authentication . . . . . . . . . . . . . . . . . . . . . . . . . 29 5.3.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . 30 5.3.2 Authentication method . . . . . . . . . . . . . . . . . . . . . . 32 6 Implementation 36 6.1 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.2 Signal Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 7 Evaluation 39 7.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 7.2 Impact of Injected Acoustic Signal on Angular Measurement Accuracy 40 7.3 Identification Ability of Our Method . . . . . . . . . . . . . . . . . . 42 7.4 Identification without Center Frequency . . . . . . . . . . . . . . . . 44 7.5 Overall Authentication Performance . . . . . . . . . . . . . . . . . . . 46 7.6 Performance in Noisy Environment . . . . . . . . . . . . . . . . . . . 47 7.6.1 Sensitivity to Authentication Distance Variations . . . . . . . 47 7.6.2 Vibration Interference on Authentication Accuracy . . . . . . 50 7.6.3 Multipath Interference on Sensor Verification . . . . . . . . . . 52 7.7 Fingerprint Overlapping Simulation . . . . . . . . . . . . . . . . . . . 53 8 Conclusion and Future Work 57 | - |
| dc.language.iso | en | - |
| dc.subject | 傳感器指紋 | zh_TW |
| dc.subject | MEMS陀螺儀共振 | zh_TW |
| dc.subject | 傳感器驗證 | zh_TW |
| dc.subject | 隱蔽通道 | zh_TW |
| dc.subject | 反偽造 | zh_TW |
| dc.subject | Sensor Authentication | en |
| dc.subject | MEMS Gyroscope Resonance | en |
| dc.subject | Convert Channel | en |
| dc.subject | Sensor Fingerprint | en |
| dc.subject | Anti-Counterfeiting | en |
| dc.title | 使用聲音驅動進行MEMS陀螺儀身份驗證之方法 | zh_TW |
| dc.title | Authentication Method Using Acoustic Injection to MEMS Gyroscope | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林忠緯;蕭旭君;田維誠 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Wei Lin;Hsu-Chun Hsiao;Wei-Cheng Tian | en |
| dc.subject.keyword | 傳感器指紋,傳感器驗證,MEMS陀螺儀共振,隱蔽通道,反偽造, | zh_TW |
| dc.subject.keyword | Sensor Fingerprint,Sensor Authentication,MEMS Gyroscope Resonance,Convert Channel,Anti-Counterfeiting, | en |
| dc.relation.page | 64 | - |
| dc.identifier.doi | 10.6342/NTU202303107 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 資訊工程學系 | - |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 未授權公開取用 | 12.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
