請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89440完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊瑋誠 | zh_TW |
| dc.contributor.advisor | Wei-Cheng Yang | en |
| dc.contributor.author | 莊立亭 | zh_TW |
| dc.contributor.author | Li-Ting Chuang | en |
| dc.date.accessioned | 2023-09-07T17:01:12Z | - |
| dc.date.available | 2024-11-21 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-08 | - |
| dc.identifier.citation | Ando, H., Niki, Y., Ito, M., Akiyama, K., Matsui, M. S., Yarosh, D. B., & Ichihashi, M. (2012). Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion. Journal of Investigative Dermatology, 132(4), 1222–1229. https://doi.org/10.1038/jid.2011.413
Azzellino, A., Gaspari, S., Airoldi, S., & Nani, B. (2008). Habitat use and preferences of cetaceans along the continental slope and the adjacent pelagic waters in the western Ligurian Sea. Deep-Sea Research Part I: Oceanographic Research Papers, 55(3), 296–323. https://doi.org/10.1016/j.dsr.2007.11.006 Baird, R. W. (2009). Risso’s Dolphin: Grampus griseus. In Encyclopedia of marine mammals (pp. 975–976). Bearzi, G., Reeves, R. R., Remonato, E., Pierantonio, N., & Airoldi, S. (2011). Risso’s dolphin Grampus griseus in the Mediterranean Sea. In Mammalian Biology (Vol. 76, Issue 4, pp. 385–400). https://doi.org/10.1016/j.mambio.2010.06.003 Blanco, C., Raduán, M. Á., & Raga, J. A. (2006). Diet of Risso’s dolphin (Grampus griseus) in the western Mediterranean Sea. Scientia Marina, 70(3), 407–411. Bonnie C. Carney, Jason H. Chen, Jenna N. Luker, Abdulnaser Alkhali, Daniel Y. Jo, Taryn E. Travis, Lauren T. Moffatt, Cynthia M. Simbulan-Rosentha, Dean S. Rosentha, & Jeffrey W. Shupp. (2019). Pigmentation diathesis of hypertrophic scar: An examination of known signaling pathways to elucidate the molecular pathophysiology of injury-related dyschromia. Journal of Burn Care and Research, 40(1), 58–71. https://doi.org/10.1093/jbcr/iry045 Breathnach, A. S. (1960). Melanocytes in early regenerated human epidermis. Journal of Investigative Dermatology, 35(4), 245–251. Bruce-Allen, L., & Geraci, J. R. (1985). Wound Healing in the Bottlenose Dolphin Tursiops fruncafus. Canadian Journal of Fisheries and Aquatic Sciences , 42(2), 216–228. www.nrcresearchpress.com Canadas, A., Sagarminaga, R., & Garcia-Tiscar, S. (2002). Cetacean distribution related with depth and slope in the Mediterranean waters off southern Spain. Deep-Sea Research I, 49, 2053–2073. Carney, B. C., McKesey, J. P., Rosenthal, D. S., & Shupp, J. W. (2018). Treatment strategies for hypopigmentation in the context of burn hypertrophic scars. Plastic and Reconstructive Surgery - Global Open, 6(1). https://doi.org/10.1097/GOX.0000000000001642 Carney, B. C., Travis, T. E., Moffatt, L. T., Johnson, L. S., McLawhorn, M. M., Simbulan-Rosenthal, C. M., Rosenthal, D. S., & Shupp, J. W. (2021). Hypopigmented burn hypertrophic scar contains melanocytes that can be signaled to re-pigment by synthetic alpha-melanocyte stimulating hormone in vitro. PLoS ONE, 16(3 March). https://doi.org/10.1371/journal.pone.0248985 Chadwick, S. L., Yip, C., Ferguson, M. W. J., & Shah, M. (2013). Repigmentation of cutaneous scars depends on original wound type. Journal of Anatomy, 223(1), 74–82. https://doi.org/10.1111/joa.12052 Cichorek, M., Wachulska, M., Stasiewicz, A., & Tymińska, A. (2013). Skin melanocytes: Biology and development. Postepy Dermatologii i Alergologii, 30(1), 30–41. https://doi.org/10.5114/pdia.2013.33376 Costin, G.