Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生命科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89197
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李心予zh_TW
dc.contributor.advisorHsinyu Leeen
dc.contributor.author黃奕勛zh_TW
dc.contributor.authorYi-Xun Huangen
dc.date.accessioned2023-08-30T16:17:32Z-
dc.date.available2023-11-09-
dc.date.copyright2023-08-30-
dc.date.issued2023-
dc.date.submitted2023-07-17-
dc.identifier.citation1. Hirschhorn T, Stockwell BR. The development of the concept of ferroptosis. Free Radic Biol Med. 2019;133:130-143.
2. Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, et al. Ferroptosis: past, present and future. Cell Death Dis. 2020;11(2):88-100.
3. Kinowaki Y, Taguchi T, Onishi I, Kirimura S, Kitagawa M, Yamamoto K. Overview of Ferroptosis and Synthetic Lethality Strategies. Int J Mol Sci. 2021;22(17):9271-9293.
4. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369-379.
5. Capelletti MM, Manceau H, Puy H, Peoc'h K. Ferroptosis in Liver Diseases: An Overview. Int J Mol Sci. 2020;21(14):4908-4930.
6. Tang D, Chen X, Kang R, Kroemer G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 2021;31(2):107-125.
7. Lei P, Bai T, Sun Y. Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front Physiol. 2019;10:139-151.
8. Xu S, He Y, Lin L, Chen P, Chen M, Zhang S. The emerging role of ferroptosis in intestinal disease. Cell Death Dis. 2021;12(4):289-300.
9. Mbah NE, Lyssiotis CA. Metabolic regulation of ferroptosis in the tumor microenvironment. J Biol Chem. 2022;298(3):101617-101634.
10. Martin HL, Teismann P. Glutathione--a review on its role and significance in Parkinson's disease. FASEB J. 2009;23(10):3263-3272.
11. Ko J, Jang S, Kwon W, Kim SY, Jang S, Kim E, et al. Protective Effect of GIP against Monosodium Glutamate-Induced Ferroptosis in Mouse Hippocampal HT-22 Cells through the MAPK Signaling Pathway. Antioxidants (Basel). 2022;11(2):189-209.
12. Zille M, Kumar A, Kundu N, Bourassa MW, Wong VSC, Willis D, et al. Ferroptosis in Neurons and Cancer Cells Is Similar But Differentially Regulated by Histone Deacetylase Inhibitors. eNeuro. 2019;6(1):1-20.
13. Nagai S, Yoshida M, Takigawa Y, Torii S, Koshiishi I. Botanical sulfane sulfur donors inhibit ferroptotic cell death caused by the depletion of cysteine. Food Chem. 2021;343:128511-128518.
14. Scheerer P, Borchert A, Krauss N, Wessner H, Gerth C, Hohne W, et al. Structural basis for catalytic activity and enzyme polymerization of phospholipid hydroperoxide glutathione peroxidase-4 (GPx4). Biochemistry. 2007;46(31):9041-9049.
15. Li D, Liu B, Fan Y, Liu M, Han B, Meng Y, et al. Nuciferine protects against folic acid-induced acute kidney injury by inhibiting ferroptosis. Br J Pharmacol. 2021;178(5):1182-1199.
16. Liu HJ, Hu HM, Li GZ, Zhang Y, Wu F, Liu X, et al. Ferroptosis-Related Gene Signature Predicts Glioma Cell Death and Glioma Patient Progression. Front Cell Dev Biol. 2020;8:538-552.
17. Wang D, Peng Y, Xie Y, Zhou B, Sun X, Kang R, et al. Antiferroptotic activity of non-oxidative dopamine. Biochem Biophys Res Commun. 2016;480(4):602-607.
18. Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, et al. An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 2016;473(6):769-777.
19. Kim CH, Leitch HA. Iron overload-induced oxidative stress in myelodysplastic syndromes and its cellular sequelae. Crit Rev Oncol Hematol. 2021;163:103367-103388.
20. Cilloni D, Ravera S, Calabrese C, Gaidano V, Niscola P, Balleari E, et al. Iron overload alters the energy metabolism in patients with myelodysplastic syndromes: results from the multicenter FISM BIOFER study. Sci Rep. 2020;10(1):9156-9164.
21. Jenkins NL, James SA, Salim A, Sumardy F, Speed TP, Conrad M, et al. Changes in ferrous iron and glutathione promote ferroptosis and frailty in aging Caenorhabditis elegans. Elife. 2020;9:e56580-e56607.
22. Battaglia AM, Sacco A, Perrotta ID, Faniello MC, Scalise M, Torella D, et al. Iron Administration Overcomes Resistance to Erastin-Mediated Ferroptosis in Ovarian Cancer Cells. Front Oncol. 2022;12:868351-868365.
23. Chang LC, Chiang SK, Chen SE, Yu YL, Chou RH, Chang WC. Heme oxygenase-1 mediates BAY 11-7085 induced ferroptosis. Cancer Lett. 2018;416:124-137.
24. Jang M, Choi JH, Chang Y, Lee SJ, Nah SY, Cho IH. Gintonin, a ginseng-derived ingredient, as a novel therapeutic strategy for Huntington's disease: Activation of the Nrf2 pathway through lysophosphatidic acid receptors. Brain Behav Immun. 2019;80:146-162.
25. Liu Z, Zhou Z, Ai P, Zhang C, Chen J, Wang Y. Astragaloside IV attenuates ferroptosis after subarachnoid hemorrhage via Nrf2/HO-1 signaling pathway. Front Pharmacol. 2022;13:924826-924838.
26. Kwon MY, Park E, Lee SJ, Chung SW. Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget. 2015;6(27):24393-24403.
27. Xiong L, Xie J, Song C, Liu J, Zheng J, Liu C, et al. The Activation of Nrf2 and Its Downstream Regulated Genes Mediates the Antioxidative Activities of Xueshuan Xinmaining Tablet in Human Umbilical Vein Endothelial Cells. Evid Based Complement Alternat Med. 2015;2015:187265-187272.
28. Gao G, Xie Z, Li EW, Yuan Y, Fu Y, Wang P, et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J Nat Med. 2021;75(3):540-552.
29. Pillay Y, Ghazi T, Raghubeer S, Nagiah S, Chuturgoon AA. Patulin activates the NRF2 pathway by modulation of miR-144 expression in HEK293 cells. Mycotoxin Res. 2021;37(1):97-103.
30. Dodson M, Castro-Portuguez R, Zhang DD. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 2019;23:101107-101113.
31. Peng W, Zhu Z, Yang Y, Hou J, Lu J, Chen C, et al. N2L, a novel lipoic acid-niacin dimer, attenuates ferroptosis and decreases lipid peroxidation in HT22 cells. Brain Res Bull. 2021;174:250-259.
32. Cheng J, Xu T, Xun C, Guo H, Cao R, Gao S, et al. Carnosic acid protects against ferroptosis in PC12 cells exposed to erastin through activation of Nrf2 pathway. Life Sci. 2021;266:118905-118915.
33. Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018;129:454-462.
34. Gimple RC, Wang X. RAS: Striking at the Core of the Oncogenic Circuitry. Front Oncol. 2019;9:965-980.
35. Zhao Y, Li Y, Zhang R, Wang F, Wang T, Jiao Y. The Role of Erastin in Ferroptosis and Its Prospects in Cancer Therapy. Onco Targets Ther. 2020;13:5429-5441.
36. Yan R, Xie E, Li Y, Li J, Zhang Y, Chi X, et al. The structure of erastin-bound xCT-4F2hc complex reveals molecular mechanisms underlying erastin-induced ferroptosis. Cell Res. 2022;32(7):687-690.
37. Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-1072.
38. Li S, Wang M, Wang Y, Guo Y, Tao X, Wang X, et al. p53-mediated ferroptosis is required for 1-methyl-4-phenylpyridinium-induced senescence of PC12 cells. Toxicol In Vitro. 2021;73:105146-105155.
39. Mijit M, Caracciolo V, Melillo A, Amicarelli F, Giordano A. Role of p53 in the Regulation of Cellular Senescence. Biomolecules. 2020;10(3)420-435.
40. Jiang L, Kon N, Li T, Wang SJ, Su T, Hibshoosh H, et al. Ferroptosis as a p53-mediated activity during tumour suppression. Nature. 2015;520(7545):57-62.
41. DeHart DN, Fang D, Heslop K, Li L, Lemasters JJ, Maldonado EN. Opening of voltage dependent anion channels promotes reactive oxygen species generation, mitochondrial dysfunction and cell death in cancer cells. Biochem Pharmacol. 2018;148:155-162.
42. Xiang H, Lu Y, Shao M, Wu T. Lysophosphatidic Acid Receptors: Biochemical and Clinical Implications in Different Diseases. J Cancer. 2020;11(12):3519-3535.
