請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89397完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李岳聯 | zh_TW |
| dc.contributor.advisor | Yueh-Lien Lee | en |
| dc.contributor.author | 陳偉豪 | zh_TW |
| dc.contributor.author | Wei-Hao Chen | en |
| dc.date.accessioned | 2023-09-07T16:50:21Z | - |
| dc.date.available | 2025-08-08 | - |
| dc.date.copyright | 2023-09-11 | - |
| dc.date.issued | 2023 | - |
| dc.date.submitted | 2023-08-09 | - |
| dc.identifier.citation | R. Hannappel, "The impact of global warming on the automotive industry," in AIP Conference Proceedings, 2017, vol. 1871, no. 1: AIP Publishing.
J. Zhao, X. Xi, Q. Na, S. Wang, S. N. Kadry, and P. M. Kumar, "The technological innovation of hybrid and plug-in electric vehicles for environment carbon pollution control," Environmental Impact Assessment Review, vol. 86, p. 106506, 2021. S. Das, "The life-cycle impacts of aluminum body-in-white automotive material," JOM, vol. 52, pp. 41-44, 2000. B. Liu, J. Yang, X. Zhang, Q. Yang, J. Zhang, and X. Li, "Development and application of magnesium alloy parts for automotive OEMs: A review," Journal of Magnesium and Alloys, 2023. S. Jayasathyakawin, M. Ravichandran, N. Baskar, C. A. Chairman, and R. Balasundaram, "Mechanical properties and applications of Magnesium alloy–Review," Materials Today: Proceedings, vol. 27, pp. 909-913, 2020. C. Moosbrugger, Engineering properties of magnesium alloys. ASM International, 2017. E. Aghion and B. Bronfin, "Magnesium alloys development towards the 21st century," in Materials Science Forum, 2000, vol. 350: Trans Tech Publ, pp. 19-30. M. Esmaily et al., "Fundamentals and advances in magnesium alloy corrosion," Progress in Materials Science, vol. 89, pp. 92-193, 2017. A. Atrens, G.-L. Song, F. Cao, Z. Shi, and P. K. Bowen, "Advances in Mg corrosion and research suggestions," Journal of Magnesium and Alloys, vol. 1, no. 3, pp. 177-200, 2013. L. Chang, "Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation," Journal of Alloys and Compounds, vol. 468, no. 1-2, pp. 462-465, 2009. R. Hussein, X. Nie, and D. Northwood, "An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing," Electrochimica Acta, vol. 112, pp. 111-119, 2013. S. Durdu and M. Usta, "Characterization and mechanical properties of coatings on magnesium by micro arc oxidation," Applied Surface Science, vol. 261, pp. 774-782, 2012. R. Hussein, P. Zhang, X. Nie, Y. Xia, and D. Northwood, "The effect of current mode and discharge type on the corrosion resistance of plasma electrolytic oxidation (PEO) coated magnesium alloy AJ62," Surface and Coatings Technology, vol. 206, no. 7, pp. 1990-1997, 2011. H. S. Ryu and S.-H. Hong, "Effects of KF, NaOH, and KOH electrolytes on properties of microarc-oxidized coatings on AZ91D magnesium alloy," Journal of The Electrochemical Society, vol. 156, no. 9, p. C298, 2009. L. Rama Krishna, G. Poshal, and G. Sundararajan, "Influence of electrolyte chemistry on morphology and corrosion resistance of micro arc oxidation coatings deposited on magnesium," Metallurgical and materials transactions A, vol. 41, pp. 3499-3508, 2010. T. S. Lim, H. S. Ryu, and S.