-E., & Hearing, V. J. (2007). Human skin pigmentation: melanocytes modulate skin color in response to stress. The FASEB Journal, 21(4), 976–994. https://doi.org/10.1096/fj.06-6649rev Cozzi, B., Huggenberger, S., & Oelschläger, H. (2017). Anatomy of Dolphins: Insights into Body Structure and Function. Dammak, I., Boudaya, S., Ben Abdallah, F., Turki, H., Attia, H., & Hentati, B. (2009). Antioxidant enzymes and lipid peroxidation at the tissue level in patients with stable and active vitiligo. International Journal of Dermatology, 48(5), 476–480. https://doi.org/10.1111/j.1365-4632.2009.03998.x Esmat, S. M., Hadidi, H. H. E., Hegazy, R. A., Gawdat, H. I., Tawdy, A. M., Fawzy, M. M., AbdelHalim, D. M., Sultan, O. S., & Shaker, O. G. (2018). Increased tenascin C and DKK1 in vitiligo: possible role of fibroblasts in acral and non-acral disease. Archives of Dermatological Research, 310(5), 425–430. https://doi.org/10.1007/s00403-018-1830-z Ezzedine, K., Lim, H. W., Suzuki, T., Katayama, I., Hamzavi, I., Lan, C. C. E., Goh, B. K., Anbar, T., Silva de Castro, C., Lee, A. Y., Parsad, D., Van Geel, N., Le Poole, I. C., Oiso, N., Benzekri, L., Spritz, R., Gauthier, Y., Hann, S. K., Picardo, M., & Taieb, A. (2012). Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference. Pigment Cell and Melanoma Research, 25(3). https://doi.org/10.1111/j.1755-148X.2012.00997.x Gasque, P., & Jaffar-Bandjee, M. C. (2015). The immunology and inflammatory responses of human melanocytes in infectious diseases. In Journal of Infection (Vol. 71, Issue 4, pp. 413–421). W.B. Saunders Ltd. https://doi.org/10.1016/j.jinf.2015.06.006 Gauthier, Y., Cario‐Andre, M., Lepreux, S., Pain, C., & Taïeb, A. (2003). Melanocyte detachment after skin friction in non lesional skin of patients with generalized vitiligo. British Journal of Dermatology, 148, 95–101. https://academic.oup.com/bjd/article/148/1/95/6634562 Grace, M. A., Dias, L. A., Maze-Foley, K., Sinclair, C., Mullin, K. D., Garrison, L., & Noble, L. (2018). Cookiecutter shark bite wounds on cetaceans of the Gulf of Mexico. In Aquatic Mammals (Vol. 44, Issue 5, pp. 491–499). European Association for Aquatic Mammals. https://doi.org/10.1578/AM.44.5.2018.491 Hartman, K. L., Visser, F., & Hendriks, A. J. E. (2008). Social structure of Risso’s dolphins (Grampus griseus) at the Azores: A stratified community based on highly associated social units. Canadian Journal of Zoology, 86(4), 294–306. https://doi.org/10.1139/Z07-138 Hartman, K. L., Wittich, A., Cai, J. J., Van Der Meulen, F. H., & Azevedo, J. M. N. (2016). Estimating the age of Risso’s dolphins (Grampus griseus) based on skin appearance. Journal of Mammalogy, 97(2), 490–502. https://doi.org/10.1093/jmammal/gyv193 Hashimoto, O., Ohtsuki, H., Kakizaki, T., Amou, K., Sato, R., Doi, S., Kobayashi, S., Matsuda, A., Sugiyama, M., Funaba, M., Matsuishi, T., Terasawa, F., Shindo, J., & Endo, H. (2015). Brown adipose tissue in cetacean blubber. PLoS ONE, 