Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89426
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁博煌zh_TW
dc.contributor.advisorPo-Huang Liangen
dc.contributor.author李振維zh_TW
dc.contributor.authorCHEN-WEI LIen
dc.date.accessioned2023-09-07T16:57:40Z-
dc.date.available2024-07-01-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-08-07-
dc.identifier.citationBestle D, Heindl MR, Limburg H, Van Lam van T, Pilgram O, Moulton H, Stein DA, Hardes K, Eickmann M, Dolnik O, Rohde C, Klenk HD, Garten W, Steinmetzer T, Böttcher-Friebertshäuser E. 2020. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 3, e202000786.
Butler, D. 2012. Clusters of coronavirus cases put scientists on alert. Nature 492, 166–167.
Chen CN, Lin CP, Huang KK, Chen WC, Hsieh HP, Liang PH, Hsu JT. 2005. Inhibition of SARS-CoV 3C-like Protease Activity by Theaflavin-3,3'-digallate (TF3). Evid Based Complement Alternat Med 2, 209–215.
Chen YW, Lee MS, Lucht A, Chou FP, Huang W, Havighurst TC, Kim K, Wang JK, Antalis TM, Johnson MD, Lin CY. 2010. TMPRSS2, a serine protease expressed in the prostate on the apical surface of luminal epithelial cells and released into semen in prostasomes, is misregulated in prostate cancer cells. Am. J. Pathol. 176, 2986–2996.
Cho SY, Kang JM, Ha YE, Park GE, Lee JY, Ko JH, Lee JY, Kim JM, Kang CI, Jo IJ, Ryu JG, Choi JR, Kim S, Huh HJ, Ki CS, Kang ES, Peck KR, Dhong HJ, Song JH, Chung DR, Kim YJ. 2016. MERS-CoV outbreak following a single patient exposure in an emergency room in South Korea: An epidemiological outbreak study. Lancet 388, 994–1001.
Fraser BJ, Beldar S, Seitova A, Hutchinson A, Mannar D, Li Y, Kwon D, Tan R, Wilson RP, Leopold K, Subramaniam S, Halabelian L, Arrowsmith CH, Bénard F. 2022. Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation. Nature Chem. Biol. 18, 963–971.
Goc A, Sumera W, Rath M, Niedzwiecki A. 2021. Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS One 16, e0253489.
Hoffmann M, Schroeder S, Kleine-Weber H, Müller MA, Drosten C, Pöhlmann S. Nafamostat mesylate blocks activation of SARS-CoV-2: 2020. New treatment option for COVID-19. Antimicrob Agents Chemother. 64, e00754-20.
Hoffman RL, Kania RS, Brothers MA, Davies JF, Ferre RA, Gajiwala KS, He M, Hogan RJ, Kozminski K, Li LY, Lockner JW, Lou J, Marra MT, Mitchell LJ Jr, Murray BW, Nieman JA, Noell S, Planken SP, Rowe T, Ryan K, Smith GJ 3rd, Solowiej JE, Steppan CM, Taggart B. 2020. Discovery of ketone-based covalent inhibitors of Coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. J Med Chem. 63, 12725–12747.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B. 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.
Jang M, Park YI, Cha YE, Park R, Namkoong S, Lee JI, Park J. 2020. Tea polyphenols EGCG and theaflavin inhibit the activity of SARS-CoV-2 3CL-protease in vitro. Evid Based Complement Alternat Med 5630838.
Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT. 2022. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytother Res. 10.1002/ptr.7671.
Ksiazek TG, Erdman D, Goldsmith CS, Zaki SR, Peret T, Emery S, Tong S, Urbani C, Comer JA, Lim W, Rollin PE, Dowell SF, Ling AE, Humphrey CD, Shieh WJ, Guarner J, Paddock CD, Rota P, Fields B, DeRisi J, Yang JY, Cox N, Hughes JM, LeDuc JW, Bellini WJ, Anderson LJ, SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Eng J Med 348, 1953–1966.
Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, Liu HT, Wu CY. 2020. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol 92, 693–697.
Marín-Palma D, Tabares-Guevara JH, Zapata-Cardona MI, Flórez-Álvarez L, Yepes LM, Rugeles MT, Zapata-Builes W, Hernandez JC, Taborda NA. 2021. Curcumin inhibits in vitro SARS-CoV-2 infectionin Vero E6 cells through multiple antiviral mechanisms. Molecules 26, 6900.
Munafo F., Donati E., Brindani N., Ottonello G., Armirotti A., De Vivo M. 2022. Quercetin and luteolin are single-digit micromolar inhibitors of the SARS-CoV-2 RNA-dependent RNA polymerase. Sci. Rep. 12, 10571.
Peiris JS, Lai ST, Poon LL, Guan Y, Yam LY, Lim W, Nicholls J, Yee WK, Yan WW, Cheung MT, Cheng VC, Chan KH, Tsang DN, Yung RW, Ng TK, Yuen KY, SARS study group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361, 1319–1325.
Rauf A, Imran M, Abu-Izneid T, Iahtisham-Ul-Haq, Patel S, Pan X, Naz S, Sanches Silva A, Saeed F, Rasul Suleria HA. 2019. Proanthocyanidins: A comprehensive review. Biomed Pharmacother 116, 108999.
Shapira T, Monreal IA, Dion SP, Buchholz DW, Imbiakha B, Olmstead AD, Jager M, Désilets A, Gao G, Martins M, Vandal T, Thompson CAH, Chin A, Rees WD, Steiner T, Nabi IR, Marsault E, Sahler J, Diel DG, Van de Walle GR, August A, Whittaker GR, Boudreault PL, Leduc R, Aguilar HC, Jean F. A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic. 2022. Nature 605, 340–348.
Wang SC, Chen Y, Wang YC, Wang WJ, Yang CS, Tsai CL, Hou MH, Chen HF, Shen YC, Hung MC. 2020. Tannic acid suppresses SARS-CoV-2 as a dual inhibitor of the viral main protease and the cellular TMPRSS2 protease. Am J Cancer Res 10, 4538–4546.
Wen CC, Kuo YH, Jan JT, Liang PH, Wang SY, Liu HG, Lee CK, Chang ST, Kuo CJ, Lee SS, Hou CC, Hsiao PW, Chien SC, Shyur LF, Yang NS. 2007. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J Med Chem 50, 4087–4095.
Wu CY, Jan JT, Ma SH, Kuo CJ, Juan HF, Cheng YS, Hsu HH, Huang HC, Wu D, Brik A, Liang FS, Liu RS, Fang JM, Chen ST, Liang PH, Wong CH. 2004. Small molecules targeting severe acute respiratory syndrome human coronavirus. Proc Natl Acad Sci USA 101, 10012–10017.
Xiao T, Cui M, Zheng C, Wang M, Sun R, Gao D, Bao J, Ren S, Yang B, Lin J, Li X, Li D, Yang C, Zhou H. 2021. Myricetin inhibits SARS-CoV-2 viral replication by targeting M(pro) and ameliorates pulmonary inflammation. Front Pharmacol, 12, 669642.
Yamamoto M, Kiso M, Sakai-Tagawa Y, Iwatsuki-Horimoto K, Imai M, Takeda M, Kinoshita N, Ohmagari N, Gohda J, Semba K, Matsuda Z, Kawaguchi Y, Kawaoka Y, Inoue JI. 2020. The anticoagulant nafamostat potently inhibits SARS-CoV-2 S protein-mediated fusion in a cell fusion assay system and viral infection in vitro in a cell-type-dependent manner. Viruses 12, 629.
Yi L., Li Z., Yuan K., Qu X., Chen J., Wang G., Zhang H., Luo H., Zhu L., Jiang P., et al. 2004. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J. Virol. 78, 11334–11339.
Yu S, Zhu Y, Xu J, Yao G, Zhang P, Wang M, Zhao Y, Lin G, Chen H, Chen L, Zhang J. 2021. Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2. Phytomedicine. 85, 153364.
Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. 2012. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 367, 1814–1820.
Zhao MM, Yang WL, Yang FY, Zhang L, Huang WJ, Hou W, Fan CF, Jin RH, Feng YM, Wang YC, Yang JK. 2021. Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development. Signal Transduct Target Ther. 6, 134.
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus Investigating and Research Team. 2020. A novel coronavirus from patients with pneumonia in China, 2019. N Eng J Med 382, 727–733.
DANA, Dibyendu; PATHAK, Sanjai K. A review of small molecule inhibitors and functional probes of human cathepsin L. Molecules, 2020, 25.3: 698.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89426-
dc.description.abstract由嚴重急性呼吸道症候群冠狀病毒2型 (SARS-CoV-2) 引起的 2019 年冠狀病毒病 (COVID-19) 已在全球奪去許多人的生命,且仍在蔓延中。 病毒在與宿主細胞表面的血管緊張素轉化酶 2 (ACE2) 受體結合後,細胞表面的跨膜絲胺酸蛋白酶2 (TMPRSS2) 會切割 SARS-CoV-2 刺突蛋白,使病毒與細胞膜融合並進入細胞。 因此,已知藥物(如 camostat 和 nafamostat),藉著不可逆地抑制 TMPRSS2,從而抑制病毒進入。 如本文所述,我使用桿狀病毒感染的昆蟲細胞表達並激活TMPRSS2 胞外域以測定我們實驗室合成的抑制劑以及選定的天然產物和 FDA 批准的藥物。 這些化合物還使用弗林蛋白酶 (Furin) 和組織蛋白酶 L (Cathepsin L) 的試劑進行了分析,Furin 是一種人類細胞表面絲氨酸蛋白酶,可以與 TMPRSS2 分別在刺突蛋白的 S1/S2 及 S2' 位點切割。Cathepsin L一種參與切割刺突蛋白的細胞內蛋白酶,從而由胞內體釋放入侵的病毒。 根據 IC50 建立針對 TMPRSS2、Furin 和/或 Cathepsin L的抑制劑的構效關係,並通過分子嵌合計算 (docking) 對結構進行模擬以提供抑制的解釋。因此,這項研究提供了可能的 TMPRSS2、Furin 和/或 Cathepsin L 抑制劑來阻止 SARS-CoV-2 進入細胞。zh_TW
dc.description.abstractCoronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in global fatalities and continues to spread. Transmembrane protease, serine 2 (TMPRSS2) on the surface of infected host cells cleaves SARS-CoV-2 spike protein, enabling the primed virus to fuse with the cell membrane and enter the cells after binding with the angiotensin-converting enzyme 2 (ACE2) receptor. Therefore, known antivirals like camostat and nafamostat irreversibly inhibit TMPRSS2 and virus entry. In this thesis, TMPRSS2 ectodomain was expressed using baculovirus-infected insect cells and activated to screen the inhibitors synthesized in our laboratory, as well as the selected natural products and FDA-approved drugs. These compounds were also assayed using the commercial kits to determine their inhibitory effects against Furin and Cathepsin L. Furin is a human cell-surface serine protease that works with TMPRSS2 to cleave the spike protein at the canonical S1/S2 and S2' site, respectively. Cathepsin L is an intracellular protease involved in cleaving the spike protein to release the invading virus from the endosome. Structure-activity relationships of the inhibitors against TMPRSS2, Furin, and/or Cathepsin L were established from the IC50 and the complex structures were modeled by the docking program to provide the structural rationale. Therefore, this study offers promising TMPRSS2, Furin, and/or Cathepsin L inhibitors to block SARS-CoV-2 entry.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:57:40Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T16:57:40Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ..............................................................................................................................v
中文摘要 .....................................................................................................................vi
Abstract .......................................................................................................................vii
Abbreviations .............................................................................................................viii
1. Introduction ...............................................................................................................1
2. Materials and Methods ..............................................................................................5
2.1. Materials .........................................................................................................5
2.2. TMPRSS2 ectodomain expression ..................................................................5
2.3. TMPRSS2 ectodomain activation and purification .........................................7
2.4. TMPRSS2 kinetics and inhibitory assay .........................................................8
2.5. Furin inhibitory assay ......................................................................................9
2.6. Cathepsin L inhibitory assay .........................................................................10
2.7. Molecular docking ........................................................................................10 3. Results .....................................................................................................................12
3.1. Purification and characterization of the recombinant TMPRSS2 ectodomain
..............................................................................................................................12
3.2. Test of the synthesized pyrrolidinones for inhibiting TMPRSS2 ectodomain
..............................................................................................................................13
3.3. Binding modes of the pyrrolidinone inhibitors with TMPRSS2 ....................14
3.4. Test of the synthesized pyrrolidinones for inhibiting Furin ...........................15
3.5. Binding modes of the pyrrolidinone inhibitors with Furin ...........................16
3.6. Test of the FDA-approved drugs previously shown to inhibit 3CLpro and/or PLpro as antivirals for inhibiting TMPRSS2, Furin, and Cathepsin L ....................16
3.7. Test of the selected natural products for inhibiting TMPRSS2, Furin, and Cathepsin L ..........................................................................................................18
3.8. Binding modes of the selected natural products with TMPRSS2 ...................20
3.9. Binding modes of the selected natural products with Furin ...........................21
3.10. Binding modes of the selected natural products with Cathepsin L ...............21
3.11. Analysis of the selected natural products interacting with the substrate binding pocket of TMPRSS2 or Cathepsin L ........................................................22
4. Discussion ................................................................................................................23
5. Tables .......................................................................................................................30
Table 1. Inhibitory effects of compound 2a-l against TMPRSS2, Furin and SARS-CoV-2 ..................................................................................................................30
Table 2. Inhibitory effects of compound 4a-c against TMPRSS2, Furin and SARS-CoV-2 …..............................................................................................................31
Table 3. Inhibitory effects of the FDA-approved drugs against TMPRSS2, Furin, Cathepsin L and SARS-CoV-2 ............................................................................32
Table 4. Inhibitory effects of the natural products against TMPRSS2, Furin, Cathepsin L and SARS-CoV-2 ............................................................................33
6. Figures .....................................................................................................................34
Figure 1. Chemical structures of camostat and nafamostat, and their mechanisms of action for inhibiting TMPRSS2 and virus entry. ..............................................34
Figure 2. The subdomains of TMPRSS2 ectodomain and the strategy for the expression of TMPRSS2 ectodomain. .................................................................36
Figure 3. Purification of TMPRSS2 ectodomain. .................................................38
Figure 4. Characterization of the kinetic constants of the recombinant TMPRSS2 ectodomain. ..........................................................................................................40
Figure 5. Inhibition of TMPRSS2 by the synthesized 4-carboxy-1-(4-styryl carbonylphenyl)-2-pyrrolidinones inhibitors. ......................................................42
Figure 6. Modeled binding modes of the synthesized pyrrolidinone inhibitor 81 on TMPRSS2 (PDB: 7MEQ). ...................................................................................44
Figure 7. Inhibition of Furin by the synthesized 4-carboxy-1-(4-styryl carbonylphenyl)-2-pyrrolidinones inhibitors. ......................................................45
Figure 8. Modeled binding modes of the synthesized pyrrolidinone inhibitor 81 on Furin (PDB: 4RYD). ............................................................................................47
Figure 9. The chemical structures of some selected flavonoids, flavanols, and polyphenols. .........................................................................................................49
Figure 10. The chemical structures of some selected unsaturated phenols, steroids with or without sugar moieties, etc. ......................................................................51
Figure 11. Testing the inhibition of TMPRSS2, Furin, and/or Cathepsin L using the 6 FDA-approved drugs previously been shown to inhibit 3CLpro and/or PLpro, as well as antivirals. .............................................................................................53
Figure 12. Inhibition of TMPRSS2 by the selected natural products. ...................54
Figure 13. Inhibition of Furin by the selected natural products. ............................56
Figure 14. Inhibition of Cathepsin L by the selected natural products. .................57
Figure 15. Modeled binding modes of the selected natural products with TMPRSS2 to rationalize their inhibition specificity. ............................................58
Figure 16. Modeled binding modes of the selected natural products with Furin to rationalize their inhibition specificity. ..................................................................60
Figure 17. Modeled binding modes of the selected natural products with Cathepsin L to rationalize their inhibition specificity. ...........................................................62
Figure 18. Analysis of the best inhibitors interacting with the binding pocket of TMPRSS2 or Cathepsin L. ...................................................................................63
7. Reference .................................................................................................................65
-
dc.language.isoen-
dc.subject跨膜絲胺酸蛋白酶2zh_TW
dc.subject2019年冠狀病毒病zh_TW
dc.subject分子嵌合計算zh_TW
dc.subject組織蛋白酶 Lzh_TW
dc.subject嚴重急性呼吸道症候群冠狀病毒2型zh_TW
dc.subject弗林蛋白酶zh_TW
dc.subject天然物zh_TW
dc.subjectMolecular dockingen
dc.subjectSARS-CoV2en
dc.subjectCOVID-19en
dc.subjectTMPRSS2en
dc.subjectCathepsin Len
dc.subjectFurinen
dc.subjectNatural productsen
dc.title製備活化的TMPRSS2胞外域以測試SARS-CoV-2進入細胞的抑制劑zh_TW
dc.titlePreparation of the activated TMPRSS2 ectodomain for assay of the inhibitors that block SARS-CoV-2 entryen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee徐尚德;張淑媛zh_TW
dc.contributor.oralexamcommitteeShang-Te Hsu;Sui-Yuan Changen
dc.subject.keyword嚴重急性呼吸道症候群冠狀病毒2型,2019年冠狀病毒病,跨膜絲胺酸蛋白酶2,組織蛋白酶 L,弗林蛋白酶,天然物,分子嵌合計算,zh_TW
dc.subject.keywordSARS-CoV2,COVID-19,TMPRSS2,Cathepsin L,Furin,Natural products,Molecular docking,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202302510-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2023-08-09-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生化科學研究所-
dc.date.embargo-lift2024-07-01-
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf3.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved