Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89411
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴飛羆zh_TW
dc.contributor.advisorFeipei Laien
dc.contributor.author蔡昌恆zh_TW
dc.contributor.authorChan-hen Tsaien
dc.date.accessioned2023-09-07T16:53:52Z-
dc.date.available2025-07-25-
dc.date.copyright2023-09-11-
dc.date.issued2023-
dc.date.submitted2023-07-31-
dc.identifier.citation[1] de Jonge P, Roest AM, Lim CC, Florescu SE, Bromet EJ, Stein DJ, et al. Cross-national epidemiology of panic disorder and panic attacks in the world mental health surveys. Depress Anxiety 2016;33:1155-1177.
[2] Chang HM, Pan CH, Chen PH, Chen YL, Su SS, Tsai SY, et al. Identification and medical utilization of newly diagnosed panic disorder: A Nationwide case-control study. J Psychosom Res 2019;125:109815.
[3] Chen MH and Tsai SJ. Treatment-resistant panic disorder: clinical significance, concept and management. Prog Neuropsychopharmacol Biol Psychiatry 2016;70:219-26.
[4] Association AP. Diagnostic and Statistical Manual of Mental Disorders 5th. 2013.
[5] Potter CM, Wong J, Heimberg RG, Blanco C, Liu SM, Wang S, et al. Situational panic attacks in social anxiety disorder. J Affect Disord 2014;167:1-7.
[6] Cho J, Choi YJ, Sohn J, Suh M, Cho SK, Ha KH, et al. Ambient ozone concentration and emergency department visits for panic attacks. J Psychiatr Res 2015;62:130-5.
[7] Trushna T, Dhiman V, Raj D and Tiwari RR. Effects of ambient air pollution on psychological stress and anxiety disorder: a systematic review and meta-analysis of epidemiological evidence. Reviews on Environmental Health 2021;36:501-521.
[8] Murray B. Stein MCaJRW. Sleep in Nondepressed Patients with Panic Disorder: I. Systematic Assessment of Subjective Sleep Quality and Sleep Disturbance. Sleep 1993;16:724-726.
[9] Luc Staner M. Sleep and anxiety disorders. Dialogues in Clinical Neuroscience 2003;5.
[10] Belleville G and Potočnik A. A Meta-Analysis of Sleep Disturbances in Panic Disorder. Psychopathology-An International and Interdisciplinary Perspective 2019:95.
[11] Roberts RE and Duong HT. Is there an association between short sleep duration and adolescent anxiety disorders? Sleep Med 2017;30:82-87.
[12] Geoffroy PA, Tebeka S, Blanco C, Dubertret C and Le Strat Y. Shorter and longer durations of sleep are associated with an increased twelve-month prevalence of psychiatric and substance use disorders: Findings from a nationally representative survey of US adults (NESARC-III). J Psychiatr Res 2020;124:34-41.
[13] Pearce M, Garcia L, Abbas A, Strain T, Schuch FB, Golubic R, et al. Association Between Physical Activity and Risk of Depression: A Systematic Review and Meta-analysis. JAMA Psychiatry 2022.
[14] Sergio Machado JLL. Impact of aerobic exercise on anxiety and neurobiological mechanisms in panic disorder: a mini-review Journal of Physical Education and Sport 2019;2019.
[15] McDowell CP, Dishman RK, Gordon BR and Herring MP. Physical Activity and Anxiety: A Systematic Review and Meta-analysis of Prospective Cohort Studies. Am J Prev Med 2019;57:545-556.
[16] Lattari E, Budde H, Paes F, Neto GAM, Appolinario JC, Nardi AE, et al. Effects of Aerobic Exercise on Anxiety Symptoms and Cortical Activity in Patients with Panic Disorder: A Pilot Study. Clin Pract Epidemiol Ment Health 2018;14:11-25.
[17] Strohle A, Graetz B, Scheel M, Wittmann A, Feller C, Heinz A, et al. The acute antipanic and anxiolytic activity of aerobic exercise in patients with panic disorder and healthy control subjects. J Psychiatr Res 2009;43:1013-7.
[18] Kotianova A, Kotian M, Slepecky M, Chupacova M, Prasko J and Tonhajzerova I. The differences between patients with panic disorder and healthy controls in psychophysiological stress profile. Neuropsychiatr Dis Treat 2018;14:435-441.