10(2). https://doi.org/10.1371/journal.pone.0116734 Heath, R. L., Thomlinson, A. M., & Shah, M. (2009). Melanocytes and burn wound healing. Burns, 35, S44. https://doi.org/10.1016/j.burns.2009.06.175 Iverson, S. J. (1985). The antitropical factor in cetacean speciation. In Evolution (Vol. 17, pp. 107–116). Blackwell Scientifi c Publications. http://www.seamap.env. Jennifer Y. Lin, & David E. Fisher. (2007). Melanocyte biology and skin pigmentation. In Nature (Vol. 445, Issue 7130, pp. 843–850). Nature Publishing Group. https://doi.org/10.1038/nature05660 Keswell, D., Davids, L. M., & Kidson, S. H. (2012). DKK1 is highly expressed in the dermis of vitiligo lesion: Is there association between DKK1 and vitiligo? In Journal of Dermatological Science (Vol. 66, Issue 2, pp. 160–163). https://doi.org/10.1016/j.jdermsci.2012.01.005 L J. Bruce-Allen, & J. R. Geraci. (1987). Slow Process of Wound Repair in Beluga Whales, Delphinapterus leucas. Canadian Journal of Fisheries and Aquatic Sciences, 44(9), 1661–1665. MacLeod, C. D. (1998). Intraspecific scarring in odontocete cetaceans: an indicator of male ‘quality’ in aggressive social interactions? Journal of Zoology, 244(1), 71-77. Maglietta, R., Renò, V., Cipriano, G., Fanizza, C., Milella, A., Stella, E., & Carlucci, R. (2018). DolFin: an innovative digital platform for studying Risso’s dolphins in the Northern Ionian Sea (North-eastern Central Mediterranean). Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-35492-3 Mariani, M., Miragliuolo, A., Mussi, B., Russo, G. F., Ardizzone, G., & Pace, D. S. (2016). Analysis of the natural markings of Risso’s dolphins (Grampus griseus) in the central Mediterranean Sea. Journal of Mammalogy, 97(6), 1512–1524. https://doi.org/10.1093/jmammal/gyw109 Martinez-Levasseur, L. M., Birch-Machin, M. A., Bowman, A., Gendron, D., Weatherhead, E., Knell, R. J., & Acevedo-Whitehouse, K. (2013). Whales Use Distinct Strategies to Counteract Solar Ultraviolet Radiation. Scientific Reports, 3. https://doi.org/10.1038/srep02386 Martinez-Levasseur, L. M., Gendron, D., Knell, R. J., O’Toole, E. A., Singh, M., & Acevedo-Whitehouse, K. (2011). Acute sun damage and photoprotective responses in whales. Proceedings of the Royal Society B: Biological Sciences, 278(1711), 1581–1586. https://doi.org/10.1098/rspb.2010.1903 Melissa J. Joblon, Mark A. Pokras, Brendan Morse, Charles T. Harry, Kathryn S. Rose, Sarah M. Sharp, Misty E. Niemeyer, Kristen M. Patchett, W. Brian Sharp, & Michael J. Moore. (2014). Body Condition Scoring System for Delphinids Based on Short-beaked Common Dolphins (Delphinus delphis). Journal of Marine Animals and Their Ecology, 7, 5–13. Menon, G. K. (2002). New insights into skin structure: scratching the surface. In Advanced Drug Delivery Reviews (Vol. 54). www.elsevier.com/locate/drugdeliv Morales-Guerrero, B., Barragán-Vargas, C., Silva-Rosales, G. R., Ortega-Ortiz, C. D., Gendron, D., Martinez-Levasseur, L. M., & Acevedo-Whitehouse, K. (2017). Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Veterinary Dermatology, 28(2), 213-e50. https://doi.org/10.1111/vde.12392 Park, H. Y., Kosmadaki, M., Yaar, M., & Gilchrest, B. A. (2009). Cellular mechanisms regulating human melanogenesis. In Cellular and Molecular Life Sciences (Vol. 66, Issue 9, pp. 1493–1506). https://doi.org/10.1007/s00018-009-8703-8 Rani, S., Chauhan, R., Parsad, D., & Kumar, R. (2018). Effect of Dickkopf1 on the senescence of melanocytes: in vitro study. Archives of Dermatological Research, 310(4), 343–350. https://doi.org/10.1007/s00403-018-1820-1 Rastogi, R. P., Richa, Kumar, A., Tyagi, M. B., & Sinha, R. P. (2010). Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. In Journal of Nucleic Acids (Vol. 2010). https://doi.org/10.4061/2010/592980 Reeb, D., Best, P. B., & Kidson, S. H. (2007). Structure of the integument of southern right whales, Eubalaena australis. Anatomical Record, 290(6), 596–613. https://doi.org/10.1002/ar.20535 Serre, C., Busuttil, V., & Botto, J. M. (2018). Intrinsic and extrinsic regulation of human skin melanogenesis and pigmentation. In International Journal of Cosmetic Science (Vol. 40, Issue 4, pp. 328–347). Blackwell Publishing Ltd. https://doi.org/10.1111/ics.12466 Shah, M., Heath, R., & Chadwick, S. (2012). Abnormal pigmentation within cutaneous scars: A complication of wound healing. In Indian Journal of Plastic Surgery (Vol. 45, Issue 2, pp. 403–411). https://doi.org/10.4103/0970-0358.101328 Shruti Dutta, Sangita Panda, Prashant Singh, Sumit Tawde, Mamata Mishra, Vikas Andhale, Angira Athavale, & Sunil Manohar Keswan. (2020). Hypopigmentation in burns is associated with alterations in the architecture of the skin and the dendricity of the melanocytes. Burns, 46(4), 906–917. https://doi.org/10.1016/j.burns.2019.10.003 Snell, R. S. (1963). A study of the melanocytes and melanin in a healing deep wound. In J. Anat. Lond (Vol. 97, Issue 2). Struntz, D. J., McLellan, W. A., Dillaman, R. M., Blum, J. E., Kucklick, J. R., & Pabst, D. A. (2004). Blubber Development in Bottlenose Dolphins (Tursiops truncatus). Journal of Morphology, 259(1), 7–20. https://doi.org/10.1002/jmor.10154 Su, C. Y., Hughes, M. W., Liu, T. Y., Chuong, C. M., Wang, H. V., & Yang, W. C. (2022a). Defining Wound Healing Progression in Cetacean Skin: Characteristics of Full-Thickness Wound Healing in Fraser’s Dolphins (Lagenodelphis hosei). Animals, 12(5). https://doi.org/10.3390/ani12050537 Su, C. Y., Liu, T. Y., Wang, H. V., & Yang, W. C. (2023). Histopathological Study on Collagen in Full-Thickness Wound Healing in Fraser’s Dolphins (Lagenodelphis hosei). Animals, 13(10). https://doi.org/10.3390/ani13101681 Su, C. Y., Wang, H. V., Hughes, M. W., Liu, T. Y., Chuong, C. M., & Yang, W. C. (2022b). Successful Repigmentation of Full-Thickness Wound Healing in Fraser’s Dolphins (Lagenodelphis hosei). Animals, 12(12). https://doi.org/10.3390/ani12121482 Travis, T. E., Ghassemi, P., Ramella-Roman, J. C., Prindeze, N. J., Paul, D. W., Moffatt, L. T., Jordan, M. H., & Shupp, J. W. (2015). A multimodal assessment of melanin and melanocyte activity in abnormally pigmented hypertrophic scar. Journal of Burn Care and Research, 36(1), 77–86. https://doi.org/10.1097/BCR.0000000000000154 Wagner, R. Y., Luciani, F., Cario-André, M., Rubod, A., Petit, V., Benzekri, L., Ezzedine, K., Lepreux, S., Steingrimsson, E., Taieb, A., Gauthier, Y., Larue, L., & Delmas, V. (2015). Altered E-cadherin levels and distribution in melanocytes precede clinical manifestations of vitiligo. Journal of Investigative Dermatology, 135(7), 1810–1819. https://doi.org/10.1038/jid.2015.25 Wainwright, D. K., Fish, F. E., Ingersoll, S., Williams, T. M., St Leger, J., Smits, A. J., & Lauder, G. V. (2019). How smooth is a dolphin? The ridged skin of odontocetes. Biology Letters, 15(7). https://doi.org/10.1098/rsbl.2019.0103 Wang, Z., Wang, Y., Bradbury, N., Gonzales Bravo, C., Schnabl, B., & Di Nardo, A. (2020). Skin wound closure delay in metabolic syndrome correlates with SCF deficiency in keratinocytes. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-78244-y Yamaguchi, Y., Itami, S., Watabe, H., Yasumoto, K. I., Abdel-Malek, Z. A., Kubo, T., Rouzaud, F., Tanemura, A., Yoshikawa, K., & Hearing, V. J. (2004). Mesenchymal-epithelial interactions in the skin: Increased expression of dickkopf1 by palmoplantar fibroblasts inhibits melanocyte growth and differentiation. Journal of Cell Biology, 165(2), 275–285. https://doi.org/10.1083/jcb.200311122 Yamaguchi, Y., Passeron, T., Hoashi, T., Watabe, H., Rouzaud, F., Yasumoto, K., Hara, T., Tohyama, C., Katayama, I., Miki, T., & Hearing, V. J. (2008). Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/ β‐catenin signaling in keratinocytes. The FASEB Journal, 22(4), 1009–1020. https://doi.org/10.1096/fj.07-9475com | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89440 | - |
| dc.description.abstract | 瑞氏海豚(Grampus griseus),或稱花紋海豚,因其皮膚上明顯的大量疤痕而聞名,這些疤痕通常是由海豚之間的牙齒刮傷或達摩鯊(Isistius brasiliensis)咬傷所造成。這些疤痕通常呈灰色至白色,使其在瑞氏海豚身上更加顯眼。瑞氏海豚的低色素沉澱疤痕具有獨特而高度重複的特徵。癒合的白色疤痕,即先前由達摩鯊咬傷所造成的深度傷口,從中心至最外層分為四部分:(1)中央白色區域,(2)遷移線,(3)周圍區域,(4)未受傷的皮膚。此為第一個針對瑞氏海豚皮膚組織學和低色素沉澱疤痕病理學方面的研究,結果顯示於瑞氏海豚的正常皮膚中,深色皮膚相較淺色皮膚擁有更多的黑色素細胞,且白色皮膚仍含有少量的黑色素細胞;於黑色素顆粒染色中亦發現深色皮膚相較淺色皮膚可見更多黑色素顆粒,且白色皮膚仍可見少量黑色素顆粒。於瑞氏海豚的低色素沉澱疤痕中未發現黑色素細胞及黑色素顆粒。此結果與先前於人類和杜洛克豬的低色素沉澱疤痕所發現的特徵不同,人類及豬的疤痕中仍可見黑色素細胞,但未見黑色素顆粒。研究結果還發現,瑞氏海豚的愈合傷口周圍存在黑色素細胞脫離的現象。此外,在網狀真皮中發現強烈的黑色素細胞抑制因子,如Dickkopf-1。這些證據皆表明瑞氏海豚的低色素沉澱疤痕形成機制與陸地動物不同,且類似於人類白癜風患者患處的組織病理特徵。 | zh_TW |
| dc.description.abstract | Risso's dolphin (Grampus griseus) is renowned for its prominent scarring, often resulting from tooth-rake marks during dolphin interactions or bites from cookiecutter sharks (Isistius brasiliensis). These scars are typically gray to white, making them conspicuous on the skin of Risso's dolphins. The hypopigmented scars in Risso's dolphins exhibit distinctive and highly repetitive characteristics. The healed white scars, which represent previously deep wounds caused by cookiecutter shark bites, can be divided into four parts from the center to the outermost layer: (1) the central white area, (2) migrating lines, (3) periphery area, and (4) the unwounded skin. This study represents the first investigation into the histology of Risso's dolphin skin and the pathology of hypopigmented scars, revealing that the darker skin regions contain a higher number of melanocytes compared to the lighter regions, while even the white skin still contains a small number of melanocytes. Additionally, darker skin areas exhibit more melanin granules than lighter skin areas, and some melanin granules are also present in the white skin areas. In the hypopigmented scars of Risso's dolphins, no melanocytes