43. Lin KH, Chiang JC, Ho YH, Yao CL, Lee H. Lysophosphatidic Acid and Hematopoiesis: From Microenvironmental Effects to Intracellular Signaling. Int J Mol Sci. 2020;21(6).
44. Solis KH, Romero-Avila MT, Guzman-Silva A, Garcia-Sainz JA. The LPA(3) Receptor: Regulation and Activation of Signaling Pathways. Int J Mol Sci. 2021;22(13):6704-6721.
45. Swaney JS, Chapman C, Correa LD, Stebbins KJ, Broadhead AR, Bain G, et al. Pharmacokinetic and pharmacodynamic characterization of an oral lysophosphatidic acid type 1 receptor-selective antagonist. J Pharmacol Exp Ther. 2011;336(3):693-700.
46. Hecht JH, Weiner JA, Post SR, Chun J. Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. J Cell Biol. 1996;135(4):1071-1083.
47. Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol. 2014;171(15):3575-3594.
48. Janssens R, Boeynaems JM, Godart M, Communi D. Cloning of a human heptahelical receptor closely related to the P2Y5 receptor. Biochem Biophys Res Commun. 1997;236(1):106-112.
49. Venkatraman G, Benesch MG, Tang X, Dewald J, McMullen TP, Brindley DN. Lysophosphatidate signaling stabilizes Nrf2 and increases the expression of genes involved in drug resistance and oxidative stress responses: implications for cancer treatment. FASEB J. 2015;29(3):772-785.
50. Jiang T, Cheng H, Su J, Wang X, Wang Q, Chu J, et al. Gastrodin protects against glutamate-induced ferroptosis in HT-22 cells through Nrf2/HO-1 signaling pathway. Toxicol In Vitro. 2020;62:104715-104726.
51. Chen WM, Chiang JC, Lin YC, Lin YN, Chuang PY, Chang YC, et al. Lysophosphatidic acid receptor LPA(3) prevents oxidative stress and cellular senescence in Hutchinson-Gilford progeria syndrome. Aging Cell. 2020;19(1):e13064-e13078.
52. Till JE, McCulloch EA. Hemopoietic stem cell differentiation. Biochim Biophys Acta. 1980;605(4):431-459.
53. Li H, Yue R, Wei B, Gao G, Du J, Pei G. Lysophosphatidic acid acts as a nutrient-derived developmental cue to regulate early hematopoiesis. EMBO J. 2014;33(12):1383-1396.
54. Evseenko D, Latour B, Richardson W, Corselli M, Sahaghian A, Cardinal S, et al. Lysophosphatidic acid mediates myeloid differentiation within the human bone marrow microenvironment. PLoS One. 2013;8(5):e63718-e63724.
55. Igarashi H, Akahoshi N, Ohto-Nakanishi T, Yasuda D, Ishii S. The lysophosphatidic acid receptor LPA4 regulates hematopoiesis-supporting activity of bone marrow stromal cells. Sci Rep. 2015;5:11410-11419.
56. Chiang JC, Chen WM, Lin KH, Hsia K, Ho YH, Lin YC, et al. Lysophosphatidic acid receptors 2 and 3 regulate erythropoiesis at different hematopoietic stages. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(1):158818-158848.
57. Ho YH, Yao CL, Lin KH, Hou FH, Chen WM, Chiang CL, et al. Opposing regulation of megakaryopoiesis by LPA receptors 2 and 3 in K562 human erythroleukemia cells. Biochim Biophys Acta. 2015;1851(2):172-183.
58. Lin KH, Ho YH, Chiang JC, Li MW, Lin SH, Chen WM, et al. Pharmacological activation of lysophosphatidic acid receptors regulates erythropoiesis. Sci Rep. 2016;6:27050-27059.
59. Chiang CL, Chen SS, Lee SJ, Tsao KC, Chu PL, Wen CH, et al. Lysophosphatidic acid induces erythropoiesis through activating lysophosphatidic acid receptor 3. Stem Cells. 2011;29(11):1763-1773.
60. Lin KH, Chiang JC, Chen WM, Ho YH, Yao CL, Lee H. Transcriptional regulation of lysophosphatidic acid receptors 2 and 3 regulates myeloid commitment of hematopoietic stem cells. Am J Physiol Cell Physiol. 2021;320(4):C509-C519.
61. Zheng H, Jiang L, Tsuduki T, Conrad M, Toyokuni S. Embryonal erythropoiesis and aging exploit ferroptosis. Redox Biol. 2021;48:102175-102189.