-H. Hong, "Electrochemical corrosion properties of CeO2-containing coatings on AZ31 magnesium alloys prepared by plasma electrolytic oxidation," Corrosion Science, vol. 62, pp. 104-111, 2012. X. Lu, C. Blawert, Y. Huang, H. Ovri, M. L. Zheludkevich, and K. U. Kainer, "Plasma electrolytic oxidation coatings on Mg alloy with addition of SiO2 particles," Electrochimica Acta, vol. 187, pp. 20-33, 2016. X. Lu et al., "Plasma electrolytic oxidation coatings with particle additions–A review," Surface and Coatings Technology, vol. 307, pp. 1165-1182, 2016. M. Seyfi, A. Fattah-alhosseini, M. Pajohi-Alamoti, and E. Nikoomanzari, "Effect of ZnO nanoparticles addition to PEO coatings on AZ31B Mg alloy: antibacterial effect and corrosion behavior of coatings in Ringer’s physiological solution," Journal of Asian Ceramic Societies, vol. 9, no. 3, pp. 1114-1127, 2021. H. Park, Y. Park, W. Kim, and W. Choi, "Surface modification of TiO2 photocatalyst for environmental applications," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 15, pp. 1-20, 2013. L. Liu, H. Zhao, J. M. Andino, and Y. Li, "Photocatalytic CO2 reduction with H2O on TiO2 nanocrystals: Comparison of anatase, rutile, and brookite polymorphs and exploration of surface chemistry," Acs Catalysis, vol. 2, no. 8, pp. 1817-1828, 2012. S.-Y. Jian et al., "Correlation between electric parameters and microstructural properties of LZ91 Mg alloy coated by micro arc oxidation," Int. J. Electrochem. Sci, vol. 13, no. 6, pp. 5709-5722, 2018. H. E. Friedrich and B. L. Mordike, "Technology of magnesium and magnesium alloys," Magnesium Technology: Metallurgy, Design Data, Applications, pp. 219-430, 2006. B. Mordike and T. Ebert, "Magnesium: properties—applications—potential," Materials Science and Engineering: A, vol. 302, no. 1, pp. 37-45, 2001. K. U. Kainer, Magnesium alloys and technology. John Wiley & Sons, 2003. H. Moller, "Optimisation of the heat treatment cycles of CSIR semi-solid metal processed Al-7Si-Mg alloys A356/7," University of Pretoria, 2011. I. Polmear, "Magnesium alloys and applications," Materials science and technology, vol. 10, no. 1, pp. 1-16, 1994. A. Mishra, "Friction stir welding of dissimilar metal: a review," Available at SSRN 3104223, 2018. O. Lunder, J. Lein, T. K. Aune, and K. Nisancioglu, "The role of Mg17Al12 phase in the corrosion of Mg alloy AZ91," Corrosion, vol. 45, no. 9, pp. 741-748, 1989. R.-c. Zeng et al., "Review of studies on corrosion of magnesium alloys," Transactions of Nonferrous Metals Society of China, vol. 16, pp. s763-s771, 2006. M. Fatmi, A. Djemli, A. Ouali, T. Chihi, M. Ghebouli, and H. Belhouchet, "Heat treatment and kinetics of precipitation of β-Mg17Al12 phase in AZ91 alloy," Results in Physics, vol. 10, pp. 693-698, 2018. X. Min, W. Du, F. Xue, and Y. Sun, "Analysis of EET on Ca increasing the melting point of Mg 17 Al 12 phase," Chinese Science Bulletin, vol. 47, pp. 1082-1086, 2002. A. Srinivasan, J. Swaminathan, M. Gunjan, U. Pillai, and B. Pai, "Effect of intermetallic phases on the creep behavior of AZ91 magnesium alloy," Materials Science and Engineering: A, vol. 527, no. 6, pp. 1395-1403, 2010. S. Cai, T. Lei, N. Li, and F. Feng, "Effects of Zn on microstructure, mechanical properties and corrosion behavior of Mg–Zn alloys," Materials Science and Engineering: C, vol. 32, no. 8, pp. 2570-2577, 2012. M. Bamberger and G. Dehm, "Trends in the development of new Mg alloys," Annu. Rev. Mater. Res., vol. 38, pp. 505-533, 2008. P. Jiang, C. Blawert, and M. L. Zheludkevich, "The corrosion performance and mechanical properties of Mg-Zn based alloys—a review," Corrosion and Materials Degradation, vol. 1, no. 1, p. 7, 2020. C. Blawert et al., "Magnesium secondary alloys: Alloy design for magnesium alloys with improved tolerance limits against impurities," Corrosion Science, vol. 52, no. 7, pp. 2452-2468, 2010. E. McCafferty, Introduction to corrosion science. Springer Science & Business Media, 2010. L. L. Pesterfield, J. B. Maddox, M. S. Crocker, and G. K. Schweitzer, "Pourbaix (E–pH-M) diagrams in three dimensions," Journal of Chemical Education, vol. 89, no. 7, pp. 891-899, 2012. G. Makar and J. Kruger, "Corrosion of magnesium," International materials reviews, vol. 38, no. 3, pp. 138-153, 1993. G.-L. Song, "Corrosion behavior and prevention strategies for magnesium (Mg) alloys," in Corrosion prevention of magnesium alloys: Elsevier, 2013, pp. 3-37. G.-L. Song and M. Liu, "The effect of Mg alloy substrate on “electroless” E coating performance," Corrosion science, vol. 53, no. 11, pp. 3500-3508, 2011 D. A. Jones, "Principles and prevention," Corrosion, vol. 2, p. 168, 1996. F. Czerwinski, Magnesium alloys: corrosion and surface treatments. BoD–Books on Demand, 2011. L. Niu, Z. Jiang, G. Li, C. Gu, and J. Lian, "A study and application of zinc phosphate coating on AZ91D magnesium alloy," Surface and Coatings Technology, vol. 200, no. 9, pp. 3021-3026, 2006. T. Yin et al., "The process of electroplating with Cu on the surface of Mg–Li alloy," Surface and Coatings Technology, vol. 225, pp. 119-125, 2013. M. Kulkarni, A. Mazare, P. Schmuki, and A. Iglic, "Influence of anodization parameters on morphology of TiO2 nanostructured surfaces," Advanced Materials Letters, vol. 7, no. 1, pp. 23-28, 2016. K. Choy, "Chemical vapour deposition of coatings," Progress in materials science, vol. 48, no. 2, pp. 57-170, 2003. N. Sluginov, "On luminous phenomen, observed in liquids during electrolysis," Russ. Phys. Chem. Soc, vol. 12, pp. 193-203, 1880. D. Campbell, "Electrolytic capacitors," Radio and Electronic Engineer, vol. 41, no. 1, pp. 5-16, 1971. S. Brown, K. Kuna, and T. B. Van, "Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3," Journal of the American Ceramic Society, vol. 54, no. 8, pp. 384-390, 1971. A. Nikolaev, G. Markov, and B. Peshchevitskij, "Izv. SO AN SSSR. Ser. Khim. Nauk, 5," 1977. W. Xue, Z. Deng, R. Chen, and T. Zhang, "Growth regularity of ceramic coatings formed by microarc oxidation on Al–Cu–Mg alloy," Thin solid films, vol. 372, no. 1-2, pp. 114-117, 2000. F. Simchen, M. Sieber, A. Kopp, and T. Lampke, "Introduction to plasma electrolytic oxidation—An overview of the process and applications," Coatings, vol. 10, no. 7, p. 628, 2020. M. Klapkiv, O. Chuchmarev, P. Y. Sydor, and V. Posuvailo, "Thermodynamics of the interaction of aluminum, magnesium, and zirconium with components of an electrolytic plasma," Materials Science, vol. 36, no. 1, pp. 66-79, 2000. J. Jovović, S. Stojadinović, N. Šišović, and N. Konjević, "Spectroscopic study of plasma during electrolytic oxidation of magnesium-and aluminium-alloy," Journal of Quantitative Spectroscopy and Radiative Transfer, vol. 113, no. 15, pp. 1928-1937, 2012. T. W. Clyne and S. C. Troughton, "A review of recent work on discharge characteristics during plasma electrolytic oxidation of various metals," International materials reviews, vol. 64, no. 3, pp. 127-162, 2019. S. Ikonopisov, A. Girginov, and M. Machkova, "Electrical breaking down of barrier anodic films during their formation," Electrochimica Acta, vol. 24, no. 4, pp. 451-456, 1979. R. Nigam, K. Singh, and S. Maken, "Electrical breakdown phenomenon and electronic conduction during the anodic growth of Nb2O5," Canadian journal of chemistry, vol. 65, no. 3, pp. 512-517, 1987. S. Ikonopisov, "Theory of electrical breakdown during formation of barrier anodic films," Electrochimica Acta, vol. 22, no. 10, pp. 1077-1082, 1977. S. Stojadinović, R. Vasilić, and M. Perić, "Investigation of plasma electrolytic oxidation on valve metals by means of molecular spectroscopy–a review," RSC advances, vol. 4, no. 49, pp. 25759-25789, 2014. A. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. Dowey, "Plasma electrolysis for surface engineering," Surface and coatings technology, vol. 122, no. 2-3, pp. 73-93, 1999. R. O. Hussein and D. O. Northwood, "Production of anti-corrosion coatings on light alloys (Al, Mg, Ti) by plasma-electrolytic oxidation (PEO)," Developments in corrosion protection, pp. 201-239, 2014. R. Hussein, X. Nie, D. Northwood, A. Yerokhin, and A. Matthews, "Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process," Journal of Physics D: Applied Physics, vol. 43, no. 10, p. 105203, 2010. R. Hussein, X. Nie, and D. Northwood, "The application of plasma electrolytic oxidation (PEO) to the production of corrosion resistant coatings on magnesium alloys: a review," Corrosion and Materials, vol. 38, no. 1, pp. 55-65, 2013. T. S. Narayanan, I. S. Park, and M. H. Lee, "Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges," Progress in Materials Science, vol. 60, pp. 1-71, 2014. H. Wang, L. Zhu, and B. Xu, Residual stresses and nanoindentation testing of films and coatings. Springer, 2018. G. B. Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, "Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications," Journal of Magnesium and Alloys, vol. 5, no. 1, pp. 74-132, 2017. L. Besra and M. Liu, "A review on fundamentals and applications of electrophoretic deposition (EPD)," Progress in materials science, vol. 52, no. 1, pp. 1-61, 2007. V. Novotny, "Contributions of particles to electrical conductivity of colloids," Colloids and surfaces, vol. 21, pp. 219-233, 1986. Z. Yu et al., "Incorporation mechanism of ZnO nanoparticles in PEO coating on 1060 Al alloy," Surface and Coatings Technology, vol. 412, p. 127068, 2021. V. Dehnavi, B. L. Luan, D. W. Shoesmith, X. Y. Liu, and S. Rohani, "Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior," Surface and Coatings Technology, vol. 226, pp. 100-107, 2013. B. Salami, A. Afshar, and A. Mazaheri, "The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid," Journal of Magnesium and Alloys, vol. 2, no. 1, pp. 72-77, 2014. M. O'Hara, S. Troughton, R. Francis, and T. Clyne, "The incorporation of particles suspended in the electrolyte into plasma electrolytic oxidation coatings on Ti and Al substrates," Surface and Coatings Technology, vol. 385, p. 125354, 2020. W. Li, M. Tang, L. Zhu, and H. Liu, "Formation of microarc oxidation coatings on magnesium alloy with photocatalytic performance," Applied Surface Science, vol. 258, no. 24, pp. 10017-10021, 2012. A. Fattah-alhosseini, R. Chaharmahali, and K. Babaei, "Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review," Journal of Magnesium and Alloys, vol. 8, no. 3, pp. 799-818, 2020. B. Kazanski, A. Kossenko, M. Zinigrad, and A. Lugovskoy, "Fluoride ions as modifiers of the oxide layer produced by plasma electrolytic oxidation on AZ91D magnesium alloy," Applied surface science, vol. 287, pp. 461-466, 2013. X. Lu, C. Blawert, M. L. Zheludkevich, and K. U. Kainer, "Insights into plasma electrolytic oxidation treatment with particle addition," Corrosion Science, vol. 101, pp. 201-207, 2015. B. Han, Y. Yang, J. Li, H. Deng, and C. Yang, "Effects of the graphene additive on the corrosion resistance of the plasma electrolytic oxidation (PEO) coating on the AZ91 magnesium alloy," International Journal of Electrochemical Science, vol. 13, no. 9, pp. 9166-9182, 2018. C. H. Gür and A. Ozturk, "Determination of the influence of TiO2 on the elastic properties of a mica based glass ceramic by ultrasonic velocity measurements," Journal of non-crystalline solids, vol. 351, no. 46-48, pp. 3655-3662, 2005. Z. Zheng et al., "Corrosion behavior of a self-sealing coating containing CeO2 particles on pure Mg produced by micro-arc oxidation," Surface and Coatings Technology, vol. 386, p. 125456, 2020. R. O. Hussein, "Plasma Process Control for Improved PEO Coatings on Magnesium Alloys," 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89397 | - |
| dc.description.abstract | 鎂合金作為新一代的綠色材料,具有比強度高以及加工性良好等特性,廣泛應用於汽車、航空等工業應用領域。然而,鎂合金的化學活性高,抵抗腐蝕能力低,在極端環境使用中也因此受到限制,故而必須施以適當的表面改質。
在各種表面改質技術中,微弧氧化能夠在鎂合金上形成陶瓷氧化層,並藉此提升抗腐蝕和耐磨耗能力。雖然能夠有效提升鎂合金的抗腐蝕能力,但是微弧氧化層本身具有多孔結構,仍然可能讓腐蝕因子得以擴散接觸底材進而發生腐蝕。因此,為了改善微弧氧化層的多孔特性,本研究在含氟之矽酸鹽電解液系統中添加不同濃度 2.5、5.0、7.5 g/L 之奈米氧化鈦顆粒,並就製程參數對所生成微弧氧化層之抗蝕能力、微結構、化學組成及光催化效應等進行深入的探討。 根據實驗結果,隨著電解液中奈米氧化鈦顆粒濃度的增加,微弧氧化層中Rutile相含量也隨之提升,在硬度提升的同時,表面顏色也會由原先未添加奈米顆粒的白色轉為灰黑色。雖然低濃度2.5g/L的奈米氧化鈦顆粒對微弧氧化層的抗腐蝕能力並未有顯著影響,但添加高濃度7.5g/L的奈米氧化鈦顆粒可以有效填補鎂合金微弧氧化層表面之孔洞,並藉此在AZ31鎂合金表面生成具有良好障蔽保護效果之微弧氧化層,進而提升其抗腐蝕能力,同時由磨耗試驗得知,添加低濃度2.5 g/L的氧化鈦顆粒對於膜層具有提升抗磨耗能力之功用。 關鍵字: 鎂合金、微弧氧化、奈米氧化鈦顆粒、抗腐蝕測試、磨耗測試 | zh_TW |
| dc.description.abstract | As one of the green materials, magnesium alloys are known for their high specific strength and good workability, and thus widely used in various industrial fields, especially in automobiles and aircraft. However, magnesium alloys tend to suffer severe corrosion due to their high chemical activity, which calls for proper surface modification. Among various surface modification processes, micro-arc oxidation (MAO) can form a ceramic oxide layer on magnesium alloys to improve their corrosion resistance and wear resistance. Nonetheless, even with the elevated corrosion resistance,the porous structure of MAO coating still leaves a diffusion path for corrosive species to penetrate through the coating and react with the substrate. Therefore, in order to modify the microstructural defects in the MAO coatings, this study investigates the effect of TiO2 nanoparticle addition on the MAO process operated in a fluoride containing silicate electrolyte system, including corrosion resistance, microstructure, chemical composition, and photocatalytic effect of the coatings.
The preliminary experimental results showed that the increase in the concentration of TiO2 nanoparticles increased the number of Rutile-TiO2 in the MAO coating, which results in both an elevated hardness and a change in color from white to gray-black. As observed in electrochemical impedance spectroscopy (EIS), the addition of 2.5g/L TiO2 of nanoparticle exhibits no significant influence on the corrosion resistance and the total impedance is around 107 kΩcm2. However, the coating formed with a high concentration 7.5g/L of TiO2 nanoparticles performs better corrosion resistance which elevates the total impedance to over 600 kΩcm2 and the defects within are effectively reduced. In addition, low concentration of 2.5 g/L TiO2 exhibits the improve the wear resistance property. Keywords: Magnesium alloy, micro-arc oxidation, TiO2 nanoparticles, EIS, wear resistance. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-07T16:50:21Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2023-09-07T16:50:21Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 圖目錄 viii 表目錄 xi 第一章 前言 1 第二章 文獻回顧 3 2.1 鎂與鎂合金 3 2.1.1 鎂合金性質與發展 3 2.1.2 鎂合金分類牌號 4 2.2 鎂合金系統: 7 2.2.1 鎂鋁合金系統 8 2.2.2 鎂鋅合金系統 10 2.3 鎂合金腐蝕 11 2.3.1 影響鎂腐蝕的因素 15 2.4 鎂合金表面處理 18 2.4.1 化成處理 (Conversion coating) 18 2.4.2 電鍍/無電鍍處理 (Electroplating/Electroless plating) 18 2.4.3 陽極處理 (Anodizing) 18 2.4.4 物理氣相沉積法 (Chemical vapour deposition) 19 2.4.5 微弧氧化 (Micro-arc oxidation) 19 2.5 微弧氧化 20 2.5.1 微弧氧化性質與發展 20 2.5.2 微弧氧化原理 21 2.5.3 崩潰電位理論 23 2.5.4 影響放電現象因子 26 2.5.5 微弧氧化的放電特性 29 2.5.6 微弧氧化膜層生長機制 32 2.5.7 微弧氧化膜層結構 36 第三章 實驗方法與討論 38 3.1 實驗流程 38 3.2 試片前處理 39 3.3 微弧氧化設備與製程參數設定 40 3.4 微弧氧化膜層微觀分析 45 3.4.1 掃描式電子顯微鏡 (Scanning Electron Microscopy, SEM) 45 3.5 微弧氧化膜層巨觀分析 46 3.5.1 粗糙度分析 46 3.5.2 表面硬度測試 46 3.5.3 光催化測試 48 3.6 微弧氧化膜層成分分析 49 3.6.1 X光繞射分析儀(X-ray Diffraction, XRD) 49 3.6.2 X光電子能譜分析 (X-ray photoelectron spectroscopy, XPS) 50 3.7 腐蝕測試 50 3.7.1 交流阻抗分析(Electrochemical Impedance Spectroscopy, EIS) 51 3.7.2 動電位極化曲線分析(Potentiodynamic Polarization) 51 3.8 磨耗性質分析 52 3.8.1 Ball-on-Disk 磨耗測試機 52 3.8.2 白光干涉儀(White light interferometer) 52 第四章 結果與討論 53 4.1 電壓與時間曲線圖: 53 4.2 表面微觀結構與特徵分析: 56 4.3 橫截面微觀結構: 60 4.4 成分分析: 62 4.5 腐蝕性質分析 69 4.6 磨耗性質分析 74 4.7 光催化性質分析 76 第五章 結論 78 參考文獻 80 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 鎂合金 | zh_TW |
| dc.subject | 奈米氧化鈦顆粒 | zh_TW |
| dc.subject | 微弧氧化 | zh_TW |
| dc.subject | 抗腐蝕測試 | zh_TW |
| dc.subject | 磨耗測試 | zh_TW |
| dc.subject | micro-arc oxidation | en |
| dc.subject | TiO2 nanoparticles | en |
| dc.subject | EIS | en |
| dc.subject | Magnesium alloy | en |
| dc.subject | wear resistance | en |
| dc.title | 奈米氧化鈦顆粒對AZ31鎂合金微弧氧化膜層腐蝕、磨耗以及光催化性能之影響 | zh_TW |
| dc.title | Effect of TiO2 nanoparticles on the corrosion resistance, wear, and photocatalytic of micro arc oxidation coatings applied on AZ31 magnesium alloy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 111-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 楊舜涵;鄭憶中;簡順億 | zh_TW |
| dc.contributor.oralexamcommittee | Shun-Han Yang;Yi-Zhong Zheng;Shun-Yi Jian | en |
| dc.subject.keyword | 鎂合金,微弧氧化,奈米氧化鈦顆粒,抗腐蝕測試,磨耗測試, | zh_TW |
| dc.subject.keyword | Magnesium alloy,micro-arc oxidation,TiO2 nanoparticles,EIS,wear resistance, | en |
| dc.relation.page | 88 | - |
| dc.identifier.doi | 10.6342/NTU202303548 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2023-08-10 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工程科學及海洋工程學系 | - |
| dc.date.embargo-lift | 2025-08-08 | - |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-111-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 5.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