[19] Ying-Chih Cheng M-IS, Cheng-Wei Liu, Yu-Chen Huang, Wei-Lieh Huang. Heart rate variability in patients with anxiety disorders A systematic review. Psychiatry and Clinical Neurosciences 2022.
[20] Iurato S, Carrillo-Roa T, Arloth J, Czamara D, Diener-Holzl L, Lange J, et al. "DNA Methylation signatures in panic disorder". Transl Psychiatry 2017;7:1287.
[21] Robinaugh DJ, Ward MJ, Toner ER, Brown ML, Losiewicz OM, Bui E, et al. Assessing vulnerability to panic: a systematic review of psychological and physiological responses to biological challenges as prospective predictors of panic attacks and panic disorder. Gen Psychiatr 2019;32:e100140.
[22] Norton GR and Pidlubny SR. Prediction of Panic Attacks and Related Variables. Behavior Therapy 1999;30:319-330.
[23] Schmidt NB, Zvolensky MJ and Maner JK. Anxiety sensitivity: prospective prediction of panic attacks and Axis I pathology. J Psychiatr Res 2006;40:691-9.
[24] Jacobs GA, Latham LE and Brown MS. Test-retest reliability of the state-trait personality inventory and the anger expression scale. Anxiety Research 1988;1:263-265.
[25] Liu Y, Sareen J, Bolton J and Wang J. Development and validation of a risk-prediction algorithm for the recurrence of panic disorder. Depress Anxiety 2015;32:341-8.
[26] Lueken U, Straube B, Yang Y, Hahn T, Beesdo-Baum K, Wittchen HU, et al. Separating depressive comorbidity from panic disorder: A combined functional magnetic resonance imaging and machine learning approach. J Affect Disord 2015;184:182-92.
[27] Hahn T, Kircher T, Straube B, Wittchen HU, Konrad C, Strohle A, et al. Predicting treatment response to cognitive behavioral therapy in panic disorder with agoraphobia by integrating local neural information. JAMA Psychiatry 2015;72:68-74.
[28] Grambal A, Tüdös Z, Kamaradová D, Hluštík P and Praško JP. Treatment effect prediction in panic disorder patients - fmri study. European Psychiatry 2013;28.
[29] Sundermann B, Bode J, Lueken U, Westphal D, Gerlach AL, Straube B, et al. Support Vector Machine Analysis of Functional Magnetic Resonance Imaging of Interoception Does Not Reliably Predict Individual Outcomes of Cognitive Behavioral Therapy in Panic Disorder with Agoraphobia. Front Psychiatry 2017;8:99.
[30] Hayashi K, Makino M, Hashizume M, Nakano K and Tsuboi K. Electroencephalogram abnormalities in panic disorder patients: a study of symptom characteristics and pathology. Biopsychosoc Med 2010;4:9.
[31] Carvalho MR, Velasques BB, Cagy M, Marques JB, Teixeira S, Nardi AE, et al. Electroencephalographic findings in panic disorder. Trends Psychiatry Psychother 2013;35:238-51.
[32] Elgendi M and Menon C. Assessing Anxiety Disorders Using Wearable Devices: Challenges and Future Directions. Brain Sci 2019;9.
[33] Cruz L, Rubin J, Abreu R, Ahern S, Eldardiry H and Bobrow DG. A wearable and mobile intervention delivery system for individuals with panic disorder. Proceedings of the 14th International Conference on Mobile and Ubiquitous Multimedia. 2015. p. 175-182.
[34] Chang HA, Chang CC, Tzeng NS, Kuo TB, Lu RB and Huang SY. Decreased cardiac vagal control in drug-naive patients with panic disorder: a case-control study in Taiwan. Asia Pac Psychiatry 2013;5:80-9.
[35] Jacobson NC, Lekkas D, Huang R and Thomas N. Deep learning paired with wearable passive sensing data predicts deterioration in anxiety disorder symptoms across 17-18 years. J Affect Disord 2021;282:104-111.
[36] Sakamoto N, Yoshiuchi K, Kikuchi H, Takimoto Y, Kaiya H, Kumano H, et al. Panic disorder and locomotor activity. Biopsychosoc Med 2008;2:23.