62. Dayani PN, Bishop MC, Black K, Zeltzer PM. Desferoxamine (DFO)--mediated iron chelation: rationale for a novel approach to therapy for brain cancer. J Neurooncol. 2004;67(3):367-377.
63. Zhitkovich A. N-Acetylcysteine: Antioxidant, Aldehyde Scavenger, and More. Chem Res Toxicol. 2019;32(7):1318-1319.
64. Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, et al. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328-101337.
65. Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, et al. Reactive Oxygen Species-Induced Lipid Peroxidation in Apoptosis, Autophagy, and Ferroptosis. Oxid Med Cell Longev. 2019;2019:5080843-5080855.
66. Youssef LA, Rebbaa A, Pampou S, Weisberg SP, Stockwell BR, Hod EA, et al. Increased erythrophagocytosis induces ferroptosis in red pulp macrophages in a mouse model of transfusion. Blood. 2018;131(23):2581-2593.
67. Zhao J, Jia Y, Mahmut D, Deik AA, Jeanfavre S, Clish CB, et al. Human hematopoietic stem cell vulnerability to ferroptosis. Cell. 2023;186(4):732-47 e16-e48.
68. Yoon MH, Kang SM, Lee SJ, Woo TG, Oh AY, Park S, et al. p53 induces senescence through Lamin A/C stabilization-mediated nuclear deformation. Cell Death Dis. 2019;10(2):107-124.
69. Masaldan S, Clatworthy SAS, Gamell C, Meggyesy PM, Rigopoulos AT, Haupt S, et al. Iron accumulation in senescent cells is coupled with impaired ferritinophagy and inhibition of ferroptosis. Redox Biol. 2018;14:100-115.
70. Gnanapradeepan K, Basu S, Barnoud T, Budina-Kolomets A, Kung CP, Murphy ME. The p53 Tumor Suppressor in the Control of Metabolism and Ferroptosis. Front Endocrinol (Lausanne). 2018;9:124-130.
71. Price EA. Aging and erythropoiesis: current state of knowledge. Blood Cells Mol Dis. 2008;41(2):158-165.
72. Kitazoe Y, Kishino H, Tanisawa K, Udaka K, Tanaka M. Renormalized basal metabolic rate describes the human aging process and longevity. Aging Cell. 2019;18(4):e12968-e12978.
73. Song B, Miao W, Cui Q, Shi B, Zhang J, Qiu H, et al. Inhibition of ferroptosis promotes megakaryocyte differentiation and platelet production. J Cell Mol Med. 2022;26(12):3582-3585.
74. Okabe H, Suzuki T, Uehara E, Ueda M, Nagai T, Ozawa K. The bone marrow hematopoietic microenvironment is impaired in iron-overloaded mice. Eur J Haematol. 2014;93(2):118-128.
75. Fernandez-Garcia V, Gonzalez-Ramos S, Martin-Sanz P, Castrillo A, Bosca L. Unraveling the interplay between iron homeostasis, ferroptosis and extramedullary hematopoiesis. Pharmacol Res. 2022;183:106386-106397.
76. Toyokuni S, Yanatori I, Kong Y, Zheng H, Motooka Y, Jiang L. Ferroptosis at the crossroads of infection, aging and cancer. Cancer Sci. 2020;111(8):2665-2671.
77. Yu Y, Jiang L, Wang H, Shen Z, Cheng Q, Zhang P, et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood. 2020;136(6):726-739.
78. Hotamisligil GS, Davis RJ. Cell Signaling and Stress Responses. Cold Spring Harb Perspect Biol. 2016;8(10):1-20.
79. Clause KC, Barker TH. Extracellular matrix signaling in morphogenesis and repair. Curr Opin Biotechnol. 2013;24(5):830-833.
80. Falke JJ, Bass RB, Butler SL, Chervitz SA, Danielson MA. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu Rev Cell Dev Biol. 1997;13:457-512.
81. Sethi JK, Vidal-Puig A. Wnt signalling and the control of cellular metabolism. Biochem J. 2010;427(1):1-17.
82. Green DR, Llambi F. Cell Death Signaling. Cold Spring Harb Perspect Biol. 2015;7(12):1-24.
83. Hamedani M, Mirshafiey A, Vatanpour H, Khorramizadeh MR, Saadat F, Berahmeh A, et al. In vitro assessment of bee venom effects on matrix metalloproteinase activity and interferon production. Iran J Allergy Asthma Immunol. 2005;4(1):9-14.