or melanin granules were observed. These findings differ from the characteristics of hypopigmented scars in human and duroc pig, where melanocytes are still present but melanin granules are absent. The study also observed melanocytes detachment in the healing wounds of Risso's dolphins. Furthermore, strong melanocyte-inhibiting factors, such as Dickkopf-1, were found in the reticular dermis. Taken together, this evidence suggests that the mechanism of hypopigmented scars in Risso's dolphins differs from that in terrestrial animals and shares similarities with the pathological features observed in human vitiligo patients. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T17:01:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T17:01:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
誌謝 iii 中文摘要 iv Abstract v Contents vii Chapter 1 Introduction 1 1.1 Hypopigmented scars of Risso’s dolphins 1 1.2 Repigmentation in dolphins 3 1.3 Abnormal pigmentation of scars 6 Chapter 2 Materials and methods 11 2.1 Sample collection and preparation 11 2.2 Fontana-Masson staining 11 2.3 Immunohistochemical staining 12 2.4 Melanocytes counting 13 2.5 Immunofluorescence staining 13 Chapter 3 Result 15 3.1 Normal skin 15 3.1.1 Fontana-Masson staining in normal skin 15 3.1.2 Melanocytes count in normal skin 15 3.1.3 Immunofluorescence (IF) staining in normal skin 16 3.1.3.1 Signal distribution of SCF in normal skin 16 3.1.3.2 Signal distribution of DKK1 in normal skin 16 3.2 Wounds 17 3.2.1 Gross appearance of hypopigmented scars 17 3.2.2 Fontana-Masson staining in wounds 18 3.2.3 Melanocytes count in wounds 18 3.2.4 Immunofluorescence (IF) staining in wounds 19 3.2.4.1 Melanocytes detachment 19 3.2.4.2 Signal distribution of SCF in wounds 19 3.2.4.3 Signal distribution of DKK1 in wounds 20 Chapter 4 Discussion 21 Reference 27 Table 33 Figures 37 | - |
| dc.language.iso | en | - |
| dc.subject | 幹細胞因子 | zh_TW |
| dc.subject | Dickkopf相關蛋白1 | zh_TW |
| dc.subject | 海豚 | zh_TW |
| dc.subject | 瑞氏海豚 | zh_TW |
| dc.subject | 低色素沉澱疤痕 | zh_TW |
| dc.subject | 黑色素細胞喪失 | zh_TW |
| dc.subject | 黑色素細胞脫離 | zh_TW |
| dc.subject | dolphin | en |
| dc.subject | melanocyte detachment | en |
| dc.subject | melanocyte loss | en |
| dc.subject | hypopigmented scar | en |
| dc.subject | Risso’s dolphin | en |
| dc.subject | SCF | en |
| dc.subject | DKK1 | en |
| dc.title | 瑞氏海豚低色素沉澱疤痕之組織病理學研究 | zh_TW |
| dc.title | Histopathological Study on Hypopigmented Scars in Risso’s Dolphins (Grampus griseus) | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王浩文;詹昆衛 | zh_TW |
| dc.contributor.oralexamcommittee | Hao-Ven Wang;Kun-Wei Chan | en |
| dc.subject.keyword | 海豚,瑞氏海豚,低色素沉澱疤痕,黑色素細胞喪失,黑色素細胞脫離,幹細胞因子,Dickkopf相關蛋白1, | zh_TW |
| dc.subject.keyword | dolphin,Risso’s dolphin,hypopigmented scar,melanocyte loss,melanocyte detachment,SCF,DKK1, | en |
| dc.relation.page | 59 | - |
| dc.identifier.doi | 10.6342/NTU202302888 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2023-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 獸醫學系 | - |
| dc.date.embargo-lift | 2024-11-21 | - |
| 顯示於系所單位: | 獸醫學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf | 4.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