[37] Jacobson NC and Feng B. Digital phenotyping of generalized anxiety disorder: using artificial intelligence to accurately predict symptom severity using wearable sensors in daily life. Transl Psychiatry 2022;12:336.
[38] Tsai CH, Chen PC, Liu DS, Kuo YY, Hsieh TT, Chiang DL, et al. Panic Attack Prediction Using Wearable Devices and Machine Learning: Development and Cohort Study. JMIR Med Inform 2022;10:e33063.
[39] Sheu YH. Illuminating the Black Box: Interpreting Deep Neural Network Models for Psychiatric Research. Front Psychiatry 2020;11:551299.
[40] Lundberg S LS-Ip. A Unified Approach to Interpreting Model. Proceedings of the 31st International Conference on Neural Information Processing Systems 2017:4768–77.
[41] Molnar C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2022.
[42] Zugliani MM, Cabo MC, Nardi AE, Perna G and Freire RC. Pharmacological and Neuromodulatory Treatments for Panic Disorder: Clinical Trials from 2010 to 2018. Psychiatry Investig 2019;16:50-58.
[43] Association AP. Practice Guideline for the Treatment of Patients With Panic Disorder, Second Edition. 2010.
[44] Craske MG, Stein MB, Eley TC, Milad MR, Holmes A, Rapee RM, et al. Anxiety disorders. Nat Rev Dis Primers 2017;3:17024.
[45] Excellence NIfHaC. Generalised anxiety disorder and panic disorder in adults: management. Clinical guideline. 2011.
[46] Kaczkurkin AN and Foa EB. Cognitive-behavioral therapy for anxiety disorders: an update on the empirical evidence. Dialogues Clin Neurosci 2015;17:337-46.
[47] Hunt C. The unmet need for treatment in panic disorder and social phobia. Unmet need in psychiatry: Problems, resources, responses 2000:277-289.
[48] Perna G, Schruers K, Alciati A and Caldirola D. Novel investigational therapeutics for panic disorder. Expert Opin Investig Drugs 2015;24:491-505.
[49] Kolek A, Prasko J, Ociskova M, Vanek J, Holubova M, Hodny F, et al. “Dont tell me that I am hysterical”: Unmet needs of patients with panic disorder. Neuroendocrinology Letters 2020;41:370-384.
[50] Luxton DD, McCann RA, Bush NE, Mishkind MC and Reger GM. mHealth for mental health: Integrating smartphone technology in behavioral healthcare. US: American Psychological Association, 2011. p. 505-512.
[51] Steven E. Bruce PD, Kimberly A. Yonkers MD, Michael W. Otto PD, Jane L. Eisen MD, Risa B. Weisberg PD, Maria Pagano PD, et al. Influence of Psychiatric Comorbidity on Recovery and Recurrence in Generalized Anxiety Disorder, Social Phobia, and Panic Disorder: A 12-Year Prospective Study. Am J Psychiatry 2005;162:1179–1187.
[52] Olatunji BO, Cisler JM and Deacon BJ. Efficacy of cognitive behavioral therapy for anxiety disorders: a review of meta-analytic findings. Psychiatr Clin North Am 2010;33:557-77.
[53] Roy-Byrne PP, Craske MG, Stein MB, Sullivan G, Bystritsky A, Katon W, et al. A randomized effectiveness trial of cognitive-behavioral therapy and medication for primary care panic disorder. Arch Gen Psychiatry 2005;62:290-8.
[54] van Boeijen CA, van Oppen P, van Balkom AJ, Visser S, Kempe PT, Blankenstein N, et al. Treatment of anxiety disorders in primary care practice: a randomised controlled trial. Br J Gen Pract 2005;55:763-9.
[55] Standards of Practice for Case Management Case Management Society of America Little Rock, Arkansas 2016.
[56] Diane Huber MLJ. Leadership and nursing care management. Elsevier Health Sciences, 2013.
[57] Rapp CA and Goscha RJ. The strengths model: Case management with people with psychiatric disabilities, 2nd ed. New York, NY, US: Oxford University Press, 2006.
[58] Dieterich M, Irving CB, Bergman H, Khokhar MA, Park B and Marshall M. Intensive case management for severe mental illness. Cochrane Database Syst Rev 2017;1:Cd007906.
[59] Vanderplasschen W, Rapp RC, Wolf JR and Broekaert E. The development and implementation of case management for substance use disorders in North America and Europe. Psychiatr Serv 2004;55:913-22.
[60] Lukaschek K, Mergenthal K, Heider D, Hanke A, Munski K, Moschner A, et al. eHealth-supported case management for patients with panic disorder or depression in primary care: Study protocol for a cRCT (PREMA). Trials 2019;20:662.
[61] Bakker D, Kazantzis N, Rickwood D and Rickard N. Mental Health Smartphone Apps: Review and Evidence-Based Recommendations for Future Developments. JMIR Ment Health 2016;3:e7.
[62] Eisenstadt M, Liverpool S, Infanti E, Ciuvat RM and Carlsson C. Mobile Apps That Promote Emotion Regulation, Positive Mental Health, and Well-being in the General Population: Systematic Review and Meta-analysis. JMIR Ment Health 2021;8:e31170.
[63] Newman MG, Jacobson NC, Rackoff GN, Bell MJ and Taylor CB. A randomized controlled trial of a smartphone-based application for the treatment of anxiety. Psychother Res 2021;31:443-454.
[64] Fairburn CG and Patel V. The impact of digital technology on psychological treatments and their dissemination. Behav Res Ther 2017;88:19-25.
[65] Carlbring P, Andersson G, Cuijpers P, Riper H and Hedman-Lagerlof E. Internet-based vs. face-to-face cognitive behavior therapy for psychiatric and somatic disorders: an updated systematic review and meta-analysis. Cogn Behav Ther 2018;47:1-18.
[66] Andersson G, Carlbring P, Titov N and Lindefors N. Internet Interventions for Adults with Anxiety and Mood Disorders: A Narrative Umbrella Review of Recent Meta-Analyses. Can J Psychiatry 2019;64:465-470.
[67] Heron KE and Smyth JM. Ecological momentary interventions: incorporating mobile technology into psychosocial and health behaviour treatments. Br J Health Psychol 2010;15:1-39.
[68] Proudfoot J, Goldberg D, Mann A, Everitt B, Marks I and Gray JA. Computerized, interactive, multimedia cognitive-behavioural program for anxiety and depression in general practice. Psychol Med 2003;33:217-27.
[69] Olthuis JV, Watt MC, Bailey K, Hayden JA and Stewart SH. Therapist-supported Internet cognitive behavioural therapy for anxiety disorders in adults. Cochrane Database Syst Rev 2016;3:Cd011565.
[70] Titov N, Dear B, Nielssen O, Staples L, Hadjistavropoulos H, Nugent M, et al. ICBT in routine care: A descriptive analysis of successful clinics in five countries. Internet Interventions 2018;13:108-115.
[71] Grist R, Porter J and Stallard P. Mental Health Mobile Apps for Preadolescents and Adolescents: A Systematic Review. J Med Internet Res 2017;19:e176.
[72] Firth J, Torous J, Nicholas J, Carney R, Pratap A, Rosenbaum S, et al. The efficacy of smartphone-based mental health interventions for depressive symptoms: a meta-analysis of randomized controlled trials. World Psychiatry 2017;16:287-298.
[73] Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998;59 Suppl 20:22-33;quiz 34-57.
[74] Houck PR, Spiegel DA, Shear MK and Rucci P. Reliability of the self-report version of the panic disorder severity scale. Depress Anxiety 2002;15:183-5.
[75] Liu X, Xu T, Chen D, Yang C, Wang P, Huang X, et al. Reliability, validity and cut-off score of the Chinese version of the panic disorder severity scale self-report form in patients with panic disorder. BMC Psychiatry 2020;20:170.
[76] Wang Z, Yuan C-M, Huang J, Li Z-Z, Chen J, Zhang H-Y, et al. Reliability and validity of the Chinese version of Beck Depression Inventory-II among depression patients. Chinese Mental Health Journal 2011;25:476-480.
[77] Cheng SK-W, Wong C-W, Wong K-C, Chong GS-C, Wong MT-P, Chang SS-Y, et al. A study of psychometric properties, normative scores, and factor structure of the Beck Anxiety Inventory--the Chinese version. Chinese Journal of Clinical Psychology 2002;10:4-6.
[78] Kuo-Chang Wang F-CC. An Investigation of Multidimensional Factorial Validity of the Chinese Version of State-Trait Anxiety Inventory. Psychological testing 2016;63:287-313.