84. Koivunen E, Saksela O, Itkonen O, Osman S, Huhtala ML, Stenman UH. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int J Cancer. 1991;47(4):592-596.
85. Wolf K, Friedl P. Molecular mechanisms of cancer cell invasion and plasticity. Br J Dermatol. 2006;154 Suppl 1:11-15.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89197-
dc.description.abstract鐵依賴型細胞死亡為一種新發現因脂質過氧化以及鐵的過度累積所導致之調節性細胞死亡。它已經被證明與胚胎紅血球生成及衰老過程有關。水解磷酸脂(LPA)為一種脂質生長因子,可以透過活化多種G蛋白偶連受體來調控各種生理功能。在我們先前的研究表明,第三型水解磷酸脂受器(LPA3)已經被證明可以改善氧化反應並加速恢復小鼠急性貧血。由於兩個過程均與鐵離子密切相關,所以我們假設活化第三型水解磷酸脂受器可以避免細胞發生鐵依賴型細胞死亡。在本篇研究中,我們利用埃拉斯汀外發性誘導人類纖維肉瘤細胞發生鐵依賴型細胞死亡。為了探討第三型水解磷酸脂受器是如何避免細胞發生鐵依賴型細胞死亡,我們利用其活化劑1-油酰基-2-O-甲基-外消旋-甘油硫代磷酸酯(OMPT)活化第三型水解磷酸脂受器以進行研究。在埃拉斯汀誘導的細胞中,與控制組相比,利用OMPT活化第三型水解磷酸脂受器會增加抗鐵依賴型細胞死亡相關蛋白的表達,例如:溶質載體家族7成員11 (SLC7A11)、穀胱甘肽過氧化物酶4 (GPX4)、鐵質氧化酶-1 (HO-1)及鐵蛋白重鍊1 (FTH1)等的表達均受到促進。此外,透過C11 BODIPY™ 581/591脂質過氧化染劑及FerroOrang染色分析,OMPT的處理減少脂質過氧化及胞內鐵離子的累積。而這些結果與利用siRNA降低第三型水解磷酸脂受器基因表達結果相符。我們更進一步的證實,在埃拉斯汀誘導的細胞中,活化第三型水解磷酸脂受器使絲裂原活化蛋白激酶(MEK)及細胞外信號調節激酶(ERK)磷酸化。此外,作為關鍵的氧化反應調節劑的核因子類紅血球2相關因子2 (NRF2)在細胞處理OMPT後蛋白質表達量也有增加。根據以上結果,活化第三型水解磷酸脂受器可能透過絲裂原活化蛋白激酶/細胞外信號調節激酶/核因子類紅血球2相關因子2信號通路,進而抑制細胞內脂質過氧化及鐵離子的累積,以防止鐵依賴型細胞死亡的發生。最後,在人類紅白血病K562細胞中也證實,第三型水解磷酸脂受器在埃拉斯汀誘導的鐵依賴型細胞死亡環境中扮演著關鍵的角色,這些研究成果提供了未來治療貧血的一項新策略。zh_TW
dc.description.abstractFerroptosis is a novel type of programmed cell death that caused by lipid peroxidation and iron accumulation. It has been shown to be involved in embryonic erythropoiesis and aging. Lysophosphatidic acid (LPA) is a lipid growth factor that regulates various physiological functions via activating multiple G protein-coupled receptors LPA1-6. Our previous studies demonstrated that activation of lysophosphatidic acid receptor 3 (LPA3) has been shown to ameliorate oxidative stress and accelerate the recovery of acute-anemia in mice. Since both process involve the metabolism of irons, we hypothesize that activation of LPA3 may affect cellular ferroptosis. In this study, HT-1080 fibrosarcoma cells were treated with 5 M of erastin to induce ferroptosis. LPA3 agonists 1‐Oleoyl‐2‐O‐methyl‐rac‐glycerophosphothionate (OMPT) were applied to activate LPA3 to determine the effects of LPA3 on ferroptosis process. Treatment with OMPT increased the protein expression of anti-ferroptosis genes, including solute carrier family 7 member 11 (SLC7A11), glutathione peroxidase 4 (GPX4), heme oxygenase-1 (HO-1), and ferritin heavy chain (FTH1) in erastin-induced cells, but no effects were observed in the control group. Moreover, OMPT decreased the level of lipid peroxidation and intracellular ferrous iron accumulation, as detected by assay staining C11 BODIPY™ 581/591 Lipid Peroxidation Sensor and FerroOrange. Our observations were also validated by applying the LPAR3 siRNA in the experiments mentioned above. We further showed that activation of LPA3 led to the phosphorylation of mitogen-activated protein kinases (MEK) and extracellular signal-regulated kinases (ERK) in erastin-induced cells, which are important signaling mediators for ferroptosis activation. In addition, the protein expression level of nuclear factor erythroid 2-related factor (NRF2), a critical oxidative stress regulator, was also increased in OMPT-treated cells. Taken together, our results suggest that activation of LPA3 prevents cell ferroptosis by inhibiting lipid oxidation and iron accumulation via the MEK/ERK/NRF2 signaling pathways. Finally, we also confirmed that LPA3 plays a critical role in erastin-induced ferroptotic human erythroleukemia K562 cells, providing a novel strategy for future anemia treatment.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:17:32Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2023-08-30T16:17:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書...I
致謝...II
中文摘要...III
Abstract...V
Introduction...01
Overview of ferroptosis...01
Glutathione/glutathione peroxidase 4 (GSH/GPX4) pathway...02
Iron metabolism...03
Erastin...04
Lysophosphatidic acid and lysophosphatidic acid receptor 3...06
LPA3 and erythropoiesis...07
Rationale...09
Materials and methods...10
Cell culture and pharmacological reagents...10
Cell viability assay...10
Intracellular ferrous iron content detection...11
Measurement of lipid ROS level...11
Western blot...12
RNA interference and transfection...13
Reverse transcription (RT) and real-time quantitative polymerase chain reaction (RT-qPCR)...13
Luciferase assay of GYPA promoter assay...14
Statistical analysis...14
Results...15
Erastin induces cytotoxicity in HT-1080 cells...15
LPA3 agonist reduces erastin-induced ferroptotic death...16
LPA3 agonist reduces erastin-induced lipid peroxidation in HT-1080 cells...17
LPA3 agonist stabilize the iron homeostasis in erastin-induced HT-1080 cells...18
LPA3 agonist protects cells from erastin-induced ferroptosis through MEK/ERK/NRF2 signaling pathway...19
Knockdown of LPAR3 leads to cells ferroptosis in HT-1080 cells...20
LPA3 promotes erythropoiesis in erastin-induced K562 cells...20
Discussion...22
References...28
Tables & Figures...41
Table. 1 Antibodies list...41
Table. 2 siRNA list...42
Table. 3 Real-time PCR primers (human)...42
Figure. 1 Erastin induces ferroptosis in HT-1080 cells...43
Figure. 2 LPA3 agonist reduces erastin-induced lipid peroxidation in HT-1080 cells..47
Figure. 3 LPA3 agonist stabilize the iron homeostasis in erastin-induced HT-1080 cells...50
Figure. 4 LPA3 agonist protects cells from erastin-induced ferroptosis through MEK/ERK/NRF2 signaling pathway...52
Figure. 5 Knockdown of LPAR3 leads to cells ferroptosis in HT-1080 cells...54
Figure. 6 LPA3 promotes erythropoiesis in erastin-induced K562 cells...56
Figure. 7 Conclusion of this study...58
-
dc.language.isoen-
dc.title第三型水解磷酸脂受器於紅血球生成中鐵依賴型細胞死亡調控之研究zh_TW
dc.titleInvestigation of the Roles of Lysophosphatidic Acid Receptor 3 in the Regulation of Ferroptosis during Erythropoiesisen
dc.typeThesis-
dc.date.schoolyear111-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃偉邦;蘇純立;吳沛翊zh_TW
dc.contributor.oralexamcommitteeWei-Pang Huang;Chun-Li Su;Pei-Yi Wuen
dc.subject.keyword水解磷酸脂,第三型水解磷酸脂受器,鐵依賴型細胞死亡,紅血球生成,脂質過氧化,鐵離子累積,zh_TW
dc.subject.keywordLysophosphatidic acid,Lysophosphatidic acid receptor 3,Ferroptosis,Erythropoiesis,Lipid peroxidation,Iron accumulation,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202301668-
dc.rights.note未授權-
dc.date.accepted2023-07-18-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept生命科學系-
顯示於系所單位:生命科學系

文件中的檔案:
檔案 大小格式 
ntu-111-2.pdf
  目前未授權公開取用
2.61 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved