請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89208
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蔡錦華 | zh_TW |
dc.contributor.advisor | Ching-Hwa Tsai | en |
dc.contributor.author | 林子強 | zh_TW |
dc.contributor.author | Zi-Qiang Lin | en |
dc.date.accessioned | 2023-09-05T16:06:52Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-09-05 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-08-02 | - |
dc.identifier.citation | Ahsan, N., Kanda, T., Nagashima, K., & Takada, K. (2005). Epstein-Barr virus transforming protein LMP1 plays a critical role in virus production. Journal of Virology, 79(7), 4415-4424. https://doi.org/10.1128/Jvi.79.7.4415-4424.2005
Alizadeh, Ash A., Eisen, Michael B., Davis, R. Eric, Ma, Chi, Lossos, Izidore S., Rosenwald, Andreas, Boldrick, Jennifer C., Sabet, Hajeer, Tran, Truc, Yu, Xin, Powell, John I., Yang, Liming, Marti, Gerald E., Moore, Troy, Hudson, James, Lu, Lisheng, Lewis, David B., Tibshirani, Robert, Sherlock, Gavin, . . . Staudt, Louis M. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503-511. https://doi.org/10.1038/35000501 Anastasiadou, E., Stroopinsky, D., Alimperti, S., Jiao, A. L., Pyzer, A. R., Cippitelli, C., Pepe, G., Severa, M., Rosenblatt, J., Etna, M. P., Rieger, S., Kempkes, B., Coccia, E. M., Sui, S. J. H., Chen, C. S., Uccini, S., Avigan, D., Faggioni, A., Trivedi, P., & Slack, F. J. (2019). Epstein-Barr virus-encoded EBNA2 alters immune checkpoint PD-L1 expression by downregulating miR-34a in B-cell lymphomas. Leukemia, 33(1), 132-147. https://doi.org/10.1038/s41375-018-0178-x Babcock, Gregory J., Decker, Lisa L., Volk, Mark, & Thorley-Lawson, David A. (1998). EBV Persistence in Memory B Cells In Vivo. Immunity, 9(3), 395-404. https://doi.org/https://doi.org/10.1016/S1074-7613(00)80622-6 Baer, R., Bankier, A. T., Biggin, M. D., Deininger, P. L., Farrell, P. J., Gibson, T. J., Hatfull, G., Hudson, G. S., Satchwell, S. C., Séguin, C., Tuffnell, P. S., & Barrell, B. G. (1984). DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature, 310(5974), 207-211. https://doi.org/10.1038/310207a0 Balkwill, Frances R., Capasso, Melania, & Hagemann, Thorsten. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125(23), 5591-5596. https://doi.org/10.1242/jcs.116392 Barrett, Tanya, Wilhite, Stephen E., Ledoux, Pierre, Evangelista, Carlos, Kim, Irene F., Tomashevsky, Maxim, Marshall, Kimberly A., Phillippy, Katherine H., Sherman, Patti M., Holko, Michelle, Yefanov, Andrey, Lee, Hyeseung, Zhang, Naigong, Robertson, Cynthia L., Serova, Nadezhda, Davis, Sean, & Soboleva, Alexandra. (2012). NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research, 41(D1), D991-D995. https://doi.org/10.1093/nar/gks1193 Bauer, M., Jasinski-Bergner, S., Mandelboim, O., Wickenhauser, C., & Seliger, B. (2021). Epstein-Barr Virus-Associated Malignancies and Immune Escape: The Role of the Tumor Microenvironment and Tumor Cell Evasion Strategies. Cancers (Basel), 13(20). https://doi.org/10.3390/cancers13205189 Bjornevik, Kjetil, Cortese, Marianna, Healy, Brian C., Kuhle, Jens, Mina, Michael J., Leng, Yumei, Elledge, Stephen J., Niebuhr, David W., Scher, Ann I., Munger, Kassandra L., & Ascherio, Alberto. (2022). Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science, 375(6578), 296-301. https://doi.org/doi:10.1126/science.abj8222 Boussiotis, V. A. (2016). Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N Engl J Med, 375(18), 1767-1778. https://doi.org/10.1056/NEJMra1514296 Brockhoff, Gero, Seitz, Stephan, Weber, Florian, Zeman, Florian, Klinkhammer-Schalke, Monika, Ortmann, Olaf, & Wege, Anja. (2017). The presence of PD-1 positive tumor infiltrating lymphocytes in triple negative breast cancers is associated with a favorable outcome of disease. Oncotarget, 9. https://doi.org/10.18632/oncotarget.23717 Caldwell, R. G., Wilson, J. B., Anderson, S. J., & Longnecker, R. (1998). Epstein-Barr virus LMP2A drives B cell development and survival in the absence of normal B cell receptor signals. Immunity, 9(3), 405-411. https://doi.org/10.1016/s1074-7613(00)80623-8 Chang, Y., Tung, C. H., Huang, Y. T., Lu, J., Chen, J. Y., & Tsai, C. H. (1999). Requirement for Cell-to-Cell Contact in Epstein-Barr Virus Infection of Nasopharyngeal Carcinoma Cells and Keratinocytes. Journal of Virology, 73(10), 8857-8866. https://doi.org/doi:10.1128/jvi.73.10.8857-8866.1999 Chen, J., Jiang, C. C., Jin, L., & Zhang, X. D. (2016). Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol, 27(3), 409-416. https://doi.org/10.1093/annonc/mdv615 Chen, Yu-Pei, Chan, Anthony T. C., Le, Quynh-Thu, Blanchard, Pierre, Sun, Ying, & Ma, Jun. (2019). Nasopharyngeal carcinoma. The Lancet, 394(10192), 64-80. https://doi.org/10.1016/s0140-6736(19)30956-0 Chou, Y. C., Lin, S. J., Lu, J., Yeh, T. H., Chen, C. L., Weng, P. L., Lin, J. H., Yao, M., & Tsai, C. H. (2011). Requirement for LMP1-induced RON receptor tyrosine kinase in Epstein-Barr virus-mediated B-cell proliferation. Blood, 118(5), 1340-1349. https://doi.org/10.1182/blood-2011-02-335448 Cristescu, R., Lee, J., Nebozhyn, M., Kim, K. M., Ting, J. C., Wong, S. S., Liu, J., Yue, Y. G., Wang, J., Yu, K., Ye, X. S., Do, I. G., Liu, S., Gong, L., Fu, J., Jin, J. G., Choi, M. G., Sohn, T. S., Lee, J. H., . . . Aggarwal, A. (2015). Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med, 21(5), 449-456. https://doi.org/10.1038/nm.3850 Dias, J. M., Santana, I. V. V., da Silva, V. D., Carvalho, A. L., & Arantes, Lmrb. (2022). Analysis of Epstein-Barr Virus (EBV) and PD-L1 Expression in Nasopharyngeal Carcinoma Patients in a Non-Endemic Region. Int J Mol Sci, 23(19). https://doi.org/10.3390/ijms231911720 Dodd, L. E., Sengupta, S., Chen, I. H., den Boon, J. A., Cheng, Y. J., Westra, W., Newton, M. A., Mittl, B. F., McShane, L., Chen, C. J., Ahlquist, P., & Hildesheim, A. (2006). Genes involved in DNA repair and nitrosamine metabolism and those located on chromosome 14q32 are dysregulated in nasopharyngeal carcinoma. Cancer Epidemiol Biomarkers Prev, 15(11), 2216-2225. https://doi.org/10.1158/1055-9965.Epi-06-0455 Dong, Haidong, Zhu, Gefeng, Tamada, Koji, & Chen, Lieping. (1999). B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine, 5(12), 1365-1369. https://doi.org/10.1038/70932 Epstein, M. A., Achong, B. G., & Barr, Y. M. (1964). VIRUS PARTICLES IN CULTURED LYMPHOBLASTS FROM BURKITT'S LYMPHOMA. Lancet, 1(7335), 702-703. https://doi.org/10.1016/s0140-6736(64)91524-7 Fang, Wenfeng, Zhang, Jianwei, Hong, Shaodong, Zhan, Jianhua, Chen, Nan, Qin, Tao, Tang, Yanna, Zhang, Yaxiong, Kang, Shiyang, Zhou, Ting, Wu, Xuan, Liang, Wenhua, Hu, Zhihuang, Ma, Yuxiang, Zhao, Yuanyuan, Tian, Ying, Yang, Yunpeng, Xue, Cong, Yan, Yue, . . . Zhang, Li. (2014). EBV-driven LMP1 and IFN-γ up-regulate PD-L1 in nasopharyngeal carcinoma: Implications for oncotargeted therapy. Oncotarget, 5(23). https://www.oncotarget.com/article/2608/text/ Farrell, Paul J. (2019). Epstein–Barr Virus and Cancer. Annual Review of Pathology: Mechanisms of Disease, 14(1), 29-53. https://doi.org/10.1146/annurev-pathmechdis-012418-013023 Feederle, R., Kost, M., Baumann, M., Janz, A., Drouet, E., Hammerschmidt, W., & Delecluse, H. J. (2000). The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. Embo j, 19(12), 3080-3089. https://doi.org/10.1093/emboj/19.12.3080 Goodman, A., Patel, S. P., & Kurzrock, R. (2017). PD-1-PD-L1 immune-checkpoint blockade in B-cell lymphomas. Nat Rev Clin Oncol, 14(4), 203-220. https://doi.org/10.1038/nrclinonc.2016.168 Granai, M., Mundo, L., Akarca, A. U., Siciliano, M. C., Rizvi, H., Mancini, V., Onyango, N., Nyagol, J., Abinya, N. O., Maha, I., Margielewska, S., Wi, W., Bibas, M., Piccaluga, P. P., Quintanilla-Martinez, L., Fend, F., Lazzi, S., Leoncini, L., & Marafioti, T. (2020). Immune landscape in Burkitt lymphoma reveals M2-macrophage polarization and correlation between PD-L1 expression and non-canonical EBV latency program. Infect Agent Cancer, 15, 28. https://doi.org/10.1186/s13027-020-00292-w Gu, L., Chen, M., Guo, D., Zhu, H., Zhang, W., Pan, J., Zhong, X., Li, X., Qian, H., & Wang, X. (2017). PD-L1 and gastric cancer prognosis: A systematic review and meta-analysis. PLoS One, 12(8), e0182692. https://doi.org/10.1371/journal.pone.0182692 Henkel, Thomas, Ling, Paul D., Hayward, S. Diane, & Peterson, Michael Gregory. (1994). Mediation of Epstein-Barr Virus EBNA2 Transactivation by Recombination Signal-Binding Protein Jκ. Science, 265(5168), 92-95. https://doi.org/doi:10.1126/science.8016657 Henle, G., Henle, W., & Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proc Natl Acad Sci U S A, 59(1), 94-101. https://doi.org/10.1073/pnas.59.1.94 Herbst, Roy S., Soria, Jean-Charles, Kowanetz, Marcin, Fine, Gregg D., Hamid, Omid, Gordon, Michael S., Sosman, Jeffery A., McDermott, David F., Powderly, John D., Gettinger, Scott N., Kohrt, Holbrook E. K., Horn, Leora, Lawrence, Donald P., Rost, Sandra, Leabman, Maya, Xiao, Yuanyuan, Mokatrin, Ahmad, Koeppen, Hartmut, Hegde, Priti S., . . . Hodi, F. Stephen. (2014). Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 515(7528), 563-567. https://doi.org/10.1038/nature14011 Huang, Y. T., Liu, M. Y., Tsai, C. H., & Yeh, T. H. (2010). Upregulation of interleukin-1 by Epstein-Barr virus latent membrane protein 1 and its possible role in nasopharyngeal carcinoma cell growth. Head Neck, 32(7), 869-876. https://doi.org/10.1002/hed.21270 Huang, Ya-Chi, Lin, Sue-Jane, Lin, Kai-Min, Chou, Ya-Ching, Lin, Chung-Wu, Yu, Shan-Chi, Chen, Chi-Long, Shen, Tang-Long, Chen, Chi-Kuan, Lu, Jean, Chen, Mei-Ru, & Tsai, Ching-Hwa. (2016). Regulation of EBV LMP1-triggered EphA4 downregulation in EBV-associated B lymphoma and its impact on patients’ survival. Blood, 128(12), 1578-1589. https://doi.org/10.1182/blood-2016-02-702530 Huang, Z. L., Liu, S., Wang, G. N., Zheng, S. H., Ding, S. R., Tao, Y. L., Chen, C., Liu, S. R., Yang, X., Chang, H., Wang, X. H., & Xia, Y. F. (2019). The prognostic significance of PD-L1 and PD-1 expression in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis. Cancer Cell Int, 19, 141. https://doi.org/10.1186/s12935-019-0863-5 Imai, S., Nishikawa, J., & Takada, K. (1998). Cell-to-cell contact as an efficient mode of Epstein-Barr virus infection of diverse human epithelial cells. J Virol, 72(5), 4371-4378. https://doi.org/10.1128/jvi.72.5.4371-4378.1998 Imai, Shosuke, Nishikawa, Jun, & Takada, Kenzo. (1998). Cell-to-Cell Contact as an Efficient Mode of Epstein-Barr Virus Infection of Diverse Human Epithelial Cells. Journal of Virology, 72(5), 4371-4378. https://doi.org/doi:10.1128/jvi.72.5.4371-4378.1998 Küppers, Ralf. (2009). The biology of Hodgkin's lymphoma. Nature Reviews Cancer, 9(1), 15-27. https://doi.org/10.1038/nrc2542 Kenney., Shannon C. (2007). Reactivation and lytic replication of EBV. In Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press. Kieff, Elliott D., & Rickinson, Alan B. (2007). Epstein-Barr Virus and Its Replication. In P. M. h. David M. Knipe (Ed.), Fields Virology,5th Edition (Vol. 2). Kim, D. H., Bae, G. E., Suh, K. S., Ryuman, D., Song, K. S., Kim, J. S., Lee, S. I., & Yeo, M. K. (2020). Clinical Significance of Tumor and Immune Cell PD-L1 Expression in Gastric Adenocarcinoma. In Vivo, 34(6), 3171-3180. https://doi.org/10.21873/invivo.12152 Lai, K. Y., Chou, Y. C., Lin, J. H., Liu, Y., Lin, K. M., Doong, S. L., Chen, M. R., Yeh, T. H., Lin, S. J., & Tsai, C. H. (2015). Maintenance of Epstein-Barr Virus Latent Status by a Novel Mechanism, Latent Membrane Protein 1-Induced Interleukin-32, via the Protein Kinase Cδ Pathway. J Virol, 89(11), 5968-5980. https://doi.org/10.1128/jvi.00168-15 Lenz, G., Wright, G., Dave, S. S., Xiao, W., Powell, J., Zhao, H., Xu, W., Tan, B., Goldschmidt, N., Iqbal, J., Vose, J., Bast, M., Fu, K., Weisenburger, D. D., Greiner, T. C., Armitage, J. O., Kyle, A., May, L., Gascoyne, R. D., . . . Staudt, L. M. (2008). Stromal gene signatures in large-B-cell lymphomas. N Engl J Med, 359(22), 2313-2323. https://doi.org/10.1056/NEJMoa0802885 Levin, Lynn I., Munger, Kassandra L., O'Reilly, Eilis J., Falk, Kerstin I., & Ascherio, Alberto. (2010). Primary infection with the Epstein-Barr virus and risk of multiple sclerosis. Annals of Neurology, 67(6), 824-830. https://doi.org/https://doi.org/10.1002/ana.21978 Li, Q., Spriggs, M. K., Kovats, S., Turk, S. M., Comeau, M. R., Nepom, B., & Hutt-Fletcher, L. M. (1997). Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol, 71(6), 4657-4662. https://doi.org/10.1128/jvi.71.6.4657-4662.1997 Lin, K.T. (2011). EB病毒感染B細胞之基因表現圖譜 = Gene expression profile of EBV-infected B cells / 林冠廷(Kuan-Ting Lin)[撰] 碩士論文--國立臺灣大學微生物學研究所]. Liu, Yuting, Zugazagoitia, Jon, Ahmed, Fahad Shabbir, Henick, Brian S., Gettinger, Scott N., Herbst, Roy S., Schalper, Kurt A., & Rimm, David L. (2020). Immune Cell PD-L1 Colocalizes with Macrophages and Is Associated with Outcome in PD-1 Pathway Blockade Therapy. Clinical Cancer Research, 26(4), 970-977. https://doi.org/10.1158/1078-0432.Ccr-19-1040 Longnecker, Richard M., Kieff, Elliott, & Cohen, Jeffrey I. (2013). Epstein-Barr Virus. In P. M. h. David M. Knipe (Ed.), Fields Virology,6th Edition. Lu, J., Chen, S. Y., Chua, H. H., Liu, Y. S., Huang, Y. T., Chang, Y., Chen, J. Y., Sheen, T. S., & Tsai, C. H. (2000). Upregulation of tyrosine kinase TKT by the Epstein-Barr virus transactivator Zta. J Virol, 74(16), 7391-7399. https://doi.org/10.1128/jvi.74.16.7391-7399.2000 Lu, J., Lin, W. H., Chen, S. Y., Longnecker, R., Tsai, S. C., Chen, C. L., & Tsai, C. H. (2006). Syk tyrosine kinase mediates Epstein-Barr virus latent membrane protein 2A-induced cell migration in epithelial cells. J Biol Chem, 281(13), 8806-8814. https://doi.org/10.1074/jbc.M507305200 Luka, Janos, Kallin, Bengt, & Klein, George. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94(1), 228-231. McCord, R., Bolen, C. R., Koeppen, H., Kadel, E. E., 3rd, Oestergaard, M. Z., Nielsen, T., Sehn, L. H., & Venstrom, J. M. (2019). PD-L1 and tumor-associated macrophages in de novo DLBCL. Blood Adv, 3(4), 531-540. https://doi.org/10.1182/bloodadvances.2018020602 Meier, A., Bagchi, A., Sidhu, H. K., Alter, G., Suscovich, T. J., Kavanagh, D. G., Streeck, H., Brockman, M. A., LeGall, S., Hellman, J., & Altfeld, M. (2008). Upregulation of PD-L1 on monocytes and dendritic cells by HIV-1 derived TLR ligands. AIDS, 22(5), 655-658. https://doi.org/10.1097/QAD.0b013e3282f4de23 Molyneux, Elizabeth M., Rochford, Rosemary, Griffin, Beverly, Newton, Robert, Jackson, Graham, Menon, Geetha, Harrison, Christine J., Israels, Trijn, & Bailey, Simon. (2012). Burkitt's lymphoma. The Lancet, 379(9822), 1234-1244. https://doi.org/https://doi.org/10.1016/S0140-6736(11)61177-X Munz, C. (2019). Latency and lytic replication in Epstein-Barr virus-associated oncogenesis. Nat Rev Microbiol, 17(11), 691-700. https://doi.org/10.1038/s41579-019-0249-7 Newman, Aaron M., Steen, Chloé B., Liu, Chih Long, Gentles, Andrew J., Chaudhuri, Aadel A., Scherer, Florian, Khodadoust, Michael S., Esfahani, Mohammad S., Luca, Bogdan A., Steiner, David, Diehn, Maximilian, & Alizadeh, Ash A. (2019). Determining cell type abundance and expression from bulk tissues with digital cytometry. Nature Biotechnology, 37(7), 773-782. https://doi.org/10.1038/s41587-019-0114-2 Odumade, O. A., Hogquist, K. A., & Balfour, H. H., Jr. (2011). Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev, 24(1), 193-209. https://doi.org/10.1128/cmr.00044-10 Ooft, Marc L., van Ipenburg, Jolique A., Braunius, Weibel W., Zuur, Charlotte I., Koljenović, Senada, & Willems, Stefan M. (2017). Prognostic role of tumor infiltrating lymphocytes in EBV positive and EBV negative nasopharyngeal carcinoma. Oral Oncology, 71, 16-25. https://doi.org/https://doi.org/10.1016/j.oraloncology.2017.05.015 Pan, Yueyun, Yu, Yinda, Wang, Xiaojian, & Zhang, Ting. (2020). Tumor-Associated Macrophages in Tumor Immunity [Review]. Frontiers in Immunology, 11. https://doi.org/10.3389/fimmu.2020.583084 Qiu, L., Zheng, H., & Zhao, X. (2019). The prognostic and clinicopathological significance of PD-L1 expression in patients with diffuse large B-cell lymphoma: a meta-analysis. BMC Cancer, 19(1), 273. https://doi.org/10.1186/s12885-019-5466-y Rickinson, Alan B., & Kieff, Elliott. (2007). Epstein-Barr Virus. In P. M. h. David M. Knipe (Ed.), Fields Virology,5th Edition (Vol. 2). Robinson, William H., & Steinman, Lawrence. (2022). Epstein-Barr virus and multiple sclerosis. Science, 375(6578), 264-265. https://doi.org/doi:10.1126/science.abm7930 Sehn, L. H., & Salles, G. (2021). Diffuse Large B-Cell Lymphoma. N Engl J Med, 384(9), 842-858. https://doi.org/10.1056/NEJMra2027612 Sherman, B. T., Hao, M., Qiu, J., Jiao, X., Baseler, M. W., Lane, H. C., Imamichi, T., & Chang, W. (2022). DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res, 50(W1), W216-w221. https://doi.org/10.1093/nar/gkac194 Smith, Stephen D., Till, Brian G., Shadman, Mazyar S., Lynch, Ryan C., Cowan, Andrew J., Wu, Qian V., Voutsinas, Jenna, Rasmussen, Heather A., Blue, Katherine, Ujjani, Chaitra S., Shustov, Andrei, Cassaday, Ryan D., Fromm, Jonathan R., & Gopal, Ajay K. (2020). Pembrolizumab with R-CHOP in previously untreated diffuse large B-cell lymphoma: potential for biomarker driven therapy. British Journal of Haematology, 189(6), 1119-1126. https://doi.org/https://doi.org/10.1111/bjh.16494 Smyth, Elizabeth C., Nilsson, Magnus, Grabsch, Heike I., van Grieken, Nicole C. T., & Lordick, Florian. (2020). Gastric cancer. The Lancet, 396(10251), 635-648. https://doi.org/https://doi.org/10.1016/S0140-6736(20)31288-5 Solinas, G., Germano, G., Mantovani, A., & Allavena, P. (2009). Tumor-associated macrophages (TAM) as major players of the cancer-related inflammation. Journal of Leukocyte Biology, 86(5), 1065-1073. https://doi.org/https://doi.org/10.1189/jlb.0609385 Steidl, C., Lee, T., Shah, S. P., Farinha, P., Han, G., Nayar, T., Delaney, A., Jones, S. J., Iqbal, J., Weisenburger, D. D., Bast, M. A., Rosenwald, A., Muller-Hermelink, H. K., Rimsza, L. M., Campo, E., Delabie, J., Braziel, R. M., Cook, J. R., Tubbs, R. R., . . . Gascoyne, R. D. (2010). Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med, 362(10), 875-885. https://doi.org/10.1056/NEJMoa0905680 Sumitomo, R., Hirai, T., Fujita, M., Murakami, H., Otake, Y., & Huang, C. L. (2019). PD-L1 expression on tumor-infiltrating immune cells is highly associated with M2 TAM and aggressive malignant potential in patients with resected non-small cell lung cancer. Lung Cancer, 136, 136-144. https://doi.org/10.1016/j.lungcan.2019.08.023 Sun, L., Wang, Q., Chen, B., Zhao, Y., Shen, B., Wang, H., Xu, J., Zhu, M., Zhao, X., Xu, C., Chen, Z., Wang, M., Xu, W., & Zhu, W. (2018). Gastric cancer mesenchymal stem cells derived IL-8 induces PD-L1 expression in gastric cancer cells via STAT3/mTOR-c-Myc signal axis. Cell Death Dis, 9(9), 928. https://doi.org/10.1038/s41419-018-0988-9 Takada, K. (1984). Cross-linking of cell surface immunoglobulins induces Epstein-Barr virus in Burkitt lymphoma lines. Int J Cancer, 33(1), 27-32. https://doi.org/10.1002/ijc.2910330106 Tan, Geok Wee, Visser, Lydia, Tan, Lu Ping, Berg, Anke Van den, & Diepstra, Arjan. (2018). The Microenvironment in Epstein–Barr Virus-Associated Malignancies. Pathogens, 7(2), 40. https://www.mdpi.com/2076-0817/7/2/40 Tanner, J., Weis, J., Fearon, D., Whang, Y., & Kieff, E. (1987). Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell, 50(2), 203-213. https://doi.org/10.1016/0092-8674(87)90216-9 Tsai, S. C., Lin, S. J., Chen, P. W., Luo, W. Y., Yeh, T. H., Wang, H. W., Chen, C. J., & Tsai, C. H. (2009a). EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood, 114(1), 109-118. https://doi.org/10.1182/blood-2008-12-193375 Tsai, S. C., Lin, S. J., Chen, P. W., Luo, W. Y., Yeh, T. H., Wang, H. W., Chen, C. J., & Tsai, C. H. (2009b). EBV Zta protein induces the expression of interleukin-13, promoting the proliferation of EBV-infected B cells and lymphoblastoid cell lines. Blood, 114(1), 109-118. https://doi.org/10.1182/blood-2008-12-193375 Tsai, S. C., Lin, S. J., Lin, C. J., Chou, Y. C., Lin, J. H., Yeh, T. H., Chen, M. R., Huang, L. M., Lu, M. Y., Huang, Y. C., Chen, H. Y., & Tsai, C. H. (2013). Autocrine CCL3 and CCL4 induced by the oncoprotein LMP1 promote Epstein-Barr virus-triggered B cell proliferation. J Virol, 87(16), 9041-9052. https://doi.org/10.1128/jvi.00541-13 Tsao, S. W., Tsang, C. M., & Lo, K. W. (2017). Epstein-Barr virus infection and nasopharyngeal carcinoma. Philos Trans R Soc Lond B Biol Sci, 372(1732). https://doi.org/10.1098/rstb.2016.0270 Tsao, Sai Wah, Tramoutanis, Giorgos, Dawson, Christopher W., Lo, Angela K. F., & Huang, Dolly P. (2002). The significance of LMP1 expression in nasopharyngeal carcinoma. Seminars in Cancer Biology, 12(6), 473-487. https://doi.org/https://doi.org/10.1016/S1044579X02000901 Wang, Chong, Li, Difei, Zhang, Luyao, Jiang, Sizun, Liang, Jun, Narita, Yohei, Hou, Isabella, Zhong, Qian, Zheng, Zeguang, Xiao, Haipeng, Gewurz, Benjamin E., Teng, Mingxiang, & Zhao, Bo. (2019). RNA Sequencing Analyses of Gene Expression during Epstein-Barr Virus Infection of Primary B Lymphocytes. Journal of Virology, 93(13), 10.1128/jvi.00226-00219. https://doi.org/doi:10.1128/jvi.00226-19 Wang, J., Ge, J., Wang, Y., Xiong, F., Guo, J., Jiang, X., Zhang, L., Deng, X., Gong, Z., Zhang, S., Yan, Q., He, Y., Li, X., Shi, L., Guo, C., Wang, F., Li, Z., Zhou, M., Xiang, B., . . . Zeng, Z. (2022). EBV miRNAs BART11 and BART17-3p promote immune escape through the enhancer-mediated transcription of PD-L1. Nat Commun, 13(1), 866. https://doi.org/10.1038/s41467-022-28479-2 Whiteside, T. L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene, 27(45), 5904-5912. https://doi.org/10.1038/onc.2008.271 Wong, K. M., & Levine, A. J. (1986). Identification and mapping of Epstein-Barr virus early antigens and demonstration of a viral gene activator that functions in trans. J Virol, 60(1), 149-156. https://doi.org/10.1128/jvi.60.1.149-156.1986 Xie, W., Medeiros, L. J., Li, S., Yin, C. C., Khoury, J. D., & Xu, J. (2020). PD-1/PD-L1 Pathway and Its Blockade in Patients with Classic Hodgkin Lymphoma and Non-Hodgkin Large-Cell Lymphomas. Curr Hematol Malig Rep, 15(4), 372-381. https://doi.org/10.1007/s11899-020-00589-y Xie, Wei, Medeiros, L Jeffrey, Li, Shaoying, Yin, C Cameron, Khoury, Joseph D, & Xu, Jie. (2020). PD-1/PD-L1 pathway and its blockade in patients with classic Hodgkin lymphoma and non-Hodgkin large-cell lymphomas. Current hematologic malignancy reports, 15, 372-381. Yanagi, Y., Okuno, Y., Narita, Y., Masud, Hmaa, Watanabe, T., Sato, Y., Kanda, T., Kimura, H., & Murata, T. (2021). RNAseq analysis identifies involvement of EBNA2 in PD-L1 induction during Epstein-Barr virus infection of primary B cells. Virology, 557, 44-54. https://doi.org/10.1016/j.virol.2021.02.004 Yao, Chenjiao, Xu, Ruoyao, Li, Qianyuan, Xiao, Sheng, Hu, Min, Xu, Linyong, & Zhuang, Quan. (2022). Identification and validation of an immunological microenvironment signature and prediction model for epstein-barr virus positive lymphoma: Implications for immunotherapy [Original Research]. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.970544 Yoon, S. J., Park, J., Shin, Y., Choi, Y., Park, S. W., Kang, S. G., Son, H. Y., & Huh, Y. M. (2020). Deconvolution of diffuse gastric cancer and the suppression of CD34 on the BALB/c nude mice model. BMC Cancer, 20(1), 314. https://doi.org/10.1186/s12885-020-06814-4 Zhu, Z., Zhang, H., Chen, B., Liu, X., Zhang, S., Zong, Z., & Gao, M. (2020). PD-L1-Mediated Immunosuppression in Glioblastoma Is Associated With the Infiltration and M2-Polarization of Tumor-Associated Macrophages [Article]. Frontiers in Immunology, 11, Article 588552. https://doi.org/10.3389/fimmu.2020.588552 Zong, Z., Zou, J., Mao, R., Ma, C., Li, N., Wang, J., Wang, X., Zhou, H., Zhang, L., & Shi, Y. (2019). M1 Macrophages Induce PD-L1 Expression in Hepatocellular Carcinoma Cells Through IL-1β Signaling. Front Immunol, 10, 1643. https://doi.org/10.3389/fimmu.2019.01643 zur Hausen, H., O'Neill, F. J., Freese, U. K., & Hecker, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature, 272(5651), 373-375. https://doi.org/10.1038/272373a0 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89208 | - |
dc.description.abstract | EB病毒(Epstein-Barr virus)是一種廣泛感染人群並可能有致癌能力的人類皰疹病毒,因其主要感染人類之B細胞以及上皮細胞,所以與多種B淋巴細胞癌以及上皮細胞癌具有顯著的相關性。本實驗室先前研究顯示,B細胞之免疫抑制分子,細胞程式死亡-配體1(PD-L1)的表現量會受到EB病毒感染而顯著提升。因此,本研究蒐集與EB病毒相關的多種癌症,包括瀰漫性大B細胞淋巴瘤、經典霍奇金氏淋巴瘤、鼻咽癌以及胃癌之cDNA微陣列以及生存資訊資料集,旨在探查PD-L1表現量對這些癌症患者生存率是否具有影響。首先,本研究確認,EB病毒與胃癌之PD-L1的高表現量相關。本研究進而通過生存分析發現,PD-L1在多種可能與EB病毒相關的癌症之資料集中,均不會影響患者的總生存期。並且在部分胃癌資料集GSE84437中,PD-L1的較高表現量與患者較長的總生存期呈正相關。由於PD-L1在腫瘤免疫微環境中,不僅表現於腫瘤細胞上,還表現在以免疫細胞為主的腫瘤浸潤細胞中,因此本研究所探討的腫瘤免疫微環境總PD-L1表現量包括腫瘤細胞及腫瘤浸潤細胞的表現。在本研究使用的所有可能與EB病毒相關的癌症之資料集中,腫瘤免疫微環境的總PD-L1表現量,均與具有可能腫瘤抑制作用的M1型巨噬細胞之浸潤量呈正相關,表示可能為患者較好的預後因子。此外,本研究也發現,總PD-L1的表現量,也與腫瘤浸潤CD8+ T細胞之PD-L1配體PD-1(細胞程式死亡-1)的表現量呈正相關,表示可能為患者較差的預後因子。以上結果表明,總PD-L1在多種與EB病毒相關之癌症中,總PD-L1同時與較好和較差的預後因子顯著相關。同時本研究也發現,EB病毒影響並降低了總PD-L1表現量與M1型巨噬細胞浸潤量之相關性,證實EB病毒可能上調腫瘤細胞之PD-L1表現量。綜合以上研究結果,本研究發現,腫瘤免疫微環境之總PD-L1表現量在多種與EB病毒相關之癌症中,可能同時與較好和較差的預後因素有關。亦即,總PD-L1表現量可作為一把雙刃劍,其表現量對與EB病毒相關的多種癌症可能同時具有兩種看似相反的影響。 | zh_TW |
dc.description.abstract | Epstein-Barr virus (EBV) is a widely infective human herpesvirus with oncogenic potential. The virus primarily infects human B cells and epithelial cells, and its infection is significantly associated with various B-cell lymphomas and carcinomas. Previous cDNA microarray data performed in our laboratory have shown that the expression of programmed death-ligand 1 (PD-L1), an immune checkpoint molecule in B cells, is significantly upregulated upon EBV infection. Therefore, this study collected cDNA microarray and survival information datasets related to various EBV-associated cancers, including diffuse large B-cell lymphoma, classical Hodgkin lymphoma, nasopharyngeal carcinoma, and gastric carcinoma, with the aim of investigating the influence of PD-L1 expression. Firstly, this study confirmed the association between EBV and high PD-L1 expression in gastric carcinoma, a clinical report. Furthermore, survival analysis revealed that PD-L1 did not shorten the overall survival rate of patients in the datasets of several cancers possibly related to EBV. In a subset of gastric carcinoma datasets GSE84437, higher PD-L1 expression was associated with longer overall survival. The PD-L1 expression investigated in this study refers to the total PD-L1 expression in the tumor immune microenvironment since PD-L1 is expressed not only on tumor cells but also on tumor-infiltrating immune cells in the tumor immune microenvironment. Analysis of tumor-infiltrating immune cells showed that in all the datasets of possible EBV-associated cancers used in this study, the total PD-L1 expression in the tumor immune microenvironment was positively correlated with the infiltration of M1 macrophages, which have tumor-suppressive effects, possibly as a good prognostic factor. The total PD-L1 expression was also positively correlated with the expression of PD-1 (programmed death-1), the ligand of PD-L1, on tumor-infiltrating CD8+ T cells, possibly as a poor prognostic factor. These results indicated that the total PD-L1 expression is significantly associated with both better and worse prognostic factors in various EBV-associated cancers. Furthermore, this study hinted that EBV may influence the correlation between total PD-L1 expression and the amounts of infiltrated M1 macrophages, suggesting that EBV upregulates PD-L1 expression on tumor cells. In conclusion, this study discovered that the total PD-L1 expression in the tumor immune microenvironment may be simultaneously associated with both better and worse prognostic factors in various EBV-related cancers. In other words, the expression of total PD-L1 may have dual effects, exerting opposite influences on multiple EBV-associated cancers. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-09-05T16:06:52Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-09-05T16:06:52Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 中文摘要 I
Abstract III 第一章 序論 1 1.1. EB病毒 1 1.2. 細胞程式死亡-配體1(programed death ligand-1,PD-L1) 10 1.3. 腫瘤免疫浸潤細胞 12 1.4. 研究目的 14 第二章 材料與方法 16 2.1. 分析材料 16 2.2. 分析方法 17 第三章 結果 21 3.1. 探查EB病毒相關癌症中EB病毒與PD-L1表現量之關聯 21 3.2. 探查EB病毒相關癌症中PD-L1表現量與患者生存之關係 21 3.3. 探查EB病毒相關癌症之免疫細胞浸潤模式 23 3.4. 探查EB病毒相關癌症中M1型巨噬細胞具有之影響 26 第四章 討論 29 4.1. EB病毒與PD-L1表現量之關係 29 4.2. PD-L1表現量對患者之影響 30 4.3. EB病毒與腫瘤浸潤免疫細胞之關係 35 表 38 表一、EB病毒潛伏期基因表現 38 表二、EB病毒對宿主細胞因子的調控 39 表三、EB病毒對宿主細胞酪氨酸激酶的調控 40 表四、PD-L1在EB病毒相關癌症中的表現 41 表五、本研究所使用之EB病毒相關癌症之臨床cDNA微陣列資料集 42 表六、GSE10846瀰漫性大B細胞淋巴瘤資料集患者之腫瘤浸潤免疫細胞分析 43 表七、GSE12452鼻咽癌資料集患者之腫瘤浸潤免疫細胞分析 44 表八、GSE17920經典型霍奇金氏淋巴瘤資料集患者之腫瘤浸潤免疫細胞分析 45 表九、GSE62254胃癌資料集患者之腫瘤免疫浸潤細胞分析 46 表十、GSE84437胃癌資料集患者之腫瘤浸潤免疫細胞分析 47 表十一、GSE62254胃癌資料集中EB病毒陽性患者之腫瘤浸潤免疫細胞分析 48 表十二、GSE62254胃癌資料集中EB病毒陰性患者之腫瘤浸潤細胞分析 49 圖 50 圖一、EB病毒調控PD-L1之訊號通路 50 圖二、EB病毒陽性胃癌與EB病毒陰性胃癌之PD-L1表現量比較 51 圖三、GSE65524胃癌資料集患者之EB病毒生存分析 52 圖四、GSE62254胃癌資料集患者之PD-L1表現量生存分析 53 圖五、GSE62254胃癌資料集患者之EB病毒、PD-L1表現量雙因素生存分析 54 圖六、GSE10846瀰漫性大B細胞瘤資料集患者之PD-L1表現量生存分析 55 圖七、GSE84437胃癌資料集患者之PD-L1表現量生存分析 56 圖八、GSE10846瀰漫性大B細胞瘤資料集患者之腫瘤浸潤免疫細胞分析 57 圖九、GSE12452鼻咽癌資料集患者之腫瘤浸潤免疫細胞分析 58 圖十、GSE17920經典型霍奇金氏淋巴瘤資料集患者之腫瘤浸潤免疫細胞分析 59 圖十一、GSE62254胃癌資料集患者之腫瘤浸潤免疫細胞分析 60 圖十二、GSE84437胃癌資料集患者之腫瘤浸潤免疫細胞分析 61 圖十三、GSE62254胃癌資料集患者之腫瘤浸潤免疫細胞與EB病毒之關係 63 圖十四、GSE10846瀰漫性大B細胞瘤資料集患者之CD8 T細胞PD-1分析 64 圖十五、GSE84437胃癌資料集患者之CD8+ T細胞PD-1分析 65 圖十六、GSE10846瀰漫性大B細胞瘤資料集患者之M1型巨噬細胞生存分析 66 圖十七、GSE62254胃癌資料集患者之M1型巨噬細胞生存分析 67 圖十八、GSE84437胃癌資料集患者之M1型巨噬細胞生存分析 68 附錄 69 附錄一、EB病毒感染B細胞之cDNA微陣列資料(整理自蔡淑君博士之原始數據) 69 附錄二、PD-L1表現量之流式細胞術數據 (K.T. Lin, 2011) 70 參考文獻 71 | - |
dc.language.iso | zh_TW | - |
dc.title | 探查PD-L1表現量對與EB病毒相關的多種癌症的影響 | zh_TW |
dc.title | To investigate the influence of PD-L1 expression in several cancers associated with Epstein-Barr virus | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 顧家綺;蔡明翰 | zh_TW |
dc.contributor.oralexamcommittee | Chia-Chi Ku;Ming-Han Tsai | en |
dc.subject.keyword | EB病毒,PD-L1,腫瘤浸潤免疫細胞,M1型巨噬細胞, | zh_TW |
dc.subject.keyword | Epstein-Barr virus (EBV),Programmed death-ligand 1 (PD-L1),Tumor-infiltrating immune cells,Macrophages M1, | en |
dc.relation.page | 80 | - |
dc.identifier.doi | 10.6342/NTU202302598 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-08-02 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 微生物學研究所 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 2.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。