[79] Spielberger CD. State-Trait Anxiety Inventory. The Corsini Encyclopedia of Psychology. 2010. p. 1-1.
[80] Elman JL. Finding structure in time. Cognitive Science 1990;14:179-211.
[81] Chung J, Gulcehre C, Cho K and Bengio Y. Empirical evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:14123555 2014.
[82] Cho K, Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H., & Bengio, Y. Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078. arXiv preprint 2014;1412.3555.
[83] Sherstinsky A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena 2020;404.
[84] Sepp Hochreiter JS. Long Short-Term Memory. Neural Computation 1735–1780 1997;9:1735–1780.
[85] K V and K S. Towards activation function search for long short-term model network: A differential evolution based approach. Journal of King Saud University - Computer and Information Sciences 2022;34:2637-2650.
[86] Samek W, Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K. R. (Eds.). . Explainable AI: interpreting, explaining and visualizing deep learning. 2019;11700.
[87] Priyadarshini I and Cotton C. A novel LSTM-CNN-grid search-based deep neural network for sentiment analysis. J Supercomput 2021;77:13911-13932.
[88] Lundberg SM, Erion GG and Lee S-I. Consistent individualized feature attribution for tree ensembles. arXiv preprint arXiv:180203888 2018.
[89] Munoz ML, van Roon A, Riese H, Thio C, Oostenbroek E, Westrik I, et al. Validity of (Ultra-)Short Recordings for Heart Rate Variability Measurements. PLoS One 2015;10:e0138921.
[90] Goodfellow IB, Yoshua; Courville, Aaron. Chapter 6 Deep Feedforward Networks: Softmax Units for Multinoulli Output Distributions. MIT Press, 2016.
[91] Kallio H, Pietila AM, Johnson M and Kangasniemi M. Systematic methodological review: developing a framework for a qualitative semi-structured interview guide. J Adv Nurs 2016;72:2954-2965.
[92] Rehurek R, & Sojka, P. . Gensim–python framework for vector space modelling. Brno, Czech Republic: NLP Centre, Faculty of Informatics, Masaryk University, 2011.
[93] Travis E O. A guide to NumPy. USA: Trelgol Publishing, 2006.
[94] Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat Methods 2020;17:261-272.
[95] Barbara G. Tabachnick LSF. Using Multivariate Statistic. Pearson Education, 2019.
[96] Bird S, Klein E and Loper E. Natural language processing with Python: analyzing text with the natural language toolkit. " O'Reilly Media, Inc.", 2009.
[97] Dhakal K. NVivo. J Med Libr Assoc 2022;110:270-272.
[98] Cheng YC, Su MI, Liu CW, Huang YC and Huang WL. Heart rate variability in patients with anxiety disorders: A systematic review and meta-analysis. Psychiatry Clin Neurosci 2022.
[99] Roberson-Nay R and Kendler KS. Panic disorder and its subtypes: a comprehensive analysis of panic symptom heterogeneity using epidemiological and treatment seeking samples. Psychol Med 2011;41:2411-21.
[100] Linardon J, Cuijpers P, Carlbring P, Messer M and Fuller-Tyszkiewicz M. The efficacy of app-supported smartphone interventions for mental health problems: a meta-analysis of randomized controlled trials. World Psychiatry 2019;18:325-336.
[101] Che J, Yang Y, Li L, Bai X, Zhang S and Deng C. Maximum relevance minimum common redundancy feature selection for nonlinear data. Information Sciences 2017;409-410:68-86.
[102] Lazarou I, Kesidis AL, Hloupis G and Tsatsaris A. Panic Detection Using Machine Learning and Real-Time Biometric and Spatiotemporal Data. ISPRS International Journal of Geo-Information 2022;11.
[103] Chawla N, Anothaisintawee T, Charoenrungrueangchai K, Thaipisuttikul P, McKay GJ, Attia J, et al. Drug treatment for panic disorder with or without agoraphobia: systematic review and network meta-analysis of randomised controlled trials. BMJ 2022;376:e066084.
[104] Chan JY-L, Leow SMH, Bea KT, Cheng WK, Phoong SW, Hong Z-W, et al. Mitigating the Multicollinearity Problem and Its Machine Learning Approach: A Review. Mathematics 2022;10.
[105] S. Wold AR, H. Wold, and W. J. Dunn, III. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses. SIAM Journal on Scientific and Statistical Computing 1984;5.
[106] Gensichen J, Beyer M, Muth C, Gerlach FM, Von Korff M and Ormel J. Case management to improve major depression in primary health care: a systematic review. Psychol Med 2006;36:7-14.
[107] Gensichen J, Torge M, Peitz M, Wendt-Hermainski H, Beyer M, Rosemann T, et al. Case management for the treatment of patients with major depression in general practices--rationale, design and conduct of a cluster randomized controlled trial--PRoMPT (PRimary care Monitoring for depressive Patient's Trial) [ISRCTN66386086]--study protocol. BMC Public Health 2005;5:101.
[108] Dreischulte T, Lukaschek K, Rottenkolber M, Werle J, Hiller TS, Breitbart J, et al. Patient characteristics and changes in anxiety symptoms in patients with panic disorder: Post-hoc analysis of the PARADIES cluster randomised trial. PLoS One 2022;17:e0275509.
[109] Gensichen J HT, Breitbart J, Brettschneider C, Teismann T, Schumacher U, Lukaschek K, Schelle M, Schneider N, Sommer M, Wensing M, König HH, Margraf J. Panic Disorder in Primary Care.The Effects of a Team-Based Intervention—a Cluster-Randomized Trial. Dtsch Arztebl Int 2019;116:159-166.
[110] Sanchez-Meca J, Rosa-Alcazar AI, Marin-Martinez F and Gomez-Conesa A. Psychological treatment of panic disorder with or without agoraphobia: a meta-analysis. Clin Psychol Rev 2010;30:37-50.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89411-
dc.description.abstract提供恐慌症患者睡眠和身體活動建議是相當重要的,但過去卻較少被仔細研究。本研究是一項三年期前瞻性世代研究及研發計畫,目標在預測未來七天內的恐慌發作(PA)、狀態焦慮(SA)、特質焦慮(TA)以及恐慌症嚴重程度(PDS)。我們從一家綜合醫院納入了148名恐慌症患者,使用DSM-5、MINI和臨床評估問卷:BDI、BAI、PDSS-SR、STAI以及Garmin智慧手環,從2020年6月16日至2023年6月10日記錄他們的每日睡眠、身體活動和心跳。團隊應用RNN、LSTM、GRU深度學習和SHAP可解釋模型來分析數據。有99人完成了本研究。從LSTM(長期和短期記憶)模型計算的7天預測準確率分別為PA、SA、TA、PDS:92.8%、83.6%、87.2% 和75.6%。透過SHAP可解釋模型,PA較容易復發於:初始BDI及BAI分數較高、共病憂鬱症、泛焦慮症或懼曠症的病人。然而,PA在以下情況有所下降:每日平均心跳在72-87次/分鐘區間、每日爬升大於9層樓、總睡眠時間介於6小時23分至10小時50分、以及深度睡眠期大於50分鐘。綜合以上,本試驗透過機器學習與深度學習分析了穿戴式手環和問卷資料,預測七天後恐慌發作的正確機率約為75.6-92.8%,而且,研究顯示充足的睡眠以及每日爬升樓層數可降低PA復發機率。此外,運用個案管理合併上述預測及回饋系統,相較於常規治療,顯著改善了恐慌症維持期治療 (p < 0.05) 的結果。zh_TW
dc.description.abstractSleep and physical activity suggestions for panic disorder (PD) patients are critical but less surveyed. This three-year prospective cohort study aims to predict panic attacks (PA), state anxiety (SA), and trait anxiety (TA), panic disorder severity (PDS) in the upcoming seven days. We enrolled 148 PD patients from one general hospital. We used DSM-5, MINI, and clinical app questionnaires: BDI, BAI, PDSS-SR, STAI, and wearables, recording their daily sleep, physical activities, and heart rates from June 16, 2020, to June 10, 2023. Our teams applied RNN, LSTM, GRU deep learning, and SHAP explainable methods to analyze the dataset. Ninety-nine completed this study. The 7-day prediction accuracies for PA, SA, TA, and PDS were 92.8%, 83.6%, 87.2%, and 75.6%, respectively, from LSTM (Long and Short-Term Memory) model. By SHAP explainable model, higher initial BDI.BAI score, comorbidities with depressive disorder, general anxiety disorder, or agoraphobia predict increased chances of PAs. However, PA decreased in the following conditions: daily average heart rates fall between 72-87 bpm, daily floors climbing more than 9 floors, total sleep duration between 6h23m-10h50m, deep sleep over 50m. Deep learning provides a 75.6-92.8% accuracy of 7-day PA prediction through smartwatch and questionnaire data. Recurrent PA chances decrease if participants' daily sleep time falls between 6h23m-10h50m or daily floors climb more than nine floors. Furthermore, case management with this system improves maintenance treatment (p < 0.05) compared with treatment as usual.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:53:52Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-09-07T16:53:52Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Panic Attacks 1
1.2 Sleep and Panic Attacks 2
1.3 Physical Activities and Panic Attacks 2
1.4 HRV, Heart Rates, and Panic Attacks 3
1.5 Panic Attack Prediction System 3
1.6 Explainable Artificial Intelligence (XAI) 6
1.7 Treatment as Usual for Panic Disorder 7
1.8 Mobile-aided Case Management 8
1.9 The Aim of this Study 10
Chapter 2 Methods 11
2.1 Participants 12
2.2 Smartwatches and Physiological Data Storage 12
2.3 Questionnaires and Psychological Data Storage 13
2.4 System Architecture and API System 15
2.5.1 Ground Truth (labels) and input features 17
2.5.2 Training process 18
2.6 Explainable AI Model 20
2.8 Feedback System 21
2.9 Mobile-aided Case Management vs. Treatment as Usual 25
2.10 Efficacy Assessment 26
2.11 Statistical Analysis 30
Chapter 3 Results 32
3.1 Participants' Demographic Summary 32
3.2 PA, SA, TA, PDS Prediction Using ML Method 34
3.3 PA Prediction Using Deep Learning Methods 39
3.4 PA Prediction Using Regression Models 43
3.5 PA Explainable AI models 48
3.6 Panic Symptoms and Their Prevalence 73
3.7 The HRV during PA and Resting State 74
3.8 Feedback System and its Efficacy 79
3.8.1 Demography and symptom improvement 79
3.8.2 Qualitative Result 79
Chapter 4 Discussion 87
4.1 Principal Finding 87
4.2 Sub-analysis Finding of HRV and PA Symptoms 88
4.3 Strength 89
4.4 Limitations 90
4.5 System and Platforms 91
4.6 Data Types and Feature Selection 92
4.7 Training Models 100
4.8 Feedback System and PD Case Management 101
4.9 Clinical Suggestion 106
4.10 Future Plan 106
Chapter 5 Conclusion 108
REFERENCE 109
Appendix: Abbreviations 122
-
dc.language.isoen-
dc.subject可解釋模型zh_TW
dc.subject個案管理zh_TW
dc.subject深度學習zh_TW
dc.subject穿戴式裝置zh_TW
dc.subject恐慌發作zh_TW
dc.subject恐慌症zh_TW
dc.subjectdeep learning (DL)en
dc.subjectPanic disorder (PD)en
dc.subjectcase managementen
dc.subjectwearable deviceen
dc.subjectexplainable AI (XAI) modelen
dc.subjectpanic attack (PA)en
dc.title恐慌發作的預測與可解釋模型:運用穿戴式裝置及機器學習之研發與世代研究zh_TW
dc.titlePanic attack prediction and explainable model: development and cohort study using wearable devices and machine learningen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee薛智文;何弘能;許凱平;張鑾英;趙坤茂;林澤;簡意玲zh_TW
dc.contributor.oralexamcommitteeChih-Wen Hsueh;Hong-Nerng Ho;Kai-Ping Hsu;Luan-Yin Chang;Kun-Mao Chao;Che Lin;Yi-Ling Chienen
dc.subject.keyword恐慌症,恐慌發作,穿戴式裝置,深度學習,可解釋模型,個案管理,zh_TW
dc.subject.keywordPanic disorder (PD),panic attack (PA),wearable device,deep learning (DL),explainable AI (XAI) model,case management,en
dc.relation.page124-
dc.identifier.doi10.6342/NTU202302079-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2023-08-02-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept生醫電子與資訊學研究所-
dc.date.embargo-lift2025-07-25-
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
4.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved