請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89185
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 鄭光成 | zh_TW |
dc.contributor.advisor | Kuan-Chen Cheng | en |
dc.contributor.author | 賴沿佐 | zh_TW |
dc.contributor.author | Yen-Tso Lai | en |
dc.date.accessioned | 2023-08-30T16:14:19Z | - |
dc.date.available | 2023-11-09 | - |
dc.date.copyright | 2023-08-30 | - |
dc.date.issued | 2023 | - |
dc.date.submitted | 2023-07-13 | - |
dc.identifier.citation | REFERENCES
Abreu, T., Perestrelo, R., Bordiga, M., Locatelli, M., Daniel Coïsson, J., & Câmara, J. S. (2021). The flavor chemistry of fortified wines—a comprehensive approach. Foods, 10(6), 1239. Agboola, J. O., Øverland, M., Skrede, A., & Hansen, J. Ø. (2021). Yeast as major protein‐rich ingredient in aquafeeds: a review of the implications for aquaculture production. Reviews in Aquaculture, 13(2), 949-970. Agulheiro-Santos, A. C., Laranjo, M., & Ricardo-Rodrigues, S. (2022). Table grapes: there is more to vitiviniculture than wine. Grapes and Wine, 139. Akan, M., Michling, F., Matti, K., Krause, S., Muno-Bender, J., & Wendland, J. (2020). Snails as taxis for a large yeast biodiversity. Fermentation, 6(3), 90. Akyereko, Y. G., Wireko-Manu, F. D., Alemawor, F., & Adzanyo, M. (2021). Effects of production methods on flavour characteristics of nonalcoholic wine. Journal of Food Quality, 2021, 1-10. Alexi, N., Nanou, E., Lazo, O., Guerrero, L., Grigorakis, K., & Byrne, D. (2018). Check-All-That-Apply (CATA) with semi-trained assessors: Sensory profiles closer to descriptive analysis or consumer elicited data? Food Quality and Preference, 64, 11-20. Alperstein, L., Gardner, J. M., Sundstrom, J. F., Sumby, K. M., & Jiranek, V. (2020). Yeast bioprospecting versus synthetic biology—which is better for innovative beverage fermentation? Applied Microbiology and Biotechnology, 104(5), 1939-1953. Amin, A. B., & Mao, S. (2021). Influence of yeast on rumen fermentation, growth performance and quality of products in ruminants: a review. Animal Nutrition, 7(1), 31-41. Andorrà, I., Miró, G., Espligares, N., Mislata, A. M., Puxeu, M., & Ferrer-Gallego, R. (2019). Wild yeast and lactic acid bacteria of wine. Yeasts in biotechnology: IntechOpen. Anfang, N., Brajkovich, M., & Goddard, M. R. (2009). Co‐fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Australian Journal of Grape and Wine Research, 15(1), 1-8. Anjos, O., Caldeira, I., Fernandes, T. A., Pedro, S. I., Vitória, C., Oliveira-Alves, S., Catarino, S. & Canas, S. (2022). PLS-R calibration models for wine spirit volatile phenols prediction by near-infrared spectroscopy. Sensors, 22(1), 286. Antolak, H., Piechota, D., & Kucharska, A. (2021). Kombucha tea—a double power of bioactive compounds from tea and symbiotic culture of bacteria and yeasts (SCOBY). Antioxidants, 10(10), 1541. Aplin, J. J., & Edwards, C. G. (2021). Impacts of non‐Saccharomyces species and aeration on sequential inoculation with Saccharomyces cerevisiae to produce lower alcohol Merlot wines from Washington state. Journal of the Science of Food and Agriculture, 101(4), 1715-1719. Arena, E., Rizzo, V., Licciardello, F., Fallico, B., & Muratore, G. (2021). Effects of light exposure, bottle colour and storage temperature on the quality of Malvasia delle Lipari sweet wine. Foods, 10(8), 1881. Ariyajaroenwong, P., Laopaiboon, P., Salakkam, A., Srinophakun, P., & Laopaiboon, L. (2016). Kinetic models for batch and continuous ethanol fermentation from sweet sorghum juice by yeast immobilized on sweet sorghum stalks. Journal of the Taiwan Institute of Chemical Engineers, 66, 210-216. Arvisenet, G., Ballester, J., Ayed, C., Sémon, E., Andriot, I., Le Quere, J. L., & Guichard, E. (2019). Effect of sugar and acid composition, aroma release, and assessment conditions on aroma enhancement by taste in model wines. Food Quality and Preference, 71, 172-180. Avila, T. L., Toralles, R. P., Jansen, E. T., Ferreira, M. V., Kuhn, C. R., & Ruiz, W. A. (2022). Extraction, purification and characterization of invertase from Candida guilliermondii isolated from peach solid wastes. Revista Brasileira de Fruticultura, 44. Avizcuri, J. M., Sáenz-Navajas, M. P., Echávarri, J. F., Ferreira, V., & Fernández-Zurbano, P. (2016). Evaluation of the impact of initial red wine composition on changes in color and anthocyanin content during bottle storage. Food Chemistry, 213, 123-134. Badura, J., van Wyk, N., Brezina, S., Pretorius, I. S., Rauhut, D., Wendland, J., & von Wallbrunn, C. (2021). Development of genetic modification tools for Hanseniaspora uvarum. International Journal of Molecular Sciences, 22(4), 1943. Baek, S., Maruthupandy, M., Lee, K., Kim, D., & Seo, J. (2020). Freshness indicator for monitoring changes in quality of packaged kimchi during storage. Food Packaging and Shelf Life, 25, 100528. Bajpai, P. (2021). Production of bioethanol. Developments in Bioethanol. 41-110. Balmaseda, A., Rozès, N., Bordons, A., & Reguant, C. (2021). Torulaspora delbrueckii promotes malolactic fermentation in high polyphenolic red wines. LWT-Food Science and Technology, 148, 111777. Barlow, P., Gleeson, D., O'Brien, P., & Labonte, R. (2022). Industry influence over global alcohol policies via the World Trade Organization: a qualitative analysis of discussions on alcohol health warning labelling, 2010–19. The Lancet Global Health, 10(3), e429-e437. Barnett, J. A., Payne, R. W., & Yarrow, D. (1990). Yeasts: characteristics and identification. Bastos, R., Oliveira, P. G., Gaspar, V. M., Mano, J. F., Coimbra, M. A., & Coelho, E. (2022). Brewer's yeast polysaccharides—A review of their exquisite structural features and biomedical applications. Carbohydrate Polymers, 277, 118826. Batista, N. N., Ramos, C. L., Ribeiro, D. D., Pinheiro, A. C. M., & Schwan, R. F. (2015). Dynamic behavior of Saccharomyces cerevisiae, Pichia kluyveri and Hanseniaspora uvarum during spontaneous and inoculated cocoa fermentations and their effect on sensory characteristics of chocolate. LWT-Food Science and Technology, 63(1), 221-227. Belda, I., Ruiz, J., Esteban-Fernández, A., Navascués, E., Marquina, D., Santos, A., & Moreno-Arribas, M. (2017). Microbial contribution to wine aroma and its intended use for wine quality improvement. Molecules, 22(2), 189. Bellon, J. R., Yang, F., Day, M. P., Inglis, D. L., & Chambers, P. J. (2015). Designing and creating Saccharomyces interspecific hybrids for improved, industry relevant, phenotypes. Applied microbiology and biotechnology, 99(20), 8597-8609. Bellut, K., & Arendt, E. K. (2019). Chance and challenge: Non-Saccharomyces yeasts in nonalcoholic and low alcohol beer brewing–a review. Journal of the American Society of Brewing Chemists, 77(2), 77-91. Beltrán Peralta, N., Aulet, S., & Vidal-Casellas, D. (2022). Wine and monasteries: Benedictine monasteries in Europe. Journal of Foodservice Business Research, 25(6), 652-683 . Benito, S., Hofmann, T., Laier, M., Lochbühler, B., Schüttler, A., Ebert, K., Fritsch, S, Röcker, J. & Rauhut, D. (2015). Effect on quality and composition of Riesling wines fermented by sequential inoculation with non-Saccharomyces and Saccharomyces cerevisiae. European Food Research and Technology, 241(5), 707-717. Benito, S., Ruiz, J., Belda, I., Kiene, F., Beisert, B., Navascués, E., Marquina, D., Calderón, F., Santos, A., & Rauhut, D. (2019). Application of non-Saccharomyces yeasts in wine production. Non-conventional yeasts: From basic research to application. 75-89. Beyraghdar Kashkooli, A., Farmanpour-Kalalagh, K., & Babaei, A. (2022). Yeast synthetic biology for production of artemisinin as an antimalarial drug. Synthetic Biology of Yeasts: Tools and Applications. 157-180. Bilek, F. N., Rezki, M. A., & Bekki, A. (2022). The impact of indigenous soil yeasts inoculation on bean (Phaseolus vulgaris) growth. Archives of Microbiology, 204(3), 1-8. Bivar, V., & Whited, T. L. (2020). Industrial French food and its critics. Modern & Contemporary France, 28(2), 129-139. Bizarria Jr, R., Pagnocca, F. C., & Rodrigues, A. (2022). Yeasts in the attine ant–fungus mutualism: Diversity, functional roles, and putative biotechnological applications. Yeast, 39(1-2), 25-39. Bordet, F., Joran, A., Klein, G., Roullier-Gall, C., & Alexandre, H. (2020). Yeast–yeast interactions: mechanisms, methodologies and impact on composition. Microorganisms, 8(4), 600. Borren, E., & Tian, B. (2021). The important contribution of non-Saccharomyces yeasts to the aroma complexity of wine: a review. Foods, 10(1), 13. Boulton, R. B., Singleton, V. L., Bisson, L. F., & Kunkee, R. E. (2013). Principles and practices of winemaking. Springer Science & Business Media. Bourbon-Melo, N., Palma, M., Rocha, M. P., Ferreira, A., Bronze, M. R., Elias, H., & Sá-Correia, I. (2021). Use of Hanseniaspora guilliermondii and Hanseniaspora opuntiae to enhance the aromatic profile of beer in mixed-culture fermentation with Saccharomyces cerevisiae. Food Microbiology, 95, 103678. Bourdichon, F., Arias, E., Babuchowski, A., Bückle, A., Bello, F. D., Dubois, A., Fontana, A., Fritz, D., Kemperman, R., & Laulund, S. (2021). The forgotten role of food cultures. FEMS Microbiology Letters, 368(14), fnab085. Bucher, T., Deroover, K., & Stockley, C. (2018). Low-alcohol wine: A narrative review on consumer perception and behaviour. Beverages, 4(4), 82. Burbidge, C. A., Ford, C. M., Melino, V. J., Wong, D. C. J., Jia, Y., Jenkins, C. L. D., Soole, K. L., Castellarin, S. D., Darriet, P., Rienth, M., Bonghi, C., Walker, R. P., Famiani, F., & Sweetman, C. (2021). Biosynthesis and cellular functions of tartaric acid in grapevines. Frontiers in Plant Science, 12, 309. Butnariu, M., & Butu, A. (2020). Biotechnology of flavored or special wines. Biotechnological Progress and Beverage Consumption. 253-282. Buxaderas, S., Riu-Aumatell, M., & López-Tamames, E. (2022). Managing the quality of sparkling wines. Managing Wine Quality. 797-844. Caldeira, I., Vitória, C., Anjos, O., Fernandes, T. A., Gallardo, E., Fargeton, L., Boissier, B., Catarino, S., & Canas, S. (2021). Wine spirit ageing with chestnut staves under different micro-oxygenation strategies: effects on the volatile compounds and sensory profile. Applied Sciences, 11(9), 3991. Călugăr, A., Coldea, T. E., Pop, C. R., Pop, T. I., Babeș, A. C., Bunea, C. I., Manolache, M, & Gal, E. (2020). Evaluation of volatile compounds during ageing with oak chips and oak barrel of Muscat Ottonel wine. Processes, 8(8), 1000. Cameleyre, M., Lytra, G., Tempere, S., & Barbe, J. C. (2015). Olfactory impact of higher alcohols on red wine fruity ester aroma expression in model solution. Journal of Agricultural and Food Chemistry, 63(44), 9777-9788. Cameron, W., Petrie, P., & Barlow, E. (2022). The effect of temperature on grapevine phenological intervals: Sensitivity of budburst to flowering. Agricultural and Forest Meteorology, 315, 108841. Canbeyli, R. (2022). Sensory stimulation via the visual, auditory, olfactory and gustatory systems can modulate mood and depression. European Journal of Neuroscience, 55(1), 244-263. Canon, F., Caillé, S., Sarni-Manchado, P., & Cheynier, V. (2022). Wine taste and mouthfeel. Managing Wine Quality, 41-95. Capece, A., De Fusco, D., Pietrafesa, R., Siesto, G., & Romano, P. (2021). Performance of wild non-conventional yeasts in fermentation of wort based on different malt extracts to select novel starters for low-alcohol beers. Applied Sciences, 11(2), 801. Capece, A., Romaniello, R., Siesto, G., & Romano, P. (2018). Conventional and non-conventional yeasts in beer production. Fermentation, 4(2), 38. Capece, A., & Romano, P. (2019). Yeasts and their metabolic impact on wine flavour. Yeasts in the Production of Wine, 43-80. Caporaso, N., Whitworth, M. B., & Fisk, I. D. (2022). Prediction of coffee aroma from single roasted coffee beans by hyperspectral imaging. Food Chemistry, 371, 131159. Capozzi, V., Berbegal, C., Tufariello, M., Grieco, F., & Spano, G. (2019). Impact of co-inoculation of Saccharomyces cerevisiae, Hanseniaspora uvarum and Oenococcus oeni autochthonous strains in controlled multi starter grape must fermentations. LWT-Food Science and Technology, 109, 241-249. Carpena, M., Fraga-Corral, M., Otero, P., Nogueira, R. A., Garcia-Oliveira, P., Prieto, M. A., & Simal-Gandara, J. (2021). Secondary aroma: Influence of wine microorganisms in their aroma profile. Foods, 10(1), 51. Carrau, F. M., Medina, K., Boido, E., Farina, L., Gaggero, C., Dellacassa, E., Versini, G., & Henschke, P. A. (2005). De novo synthesis of monoterpenes by Saccharomyces cerevisiae wine yeasts. FEMS Microbiology Letters, 243(1), 107-115. Caruso, P., Russo, M. P., Caruso, M., Guardo, M. D., Russo, G., Fabroni, S., Timpanaro, N., & Licciardello, C. (2021). A transcriptional analysis of the genes involved in the ascorbic acid pathways based on a comparison of the juice and leaves of navel and anthocyanin-rich sweet orange varieties. Plants, 10(7), 1291. Casalta, E., Salmon, J. M., Picou, C., & Sablayrolles, J. M. (2019). Grape solids: lipid composition and role during alcoholic fermentation under enological conditions. American Journal of Enology and Viticulture, 70(2), 147-154. Caspeta, L., Chen, Y., Ghiaci, P., Feizi, A., Buskov, S., Hallström, B. M., Petranovic, D., & Nielsen, J. (2014). Altered sterol composition renders yeast thermotolerant. Science, 346(6205), 75-78. Ceccoli, R. D., Bianchi, D. A., & Rial, D. V. (2023). Sequential chemo–biocatalytic synthesis of aroma compounds. Green Chemistry, 25(1), 318-329. Cendrowski, A., Królak, M., & Kalisz, S. (2021). Polyphenols, L-ascorbic acid, and antioxidant activity in wines from rose fruits (Rosa rugosa). Molecules, 26(9), 2561. Cerlini, P., Saraceni, M., Orlandi, F., Silvestri, L., & Fornaciari, M. (2022). Phenological response to temperature variability and orography in Central Italy. International Journal of Biometeorology, 66(1), 71-86. Çetin, B., & Türkben, C. (2018). Viticulture economics in Turkey: An assessment of the current situation and its implications. Integrated View of Fruit and Vegetable Quality, 3-9. Chatterjee, S., Kuang, Y., Splivallo, R., Chatterjee, P., & Karlovsky, P. (2016). Interactions among filamentous fungi Aspergillus niger, Fusarium verticillioides and Clonostachys rosea: Fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiology, 16(1), 1-13. Chaturvedi, S., Bhattacharya, A., Rout, P. K., Nain, L., & Khare, S. K. (2022). An overview of enzymes and rate-limiting steps responsible for lipid production in oleaginous yeast. Industrial Biotechnology, 18(1), 20-31. Chaïb, A., Claisse, O., Delbarre, E., Bosviel, J., & Le Marrec, C. (2022). Assessment of the lysogenic status in the lactic acid bacterium O. oeni during the spontaneous malolactic fermentation of red wines. Food Microbiology, 103, 103947. Chen, C. H., Chang, M. H., Shih, M. K., Jiang, C. M., & Wu, M. C. (2009). Effect of thermal treatment on physicochemical composition and sensory qualities, including ‘foxy’methyl anthranilate of interspecific variety Golden Muscat (Vitis vinifera× Vitis labrusca) fortified wine made in Taiwan. Journal of the Science of Food and Agriculture, 89(15), 2551-2557. Chen, K. I., Lo, Y. C., Liu, C. W., Yu, R. C., Chou, C. C., & Cheng, K. C. (2013). Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase. Food Chemistry, 139(1-4), 79-85. Chen, K., & Li, J. (2022). A glance into the aroma of white wine. White Wine Technology. 313-326. Chen, K., Liu, C., Wang, Y., Wang, Z., Li, F., Ma, L., & Li, J. (2021). Predominance of indigenous non-Saccharomyces yeasts in the traditional fermentation of greengage wine and their significant contribution to the evolution of terpenes and ethyl esters. Food Research International, 143, 110253. Chen, L. C., & Kingsbury, A. (2019). Development of wine industries in the New-New World: Case studies of wine regions in Taiwan and Japan. Journal of Rural Studies, 72, 104-115. Chen, S., & Xu, Y. (2010). The influence of yeast strains on the volatile flavour compounds of Chinese rice wine. Journal of the Institute of Brewing, 116(2), 190-196. Chen, W. H., Wei, J., Kundu, R. T., Adhikari, R., Liu, Z., Lee, J., Versteeg, L., Poveda, C., Keegan, B., & Villar, M. J. (2021). Genetic modification to design a stable yeast-expressed recombinant SARS-CoV-2 receptor binding domain as a COVID-19 vaccine candidate. Biochimica et Biophysica Acta (BBA)-General Subjects, 1865(6), 129893. Chen, X., Quek, S. Y., Fedrizzi, B., & Kilmartin, P. A. (2020). Characterization of free and glycosidically bound volatile compounds from tamarillo (Solanum betaceum Cav.) with considerations on hydrolysis strategies and incubation time. LWT-Food Science and Technology, 124, 109178. Chidi, B. S., Bauer, F., & Rossouw, D. (2018). Organic acid metabolism and the impact of fermentation practices on wine acidity: a review. South African Journal of Enology and Viticulture, 39(2), 1-15. Chidi, B. S., Rossouw, D., Buica, A. S., & Bauer, F. F. (2015). Determining the impact of industrial wine yeast strains on organic acid production under white and red wine-like fermentation conditions. South African Journal of Enology and Viticulture, 36(3), 316-327. Chigo-Hernandez, M. M., DuBois, A., & Tomasino, E. (2022). Aroma perception of rose oxide, linalool and α-terpineol combinations in Gewürztraminer wine. Fermentation, 8(1), 30. Chindaphan, K., Thaveesangsakulthai, I., Naranaruemol, S., Nhujak, T., Panchompoo, J., Chailapakul, O., & Kulsing, C. (2021). Miniaturized electrocoagulation approach for removal of polymeric pigments and selective analysis of non-and mono-hydroxylated phenolic acids in wine with HPLC-UV. RSC Advances, 11(11), 5885-5893. Choe, K. I., Kwon, J. H., Park, K. H., Oh, M. H., Kim, M. H., Kim, H. H., Cho, S. H., Chung, E. K., Ha, S. Y., & Lee, M. W. (2012). The antioxidant and anti-inflammatory effects of phenolic compounds isolated from the root of Rhodiola sachalinensis A. BOR. Molecules, 17(10), 11484-11494. Choi, I. S., & Lee, S. Y. (2014). An exploratory study on the characteristics and distribution of traditional liquor among China, Japan and Korea. Journal of Distribution Science, 12(5), 109-117. Cholet, C., Claverol, S., Claisse, O., Rabot, A., Osowsky, A., Dumot, V., Ferrari, G., & Gény, L. (2016). Tartaric acid pathways in Vitis vinifera L.(cv. Ugni blanc): a comparative study of two vintages with contrasted climatic conditions. BMC Plant Biology, 16(1), 1-18. Christofi, S., Papanikolaou, S., Dimopoulou, M., Terpou, A., Cioroiu, I. B., Cotea, V., & Kallithraka, S. (2022). Effect of yeast assimilable nitrogen content on fermentation kinetics, wine chemical composition and sensory character in the production of Assyrtiko Wines. Applied Sciences, 12(3), 1405. Chung, D., Kim, S. Y., & Ahn, J. H. (2017). Production of three phenylethanoids, tyrosol, hydroxytyrosol, and salidroside, using plant genes expressing in Escherichia coli. Scientific Reports, 7(1), 1-8. Ciani, M., Capece, A., Comitini, F., Canonico, L., Siesto, G., & Romano, P. (2016). Yeast interactions in inoculated wine fermentation. Frontiers in Microbiology, 7, 555. Cioch-Skoneczny, M., Satora, P., Skoneczny, S., & Klimczak, K. (2020). Physicochemical characterization of wines produced using indigenous yeasts from cold climate grapes. European Food Research and Technology, 1-9. Clark, R. A., Hewson, L., Bealin-Kelly, F., & Hort, J. (2011). The interactions of CO2, ethanol, hop acids and sweetener on flavour perception in a model beer. Chemosensory Perception, 4(1), 42-54. Claro, F., Rijsbrack, K., & Soares, E. V. (2007). Flocculation onset in Saccharomyces cerevisiae: Effect of ethanol, heat and osmotic stress. Journal of Applied Microbiology, 102(3), 693-700. Conterno, L., & Henick-Kling, T. (2022). Brettanomyces/Dekkera off-flavor and other microbial spoilage. Managing Wine Quality. 427-476. Cordente, A. G., Espinase Nandorfy, D., Solomon, M., Schulkin, A., Kolouchova, R., Francis, I. L., & Schmidt, S. A. (2021). Aromatic higher alcohols in wine: Implication on aroma and palate attributes during Chardonnay aging. Molecules, 26(16), 4979. Coronas-Serna, J. M., Valenti, M., Del Val, E., Fernández-Acero, T., Rodríguez-Escudero, I., Mingo, J., Luna, S., Torices, L., Pulido, R., & Molina, M. (2020). Modeling human disease in yeast: Recreating the PI3K-PTEN-Akt signaling pathway in Saccharomyces cerevisiae. International Microbiology, 23(1), 75-87. Cortés‐Diéguez, S., Rodriguez‐Solana, R., Domínguez, J. M., & Díaz, E. (2015). Impact odorants and sensory profile of young red wines from four Galician (NW of Spain) traditional cultivars. Journal of the Institute of Brewing, 121(4), 628-635. Cosme, F., Filipe-Ribeiro, L., & Nunes, F. M. (2021). Wine stabilisation: An overview of defects and treatments. Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging, 175-204. Costantini, A., Cravero, M. C., Panero, L., Bonello, F., Vaudano, E., Pulcini, L., & Garcia-Moruno, E. (2021). Wine fermentation performance of indigenous Saccharomyces cerevisiae and Saccharomyces paradoxus strains isolated in a Piedmont vineyard. Beverages, 7(2), 30. Crandall, S. G., Spychalla, J., Crouch, U. T., Acevedo, F. E., Naegele, R. P., & Miles, T. D. (2022). Rotting grapes don’t improve with age: Cluster rot disease complexes, management, and future prospects. Plant Disease, 106(8), 2013-2025. Cravero, M. C. (2020). Musty and moldy taint in wines: a review. Beverages, 6(2), 41. Crupi, P., Santamaria, M., Vallejo, F., Tomás-Barberán, F. A., Masi, G., Caputo, A. R., Battista, F., & Tarricone, L. (2020). How pre-harvest inactivated yeast treatment may influence the norisoprenoid aroma potential in wine grapes. Applied Sciences, 10(10), 3369. Csanady, A. (2015). ‘Real coup’for Canadian wineries buried in TPP deal will combat ice wine counterfeits overseas. Financial Post. Cubillos, F. A., Gibson, B., Grijalva‐Vallejos, N., Krogerus, K., & Nikulin, J. (2019). Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast, 36(6), 383-398. Cui, D. Y., Zhang, Y., Xu, J., Zhang, C. Y., Li, W., & Xiao, D. G. (2018). PGK1 promoter library for the regulation of acetate ester production in Saccharomyces cerevisiae during Chinese baijiu fermentation. Journal of Agricultural and Food Chemistry, 66(28), 7417-7427. da Silva Ferreira, A. C., Barbe, J.-C., & Bertrand, A. (2002). Heterocyclic acetals from glycerol and acetaldehyde in port wines: evolution with aging. Journal of Agricultural and Food Chemistry, 50(9), 2560-2564. Dadkhodazade, E., Khanniri, E., Khorshidian, N., Hosseini, S. M., Mortazavian, A. M., & Moghaddas Kia, E. (2021). Yeast cells for encapsulation of bioactive compounds in food products: a review. Biotechnology Progress, 37(4), e3138. De-La-Fuente-Blanco, A., Sáenz-Navajas, M. P., Valentin, D., & Ferreira, V. (2020). Fourteen ethyl esters of wine can be replaced by simpler ester vectors without compromising quality but at the expense of increasing aroma concentration. Food Chemistry, 307, 125553. de Melo Pereira, G. V., Soccol, V. T., Pandey, A., Medeiros, A. B. P., Lara, J. M. R. A., Gollo, A. L., & Soccol, C. R. (2014). Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process. International Journal of Food Microbiology, 188, 60-66. de Souza, J. C., Crupi, P., Colletta, A., Antonacci, D., & Toci, A. T. (2021). Influence of vinification process over the composition of volatile compounds and sensorial characteristics of greek wines. Journal of Food Science and Technology, 1-11. Dein, M., Moore, A., Ricketts, C., Huynh, C., & Munafo Jr, J. P. (2021). Characterization of odorants in Chardonnay Marc skins. Journal of Agricultural and Food Chemistry, 69(41), 12262-12269. Dekker, W. J., Ortiz-Merino, R. A., Kaljouw, A., Battjes, J., Wiering, F. W., Mooiman, C., de la Torre, P., & Pronk, J. T. (2021). Engineering the thermotolerant industrial yeast Kluyveromyces marxianus for anaerobic growth. Metabolic Engineering, 67, 347-364. Del Fresno, J. M., Morata, A., Loira, I., Escott, C., & Suarez Lepe, J. A. (2020). Evolution of the phenolic fraction and aromatic profile of red wines aged in oak barrels. ACS Omega, 5(13), 7235-7243. Delius, J., Emmerich, M., Özyurt, V., & Hamscher, G. (2022). Biotransformation of tetracyclines by fungi: Challenges and future research perspectives. Journal of Agricultural and Food Chemistry, 70(5), 1454-1460. Delva, E., Arisuryanti, T., & Ilmi, M. (2022). Genetic diversity of Amylomyces rouxii from Ragi tapai in Java Island based on ribosomal regions ITS1/ITS2 and D1/D2. Mycobiology, 1-10. Denat, M., Pérez, D., Heras, J. M., Querol, A., & Ferreira, V. (2021a). The effects of Saccharomyces cerevisiae strains carrying alcoholic fermentation on the fermentative and varietal aroma profiles of young and aged Tempranillo wines. Food Chemistry: X, 9, 100116. Denat, M., Pérez, D., Heras, J. M., Sáenz-Navajas, M. P., & Ferreira, V. (2021b). Impact of two yeast strains on Tempranillo red wine aroma profiles throughout accelerated ageing. Oeno One, 55(4), 181-195. Deshevaya, E. A., Kachalkin, A. V., Maksimova, I. A., Fialkina, S. V., Shubralova, E. V., Tsygankov, O. S., Ilyin, V. K., Orlov, O. I., Morzunov, S. P., & Nikolaeva, I. V. (2022). Microbiological analysis of the cloth bundle exposed on the external surface of the international space station over 8 years. BioNanoScience, 1-7. Desobgo, S. C., & Nso, E. J. (2021). Winemaking: Control, bioreactor and modelling of process. Winemaking: Basics and Applied Aspects. 495-519. Devanthi, P. V. P., Kho, K., Nurdiansyah, R., Briot, A., Taherzadeh, M. J., & Aslanzadeh, S. (2021). Do kombucha symbiotic cultures of bacteria and yeast affect bacterial cellulose yield in molasses? Journal of Fungi, 7(9), 705. Devi, A., & Anu-Appaiah, K. (2021). Mixed malolactic co-culture (Lactobacillus plantarum and Oenococcus oeni) with compatible Saccharomyces influences the polyphenolic, volatile and sensory profile of Shiraz wine. LWT-Food Science and Technology, 135, 110246. Devi, A., Anu-Appaiah, K., & Lin, T. F. (2022). Timing of inoculation of Oenococcus oeni and Lactobacillus plantarum in mixed malo-lactic culture along with compatible native yeast influences the polyphenolic, volatile and sensory profile of the Shiraz wines. LWT-Food Science and Technology, 113130. Di Gianvito, P., Tesnière, C., Suzzi, G., Blondin, B., & Tofalo, R. (2017). FLO 5 gene controls flocculation phenotype and adhesive properties in a Saccharomyces cerevisiae sparkling wine strain. Scientific Reports, 7(1), 1-12. Dias, G. P., Santos, R. C. d., Carvalho, R. C., Souza, C. G. d., dos Santos, A. P., Andrade, D. F. d., & d’Avila, L. A. (2020). Determination of methanol in gasoline and ethanol fuels by high-performance liquid chromatography. Journal of the Brazilian Chemical Society, 31, 1055-1063. Diez-Ozaeta, I., Lavilla, M., & Amárita, F. (2021). Wine aroma profile modification by Oenococcus oeni strains from Rioja Alavesa region: selection of potential malolactic starters. International Journal of Food Microbiology, 356, 109324. Dimitrov, D., Haygarov, V., & Yoncheva, T. (2020). Aromatic profile of red wines from grapevine varieties rubin, Storgozia, Bouquet, Trapezitsa, Kaylashky rubin and Pinot Noir, cultivated in the region of central northern Bulgaria. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 885-889. Divol, B., du Toit, M., & Duckitt, E. (2012). Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Applied Microbiology and Biotechnology, 95(3), 601-613. Djekic, I., Lorenzo, J. M., Munekata, P. E., Gagaoua, M., & Tomasevic, I. (2021). Review on characteristics of trained sensory panels in food science. Journal of Texture Studies, 52(4), 501-509. Dolores, P., Marie, D., Romain, M., María, H. J., Manuel, G. J., Vicente, F., & Amparo, Q. (2022). Modulation of aroma and chemical composition of Albariño semi-synthetic wines by non-wine Saccharomyces yeasts and bottle aging. Food Microbiology, 103981. Dong, T., Zheng, T., Fu, W., Guan, L., Jia, H., & Fang, J. (2020). The effect of ethylene on the color change and resistance to Botrytis cinerea infection in ‘Kyoho’grape fruits. Foods, 9(7), 892. Drappier, J., Thibon, C., Rabot, A., & Geny-Denis, L. (2019). Relationship between wine composition and temperature: Impact on Bordeaux wine typicity in the context of global warming. Critical Reviews in Food Science and Nutrition, 59(1), 14-30. Droulia, F., & Charalampopoulos, I. (2021). Future climate change impacts on European viticulture: a review on recent scientific advances. Atmosphere, 12(4), 495. Duan, C. H., & Chen, G. Y. (2021). First report of Colletotrichum viniferum causing ripe rot of grape berry in Taiwan. Plant Disease, 106(2), 764. Duan, J., Yang, S., Li, H., Qin, D., Shen, Y., Li, H., Sun, J., Zheng, F., & Sun, B. (2022). Why the key aroma compound of soy sauce aroma type baijiu has not been revealed yet? LWT-Food Science and Technology, 154, 112735. Dunning, N. P., & Gemmer, W. (2020). Geographic language of wine labels: libations, land, and labels. Handbook of the Changing World Language Map, 4017-4032. Dutraive, O., Benito, S., Fritsch, S., Beisert, B., Patz, C. D., & Rauhut, D. (2019). Effect of sequential inoculation with non-Saccharomyces and Saccharomyces yeasts on Riesling wine chemical composition. Fermentation, 5(3), 79. Dzialo, M. C., Park, R., Steensels, J., Lievens, B., & Verstrepen, K. J. (2017). Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiology Reviews, 41(Supp_1), S95-S128. El-Sayed, A. S., Shindia, A. A., AbouZeid, A., Koura, A., Hassanein, S. E., & Ahmed, R. M. (2021). Triggering the biosynthetic machinery of Taxol by Aspergillus flavipes via cocultivation with Bacillus subtilis: Proteomic analyses emphasize the chromatin remodeling upon fungal-bacterial interaction. Environmental Science and Pollution Research, 28(29), 39866-39881. Eldarov, M. A., & Mardanov, A. V. (2020). Metabolic engineering of wine strains of Saccharomyces cerevisiae. Genes, 11(9), 964. Englezos, V., Jolly, N. P., Di Gianvito, P., Rantsiou, K., & Cocolin, L. (2022). Microbial interactions in winemaking: Ecological aspects and effect on wine quality. Trends in Food Science & Technology, 127, 99-113. Ercoli, M. F., Luu, D. D., Rim, E. Y., Shigenaga, A., de Araujo, A. T., Chern, M., Jain, R., Ruan, R., Joe, A., & Stewart, V. (2022). Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proceedings of the National Academy of Sciences, 119(8). Esteras-Saz, J., de la Iglesia, Ó., Peña, C., Escudero, A., Téllez, C., & Coronas, J. (2021). Theoretical and practical approach to the dealcoholization of water-ethanol mixtures and red wine by osmotic distillation. Separation and Purification Technology, 270, 118793. Fan, T., Jing, S., Zhang, H., Yang, X., Jin, G., & Tao, Y. (2022). Localization, purification, and characterization of a novel β‐glucosidase from Hanseniaspora uvarum Yun268. Journal of Food Science, 87(3), 886-894. Fan, W., Xu, Y., & Qian, M. (2019). Current practice and future trends of aroma and flavor research in Chinese baijiu. Sex, Smoke, and Spirits: The Role of Chemistry. 145-175. Farooq, S., Shah, M. A., Siddiqui, M. W., Dar, B., Mir, S. A., & Ali, A. (2020). Recent trends in extraction techniques of anthocyanins from plant materials. Journal of Food Measurement and Characterization, 14(6), 3508-3519. Feng, C. T., Du, X., & Wee, J. (2021). Microbial and chemical analysis of non-Saccharomyces yeasts from Chambourcin hybrid grapes for potential use in winemaking. Fermentation, 7(1), 15. Feng, M. X., Jin, X. Q., Yao, H., Zhu, T. Y., Guo, S. H., Li, S., Lei, Y. L., Xing, Z. G., Zhao, X. H., & Xu, T. F. (2022). Evolution of volatile profile and aroma potential of ‘Gold Finger’table grapes during berry ripening. Journal of the Science of Food and Agriculture, 102(1), 291-298. Ferrando, N., Araque, I., Ortís, A., Thornes, G., Bautista-Gallego, J., Bordons, A., & Reguant, C. (2020). Evaluating the effect of using non-Saccharomyces on Oenococcus oeni and wine malolactic fermentation. Food Research International, 138, 109779. Ferreira, I. M., Freitas, F., Pinheiro, S., Mourão, M. F., Guido, L. F., & da Silva, M. G. (2022). Impact of temperature during beer storage on beer chemical profile. LWT-Food Science and Technology, 154, 112688. Ferrero-del-Teso, S., Arias, I., Escudero, A., Ferreira, V., Fernández-Zurbano, P., & Sáenz-Navajas, M. P. (2020). Effect of grape maturity on wine sensory and chemical features: The case of Moristel wines. LWT-Food Science and Technology, 118, 108848. Filimon, R. V., Bunea, C. I., Nechita, A., Bora, F. D., Dunca, S. I., Mocan, A., & Filimon, R. M. (2022). New malolactic bacteria strains isolated from wine microbiota. Characterization and technological properties. Fermentation, 8(1), 31. Freire, L., Furtado, M. M., Guerreiro, T. M., da Graça, J. S., da Silva, B. S., Oliveira, D. N., Catharino, R. R., & Sant’Ana, A. S. (2019). The presence of ochratoxin A does not influence Saccharomyces cerevisiae growth kinetics but leads to the formation of modified ochratoxins. Food and Chemical Toxicology, 133, 110756. Friedmann, D. (2021). The rational construction of a universal register for distinctive wines and spirits GIs against dilution. The Journal of World Intellectual Property, 25(1), 106-121. Fritts, R. K., McCully, A. L., & McKinlay, J. B. (2021). Extracellular metabolism sets the table for microbial cross-feeding. Microbiology and Molecular Biology Reviews, 85(1), e00135-00120. Fujii, H., Krausz, S., Olmer, F., Mathe, C., & Vieillescazes, C. (2021). Analysis of organic residues from the Châteaumeillant oppidum (Cher, France) using GC–MS. Journal of Cultural Heritage, 51, 50-58. G Pereira, A., Jesus, S. G., Maria, F., Paula, G. O., Maria, C., Cecilia, J. L., Catarina, L. L., Lillian, B., CFR Ferreira, I., & Angel, P. (2020). Chapter management of wine aroma compounds: Principal basis and future perspectives. Gade, A. D. (2022). Wine industry in India a regional survey. Ashok Yakkaldevi. Gambini, J., Gimeno-Mallench, L., Olaso-Gonzalez, G., Mastaloudis, A., Traber, M. G., Monleón, D., Borrás, C., & Viña, J. (2021). Moderate red wine consumption increases the expression of longevity-associated genes in controlled human populations and extends lifespan in Drosophila melanogaster. Antioxidants, 10(2), 301. Gamero, A., Ferreira, V., Pretorius, I. S., & Querol, A. (2014). Wine, beer and cider: Unravelling the aroma profile. Molecular Mechanisms in Yeast Carbon Metabolism, 261-297. Gao, J., Wang, M., Huang, W., You, Y., & Zhan, J. (2022). Indigenous Saccharomyces cerevisiae could better adapt to the physicochemical conditions and natural microbial ecology of prince grape must compared with commercial Saccharomyces cerevisiae FX10. Molecules, 27(20), 6892. Gao, P., Sam, F. E., Zhang, B., Peng, S., Li, M., & Wang, J. (2022). Enzymatic characterization of purified β-glucosidase from non-Saccharomyces yeasts and application on Chardonnay aging. Foods, 11(6), 852. García-Martínez, D. J., Arroyo-Hernández, M., Posada-Ayala, M., & Santos, C. (2021). The high content of quercetin and catechin in Airen grape juice supports its application in functional food production. Foods, 10(7), 1532. García-Moreno, M. V., Sánchez-Guillén, M. M., Delgado-González, M. J., Durán-Guerrero, E., Rodríguez-Dodero, M. C., García-Barroso, C., & Guillén-Sánchez, D. A. (2021). Chemical content and sensory changes of Oloroso Sherry wine when aged with four different wood types. LWT-Food Science and Technology, 140, 110706. García-Ríos, E., Morard, M., Parts, L., Liti, G., & Guillamón, J. M. (2017). The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics, 18(1), 159. García‐Béjar, B., Árevalo‐Villena, M., & Briones, A. (2021). Characterization of yeast population from unstudied natural sources in La Mancha region. Journal of Applied Microbiology, 130(3), 650-664. García‐Ríos, E., Nuévalos, M., Barrio, E., Puig, S., & Guillamón, J. M. (2019). A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. Environmental Microbiology, 21(5), 1771-1781. García, M., Esteve-Zarzoso, B., Cabellos, J. M., & Arroyo, T. (2018). Advances in the study of Candida stellata. Fermentation, 4(3), 74. Garofalo, C., Berbegal, C., Grieco, F., Tufariello, M., Spano, G., & Capozzi, V. (2018). Selection of indigenous yeast strains for the production of sparkling wines from native Apulian grape varieties. International Journal of Food Microbiology, 285, 7-17. Gawel, R., Schulkin, A., Smith, P. A., Espinase, D., & McRae, J. (2020). Effect of dissolved carbon dioxide on the sensory properties of still white and red wines. Australian Journal of Grape and Wine Research, 26(2), 172-179. Gawel, R., Sluyter, S. V., & Waters, E. J. (2007). The effects of ethanol and glycerol on the body and other sensory characteristics of Riesling wines. Australian Journal of Grape and Wine Research, 13(1), 38-45. Genç, T. T. (2022). Non-Saccharomyces yeasts diversity on grape berries and molecular characterization of Starmerella bacillaris yeasts strains having high invertase activity. Indian Journal of Experimental Biology (IJEB), 60(03), 215-222. Gere, A., Bajusz, D., Biró, B., & Rácz, A. (2021). Discrimination ability of assessors in check-all-that-apply tests: method and product development. Foods, 10(5), 1123. Giancaspro, A., Mazzeo, A., Carlomagno, A., Gadaleta, A., Somma, S., & Ferrara, G. (2022). Optimization of an in vitro embryo rescue protocol for breeding seedless table grapes (Vitis vinifera L.) in Italy. Horticulturae, 8(2), 121. Girardi Piva, G., Casalta, E., Legras, J. L., Tesnière, C., Sablayrolles, J. M., Ferreira, D., Ortiz-Julien, A., Galeote, V., & Mouret, J. R. (2022). Characterization and role of sterols in Saccharomyces cerevisiae during white wine alcoholic fermentation. Fermentation, 8(2), 90. Gonzalez, R., Guindal, A. M., Tronchoni, J., & Morales, P. (2021). Biotechnological approaches to lowering the ethanol yield during wine fermentation. Biomolecules, 11(11), 1569. Gonzalez, R., & Morales, P. (2017). Wine secondary aroma: Understanding yeast production of higher alcohols. Microbial biotechnology, 10(6), 1449. González-Centeno, M. R., Teissedre, P. L., & Chira, K. (2021). Impact of oak wood modalities on the (non)-volatile composition and sensory attributes of red wines. Oeno One, 55(2), 285-299. Goode, J., & Harrop, S. (2011). Authentic wine: toward natural and sustainable winemaking. Univ of California Press. Gorjanović, S., Pastor, F., Loupassaki, S., Veljović, M. S., Vukosavljević, P. V., Zlatanović, S., & Pezo, L. (2020). Serbian aromatized wine “Bermet”: Electrochemical, chemiluminescent and spectrophotometric determination of antioxidant activity. Journal of the Serbian Chemical Society, 85(4), 517-529. Guerrini, L., Masella, P., Angeloni, G., Sacconi, A., Calamai, L., & Parenti, A. (2020). Effects of a small increase in carbon dioxide pressure during fermentation on wine aroma. Foods, 9(10), 1496. Guo, S., Zhao, X., Ma, Y., Wang, Y., & Wang, D. (2022). Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chemistry, 369, 130939. Guo, W., Huang, Q., Feng, Y., Tan, T., Niu, S., Hou, S., Chen, Z., Du, Z. Q., Shen, Y., & Fang, X. (2020). Rewiring central carbon metabolism for tyrosol and salidroside production in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 117(8), 2410-2419. Gupta, I., Nashvia, S., Prasad, B., & Mujeeb, M. (2022). β‐Carotene‐production methods, biosynthesis from Phaffia rhodozyma, factors affecting its production during fermentation, pharmacological properties: a review. Biotechnology and Applied Biochemistry, 69(6), 2517-2529. Gutiérrez-Escobar, R., Aliaño-González, M. J., & Cantos-Villar, E. (2021). Wine polyphenol content and its influence on wine quality and properties: a review. Molecules, 26(3), 718. Gutiérrez‐Gamboa, G., Zheng, W., & Martínez de Toda, F. (2021). Strategies in vineyard establishment to face global warming in viticulture: a mini review. Journal of the Science of Food and Agriculture, 101(4), 1261-1269. Han, G., Webb, M. R., & Waterhouse, A. L. (2019). Acetaldehyde reactions during wine bottle storage. Food Chemistry, 290, 208-215. Han, S., Yang, J., Choi, K., Kim, J., Adhikari, K., & Lee, J. (2022). Chemical analysis of commercial white wines and its relationship with consumer acceptability. Foods, 11(4), 603. Harlé, O., Legrand, J., Tesnière, C., Pradal, M., Mouret, J. R., & Nidelet, T. (2020). Investigations of the mechanisms of interactions between four non-conventional species with Saccharomyces cerevisiae in oenological conditions. PloS one, 15(5), e0233285. Hassing, E. J., de Groot, P. A., Marquenie, V. R., Pronk, J. T., & Daran, J. M. G. (2019). Connecting central carbon and aromatic amino acid metabolisms to improve de novo 2-phenylethanol production in Saccharomyces cerevisiae. Metabolic Engineering, 56, 165-180. Havlin, J. L., Austin, R., Hardy, D., Howard, A., & Heitman, J. L. (2022). Nutrient management effects on wine grape tissue nutrient content. Plants, 11(2), 158. Hayashi, K., Kajiwara, Y., Futagami, T., Goto, M., & Takashita, H. (2021). Making traditional Japanese distilled liquor, shochu and awamori, and the contribution of white and black Koji fungi. Journal of Fungi, 7(7), 517. He, L., Xu, X. Q., Wang, Y., Vanderweide, J., Sun, R. Z., Cheng, G., Chen, W., Li, S. D., Li, S. P., & Duan, C. Q. (2022). Differential influence of timing and duration of bunch bagging on volatile organic compounds in Cabernet Sauvignon berries (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 28(1), 75-85. Heath, R. S., Ruscoe, R. E., & Turner, N. J. (2022). The beauty of biocatalysis: Sustainable synthesis of ingredients in cosmetics. Natural Product Reports, 39(2), 335-388. Hein, K. A., Jaeger, S. R., Carr, B. T., & Delahunty, C. M. (2008). Comparison of five common acceptance and preference methods. Food Quality and Preference, 19(7), 651-661. Henry, J. (2011). Advances in Food and Nutrition Research. Elsevier. Hernandez-Orte, P., Cersosimo, M., Loscos, N., Cacho, J., Garcia-Moruno, E., & Ferreira, V. (2009). Aroma development from non-floral grape precursors by wine lactic acid bacteria. Food Research International, 42(7), 773-781. Hipkiss, A. R., Cartwright, S. P., Bromley, C., Gross, S. R., & Bill, R. M. (2013). Carnosine: can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chemistry Central Journal, 7(1), 1-9. Holt, S., Mukherjee, V., Lievens, B., Verstrepen, K. J., & Thevelein, J. M. (2018). Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiology, 72, 55-66. Hou, C. Y., Huang, P. H., Lai, Y. T., Lin, S. P., Liou, B. K., Lin, H. W., Hsieh, C. W., & Cheng, K. C. (2022). Screening and identification of yeasts from fruits and their coculture for cider production. Fermentation, 8(1), 1. Hranilovic, A., Albertin, W., Capone, D. L., Gallo, A., Grbin, P. R., Danner, L., Bastian, S. E., Masneuf-Pomarede, I., Coulon, J., & Bely, M. (2021). Impact of Lachancea thermotolerans on chemical composition and sensory profiles of Merlot wines. Food Chemistry, 349, 129015. Hranilovic, A., Gambetta, J. M., Jeffery, D. W., Grbin, P. R., & Jiranek, V. (2020). Lower-alcohol wines produced by Metschnikowia pulcherrima and Saccharomyces cerevisiae co-fermentations: The effect of sequential inoculation timing. International Journal of Food Microbiology, 329, 108651. Hu, H., Catchmark, J. M., & Demirci, A. (2021). Co-culture fermentation on the production of bacterial cellulose nanocomposite produced by Komagataeibacter hansenii. Carbohydrate Polymer Technologies and Applications, 2, 100028. Hu, K., Jin, G. J., Mei, W. C., Li, T., & Tao, Y. S. (2018a). Increase of medium-chain fatty acid ethyl ester content in mixed H. uvarum/S. cerevisiae fermentation leads to wine fruity aroma enhancement. Food Chemistry, 239, 495-501. Hu, K., Jin, G. J., Xu, Y. H., & Tao, Y. S. (2018b). Wine aroma response to different participation of selected Hanseniaspora uvarum in mixed fermentation with Saccharomyces cerevisiae. Food Research International, 108, 119-127. Hu, K., Jin, G. J., Xu, Y. H., Xue, S. J., Qiao, S. J., Teng, Y. X., & Tao, Y. S. (2019). Enhancing wine ester biosynthesis in mixed Hanseniaspora uvarum/Saccharomyces cerevisiae fermentation by nitrogen nutrient addition. Food Research International, 123, 559-566. Hu, K., Zhao, H., Edwards, N., Peyer, L., Tao, Y., & Arneborg, N. (2022a). The effects of cell-cell contact between Pichia kluyveri and Saccharomyces cerevisiae on amino acids and volatiles in mixed culture alcoholic fermentations. Food Microbiology, 103, 103960. Hu, K., Zhao, H., Kang, X., Ge, X., Zheng, M., Hu, Z., & Tao, Y. (2022b). Fruity aroma modifications in Merlot wines during simultaneous alcoholic and malolactic fermentations through mixed culture of S. cerevisiae, P. fermentans, and L. brevis. LWT-Food Science and Technology, 154, 112711. Hu, L., Liu, R., Wang, X., & Zhang, X. (2020). The sensory quality improvement of citrus wine through co-fermentations with selected Non-Saccharomyces yeast strains and Saccharomyces cerevisiae. Microorganisms, 8(3), 323. Hu, X. Z., Liu, S. Q., Li, X. H., Wang, C. X., Ni, X. L., Liu, X., Wang, Y., Liu, Y., & Xu, C. H. (2019). Geographical origin traceability of Cabernet Sauvignon wines based on Infrared fingerprint technology combined with chemometrics. Scientific Reports, 9(1), 1-9. Hu, Y., Zhu, Z., Nielsen, J., & Siewers, V. (2019). Engineering Saccharomyces cerevisiae cells for production of fatty acid-derived biofuels and chemicals. Open Biology, 9(5), 190049. Huang, C. H., Lai, Y. T., Cui, S. M., Yu, R. C., & Cheng, K. C. (2018). Analysis of the aroma compounds of Taiwan draft beer. Taiwanese Journal of Agricultural Chemistry & Food Science, 56(5). Huang, C. J., Lu, M. Y., Chang, Y. W., & Li, W. H. (2018). Experimental evolution of yeast for high-temperature tolerance. Molecular Biology and Evolution, 35(8), 1823-1839. Huang, J., Wang, Y., Ren, Y., Wang, X., Li, H., Liu, Z., Yue, T., & Gao, Z. (2022). Effect of inoculation method on the quality and nutritional characteristics of low-alcohol kiwi wine. LWT-Food Science and Technology, 156, 113049. Huang, L., Ma, Y., Tian, X., Li, J. M., Li, L. X., Tang, K., & Xu, Y. (2018). Chemosensory characteristics of regional Vidal icewines from China and Canada. Food Chemistry, 261, 66-74. Huang, S., Ding, W., Li, C., & Cox, D. G. (2014). Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity. Pharmacognosy Magazine, 10(40), 410. Hyde, K. D., Jeewon, R., Chen, Y. J., Bhunjun, C. S., Calabon, M. S., Jiang, H. B., Lin, C. G., Norphanphoun, C., Sysouphanthong, P., & Pem, D. (2020). The numbers of fungi: is the descriptive curve flattening? Fungal Diversity, 103(1), 219-271. Iorizzo, M., Coppola, F., Letizia, F., Testa, B., & Sorrentino, E. (2021). Role of yeasts in the brewing process: tradition and innovation. Processes, 9(5), 839. Ivic, I., Kopjar, M., Jakobek, L., Jukic, V., Korbar, S., Maric, B., Mesic, J., & Pichler, A. (2021). Influence of processing parameters on phenolic compounds and color of Cabernet Sauvignon red wine concentrates obtained by reverse osmosis and nanofiltration. Processes, 9(1), 89. Ivit, N. N., Longo, R., & Kemp, B. (2020). The effect of non-Saccharomyces and Saccharomyces non-cerevisiae yeasts on ethanol and glycerol levels in wine. Fermentation, 6(3), 77. Jach, M. E., Serefko, A., Ziaja, M., & Kieliszek, M. (2022). Yeast protein as an easily accessible food source. Metabolites, 12(1), 63. Jagatić Korenika, A. M., Biloš, J., Kozina, B., Tomaz, I., Preiner, D., & Jeromel, A. (2020). Effect of different reducing agents on aromatic compounds, antioxidant and chromatic properties of Sauvignon Blanc wine. Foods, 9(8), 996. Jarboe, L. R. (2022). Progress and challenges for microbial fermentation processes within the biorefinery context. AZ of Biorefinery. 447-471. Ji, X. H., Wang, B. L., Wang, X. D., Wang, X. L., Liu, F. Z., & Wang, H. B. (2021). Differences of aroma development and metabolic pathway gene expression between Kyoho and 87-1 grapes. Journal of Integrative Agriculture, 20(6), 1525-1539. Jin, Y. L., & Speers, R. A. (2000). Effect of environmental conditions on the flocculation of Saccharomyces cerevisiae. Journal of the American Society of Brewing Chemists, 58(3), 108-116. Jing, H., Liu, H., Lu, Z., Liuqing, C., & Tan, X. (2020). Mitophagy improves ethanol tolerance in yeast: regulation by mitochondrial reactive oxygen species in Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology. 1876-1884. Jingrui, X., Alam, M. A., Jing, W., Wenchao, W., Yusof, Z. N. B., Daroch, M., Daoyong, Z., Lifen, Liu., & Russel, M. (2022). Enhanced removal of tetracycline from synthetic wastewater using an optimal ratio of co-culture of Desmodesmus sp. and Klebsiella pneumoniae. Bioresource Technology, 127056. Jobbágy, J., Dočkalík, M., Krištof, K., & Burg, P. (2021). Mechanized Grape harvest efficiency. Applied Sciences, 11(10), 4621. Johnson, E. E., & Rehmann, L. (2020). Self-synchronized oscillatory metabolism of Clostridium pasteurianum in continuous culture. Processes, 8(2), 137. Jolly, N. P., Varela, C., & Pretorius, I. S. (2014). Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Research, 14(2), 215-237. Jones-Moore, H. R., Jelley, R. E., Marangon, M., & Fedrizzi, B. (2022). The interactions of wine polysaccharides with aroma compounds, tannins, and proteins, and their importance to winemaking. Food Hydrocolloids, 123, 107150. Kapoore, R. V., Padmaperuma, G., Maneein, S., & Vaidyanathan, S. (2022). Co-culturing microbial consortia: approaches for applications in biomanufacturing and bioprocessing. Critical Reviews in Biotechnology, 42(1), 46-72. Kelly, J., Inglis, D., Dowling, L., & Pickering, G. (2022). Impact of Botrytis cinerea‐infected grapes on quality parameters of red wine made from withered grapes. Australian Journal of Grape and Wine Research, 28(3), 439-449. Kelly, J., Yang, F., Dowling, L., Nurgel, C., Beh, A., Di Profio, F., Pickering, G., & Inglis, D. L. (2018). Characterization of Saccharomyces bayanus CN1 for fermenting partially dehydrated grapes grown in cool climate winemaking regions. Fermentation, 4(3), 77. Kemp, B., Botezatu, A., Charnock, H., Inglis, D., Marchal, R., Pickering, G., Yang, F., & Willwerth, J. (2022). White winemaking in cold climates. White Wine Technology. 339-354. Kennedy, J. A. (2022). Wine color. Managing Wine Quality. 97-132. Khan, M. K. I., Asif, M., Razzaq, Z. U., Nazir, A., & Maan, A. A. (2022). Sustainable food industrial waste management through single cell protein production and characterization of protein enriched bread. Food Bioscience, 46, 101406. Kidd, S., Halliday, C. L., Alexiou, H., & Ellis, D. (2016). Descriptions of Medical Fungi (Vol. 3): David Ellis. Kilmartin, P. A. (2022). Understanding and controlling nonenzymatic wine oxidation. In Managing Wine Quality. 525-557. Kim, J. H., Bloor, D., Rodriguez, R., Mohler, E., Mailloux, L., Melton, S., & Jung, D. (2022). Casein kinases are required for the stability of the glucose-sensing receptor Rgt2 in yeast. Scientific Reports, 12(1), 1-12. Knowles, S. L., Raja, H. A., Roberts, C. D., & Oberlies, N. H. (2022). Fungal–fungal co-culture: a primer for generating chemical diversity. Natural Product Reports, 39(8), 1557-1573. Kong, C. L., Zhu, D. Y., Zhao, Y., Zhao, T. Y., & Tao, Y. S. (2022). Spent yeast polysaccharides in mixed alcoholic fermentation between Pichia kluyveri, Pichia fermentans and Saccharomyces cerevisiae retarded wine fruity ester hydrolysis. Journal of Food Composition and Analysis, 105, 104200. Koning, N. R., & Strand, D. (2022). AC–H activation approach to the tricyclic core of glionitrin A and B. ACS Omega, 7(14), 12329-12341. Kontaris, I., East, B. S., & Wilson, D. A. (2020). Behavioral and neurobiological convergence of odor, mood and emotion: a review. Frontiers in Behavioral Neuroscience, 14, 35. Korenika, A. M. J., Prusina, T., & Ivić, S. (2021). Influence of cold maceration treatment on aromatic and sensory properties of Vugava wine (Vitis vinifera L.). Journal of Microbiology, Biotechnology and Food Sciences, 2021, 49-53. Kosaka, T., Tsuzuno, T., Nishida, S., Pattanakittivorakul, S., Murata, M., Miyakawa, I., Lertwattanasakul, N., Limtong, S., & Yamada, M. (2022). Distinct metabolic flow in response to temperature in thermotolerant Kluyveromyces marxianus. Applied and Environmental Microbiology, 88(6), e02006-21 Koyama, K., Kamigakiuchi, H., Iwashita, K., Mochioka, R., & Goto-Yamamoto, N. (2017). Polyphenolic diversity and characterization in the red–purple berries of East Asian wild Vitis species. Phytochemistry, 134, 78-86. Kregiel, D., Nowacka, M., Rygala, A., & Vadkertiová, R. (2022). Biological activity of pulcherrimin from the Meschnikowia pulcherrima clade. Molecules, 27(6), 1855. Kumar, L., Tian, B., & Harrison, R. (2022). Interactions of Vitis vinifera L. cv. Pinot Noir grape anthocyanins with seed proanthocyanidins and their effect on wine color and phenolic composition. LWT-Food Science and Technology, 162, 113428. Kumar, R., Srivastava, V., Baindara, P., & Ahmad, A. (2022). Thermostable vaccines: an innovative concept in vaccine development. Expert Review of Vaccines, 21(6), 811-824. Kurtzman, C. P., Fell, J. W., Boekhout, T., & Robert, V. (2011). Methods for isolation, phenotypic characterization and maintenance of yeasts. The Yeasts. 87-110. Kyraleou, M., Tzanakouli, E., Kotseridis, Y., Chira, K., Ligas, I., Kallithraka, S., & Teissedre, P. L. (2016). Addition of wood chips in red wine during and after alcoholic fermentation: Differences in color parameters, phenolic content and volatile composition. Oeno One, 50(4), 209-222. López, F. (2021). Brandy production: fundamentals and recent developments. Winemaking. 608-634. López, M. C., Mateo, J. J., & Maicas, S. (2015). Screening of β‐glucosidase and β‐xylosidase activities in four non‐Saccharomyces yeast isolates. Journal of Food Science, 80(8), C1696-C1704. Lücking, R., Aime, M. C., Robbertse, B., Miller, A. N., Aoki, T., Ariyawansa, H. A., Cardinali, G., Crous, P. W., Druzhinina, I. S., & Geiser, D. M. (2021). Fungal taxonomy and sequence-based nomenclature. Nature Microbiology, 6(5), 540-548. Lai, Y. T., Cheng, K. C., Lai, C. N., & Lai, Y. J. (2019). Isolation and identification of aroma producing strain with esterification capacity from yellow water. PloS one, 14(2), e0211356. Lai, Y. T., Hsieh, C. W., Lo, Y. C., Liou, B. K., Lin, H. W., Hou, C. Y., & Cheng, K. C. (2022). Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. LWT-Food Science and Technology, 154, 112653. Lambrechts, M., & Pretorius, I. (2000). Yeast and its importance to wine aroma-a review. South African Journal of Enology and Viticulture, 21(1), 97-129. Leça, J. M., Pereira, V., Miranda, A., Vilchez, J. L., Malfeito-Ferreira, M., & Marques, J. C. (2021a). Impact of indigenous non-Saccharomyces yeasts isolated from Madeira Island vineyards on the formation of ethyl carbamate in the aging of fortified wines. Processes, 9(5), 799. Leça, J. M., Pereira, V., Miranda, A., Vilchez, J. L., & Marques, J. C. (2021b). New insights into ethyl carbamate occurrence in fortified wines. LWT-Food Science and Technology, 111566. Lee, C. H., & Yu, R. (2007). Selection and oenological comparison of Taiwan black queen grape wine yeasts. Journal of Food and Drug Analysis, 15(3), 299. Lee, J., Seok, J., Oh, J., & Cho, M. (2022). Comparison of CATA and napping to identify sensory properties and drivers of liking for novel blended teas using Dendranthema Zawadskii Var. Latilobum. Food science and biotechnology, 31(12), 1559-1570. Lee, S. B., & Park, H. D. (2020). Isolation and investigation of potential non-Saccharomyces yeasts to improve the volatile terpene compounds in Korean Muscat Bailey A wine. Microorganisms, 8(10), 1552. Leis, D., Viskić, M., Jeromel, A., Bandić, L. M., & Leitner, E. (2022). Analysis of varietal thiols in Sauvignon Blanc wines—Optimization of a solid-phase extraction gas chromatography tandem mass spectrometry method. Food Analytical Methods, 1-15. Leng, F., Wang, C., Sun, L., Li, P., Cao, J., Wang, Y., Zhang, C., & Sun, C. (2022). Effects of different treatments on physicochemical characteristics of ‘Kyoho’grapes during storage at low temperature. Horticulturae, 8(2), 94. Li, H., Li, L. F., Zhang, Z. J., Wu, C. J., & Yu, S. J. (2021). Sensory evaluation, chemical structures, and threshold concentrations of bitter-tasting compounds in common foodstuffs derived from plants and maillard reaction: a review. Critical Reviews in Food Science and Nutrition, 1-41. Li, N., Wang, Q. Q., Xu, Y. H., Li, A. H., & Tao, Y. S. (2020). Increased glycosidase activities improved the production of wine varietal odorants in mixed fermentation of P. fermentans and high antagonistic S. cerevisiae. Food Chemistry, 332, 127426. Li, S., Bi, P., Sun, N., Gao, Z., Chen, X., & Guo, J. (2022b). Effect of sequential fermentation with four non-Saccharomyces and Saccharomyces cerevisiae on nutritional characteristics and flavor profiles of kiwi wines. Journal of Food Composition and Analysis, 104480. Li, S., Wu, P., Yu, X., Cao, J., Chen, X., Gao, L., Chen, K., & Grierson, D. (2022a). Contrasting roles of ethylene response factors in pathogen response and ripening in fleshy fruit. Cells, 11(16), 2484. Li, Z., Huang, J., Chen, H., Yang, M., Li, D., Xu, Y., Li, L., Chen, J., Wu, B., & Luo, Z. (2023). Sulfur dioxide maintains storage quality of table grape (Vitis vinifera cv ‘Kyoho’) by altering cuticular wax composition after simulated transportation. Food Chemistry, 408, 135188. Liang, Z., Zhang, P., Zeng, X. A., & Fang, Z. (2021). The art of flavored wine: tradition and future. Trends in Food Science & Technology, 116, 130-145. Lin, J., Massonnet, M., & Cantu, D. (2019). The genetic basis of grape and wine aroma. Horticulture Research, 6. Lin, M. M. H., Boss, P. K., Walker, M. E., Sumby, K. M., & Jiranek, V. (2022). Influence of Kazachstania spp. on the chemical and sensory profile of red wines. International Journal of Food Microbiology, 362, 109496. Lin, X., Zhang, X., Zhang, J., Zhao, X., Wang, J., Wang, S., & Sun, Y. (2021). Effects of different inoculation methods and strains on glycerol, acetic acid, ethanol, and esters in mixed fermentation of Hanseniaspora uvarum and Saccharomyces cerevisiae. AIP Conference Proceedings (Vol. 2350, No. 1, p. 020001). AIP Publishing LLC. Ling, M., Qi, M., Li, S., Shi, Y., Pan, Q., Cheng, C., Yang, W., & Duan, C. (2022). The influence of polyphenol supplementation on ester formation during red wine alcoholic fermentation. Food Chemistry, 377, 131961. Liou, B. K., Jaw, Y. M., Chuang, G. C. C., Yau, N. N., Zhuang, Z. Y., & Wang, L. F. (2020). Important sensory, association, and postprandial perception attributes influencing young Taiwanese consumers’ acceptance for Taiwanese specialty teas. Foods, 9(1), 100. Lisanti, M. T., Blaiotta, G., Nioi, C., & Moio, L. (2019). Alternative methods to SO2 for microbiological stabilization of wine. Comprehensive Reviews in Food Science and Food Safety, 18(2), 455-479. Liti, G. (2015). The natural history of model organisms: The fascinating and secret wild life of the budding yeast S. cerevisiae. Elife, 4, e05835. Liu, C., Li, M., Ren, T., Wang, J., Niu, C., Zheng, F., & Li, Q. (2021). Effect of Saccharomyces cerevisiae and non-Saccharomyces strains on alcoholic fermentation behavior and aroma profile of yellow-fleshed peach wine. LWT-Food Science and Technology, 112993. Liu, J., Liu, M., Ye, P., He, C., Liu, Y., Zhang, S., Huang, J., Zhou, J., Zhou, R., & Cai, L. (2022). Ethyl esters enhancement of Jinchuan pear wine studied by coculturing Saccharomyces bayanus with Torulaspora delbrueckii and their community and interaction characteristics. Food Bioscience, 46, 101605. Liu, J., Liu, M., Ye, P., Lin, F., Huang, J., Wang, H., Zhou, R., Zhang, S., Zhou, J., & Cai, L. (2020). Characterization of major properties and aroma profile of kiwi wine co-cultured by Saccharomyces yeast (S. cerevisiae, S. bayanus, S. uvarum) and T. delbrueckii. European Food Research and Technology, 1-14. Liu, P. T., Duan, C. Q., & Yan, G. L. (2019). Comparing the effects of different unsaturated fatty acids on fermentation performance of Saccharomyces cerevisiae and aroma compounds during red wine fermentation. Molecules, 24(3), 538. Liu, S. L., Jaw, Y. M., Wang, L. F., Chuang, G. C. C., Zhuang, Z. Y., Chen, Y. S., & Liou, B. K. (2021). Evaluation of sensory quality for Taiwanese specialty teas with cold infusion using CATA and temporal CATA by Taiwanese consumers. Foods, 10(10), 2344. Liu, S., Bai, M., Zhou, J., Jin, Z., Xu, Y., Yang, Q., Zhou, J., Zhang, S., & Mao, J. (2022a). Analysis of genes from Saccharomyces cerevisiae HJ01 participating in aromatic alcohols biosynthesis during huangjiu fermentation. LWT-Food Science and Technology, 154, 112705. Liu, S., Laaksonen, O., Li, P., Gu, Q., & Yang, B. (2022b). Use of non-Saccharomyces yeasts in berry wine production: Inspiration from their applications in winemaking. Journal of Agricultural and Food Chemistry, 70(3), 736-750. Liu, Z., Wang, J., & Nielsen, J. (2022). Yeast synthetic biology advances biofuel production. Current Opinion in Microbiology, 65, 33-39. Luna, R., López, F., & Pérez-Correa, J. R. (2021). Design of optimal wine distillation recipes using multi-criteria decision-making techniques. Computers & Chemical Engineering, 145, 107194. Luzzini, G., Slaghenaufi, D., Pasetto, F., & Ugliano, M. (2021). Influence of grape composition and origin, yeast strain and spontaneous fermentation on aroma profile of Corvina and Corvinone wines. LWT-Food Science and Technology, 143, 111120. Lytra, G., Miot-Sertier, C., Moine, V., Coulon, J., & Barbe, J. C. (2020). Influence of must yeast-assimilable nitrogen content on fruity aroma variation during malolactic fermentation in red wine. Food Research International, 135, 109294. Méndez-Zamora, A., Gutiérrez-Avendaño, D. O., Arellano-Plaza, M., De la Torre González, F. J., Barrera-Martínez, I., Gschaedler Mathis, A., & Casas-Godoy, L. (2020). The non-Saccharomyces yeast Pichia kluyveri for the production of aromatic volatile compounds in alcoholic fermentation. FEMS Yeast Research, 20(8), foaa067. Ma, T., Han, S., Zhang, B., Sam, F. E., Li, W., & Zhang, J. (2022a). White winemaking in cold regions with short maturity periods in Northwest China. White Wine Technology, 355-367. Ma, T., Wang, J., Wang, H., Zhao, Q., Zhang, F., Ge, Q., Li, C., Gamboa, G. G., Fang, Y., & Sun, X. (2022b). Wine aging and artificial simulated wine aging: technologies, applications, challenges, and perspectives. Food Research International, 110953. Ma, Y., Xu, Y., & Tang, K. (2021). Aroma of icewine: a review on how environmental, viticultural, and oenological factors affect the aroma of icewine. Journal of Agricultural and Food Chemistry, 69(25), 6943-6957. Maglova, D. B. (2021). From ancient feast to the poetic verse! A brief history of the Chinese ritual wine drink! University of Veliko Tarnovo, 3(1), 187-203. Magris, G., Jurman, I., Fornasiero, A., Paparelli, E., Schwope, R., Marroni, F., Di Gaspero, G., & Morgante, M. (2021). The genomes of 204 Vitis vinifera accessions reveal the origin of European wine grapes. Nature communications, 12(1), 1-12. Mahunu, G. K., Afoakwah, N. A., Mariod, A. A., Hudu, A. R., & Tahir, H. E. (2022). Fermentation of cocoa bean. African Fermented Food Products-New Trends. 473-485. Maicas, S., & Mateo, J. J. (2005). Hydrolysis of terpenyl glycosides in grape juice and other fruit juices: a review. Applied Microbiology and Biotechnology, 67(3), 322-335. Mančić, S., Stamenković Stojanović, S., Danilović, B., Djordjević, N., Malićanin, M., Lazić, M., & Karabegović, I. (2022). Oenological characterization of native Hanseniaspora uvarum strains. Fermentation, 8(3), 92. Martín-Garcia, A., Riu-Aumatell, M., & López-Tamames, E. (2022). Revalorization of Cava (Spanish sparkling wine) lees on sourdough fermentation. Fermentation, 8(3), 133. Martínez-Avila, O., Sánchez, A., Font, X., & Barrena, R. (2018). Bioprocesses for 2-phenylethanol and 2-phenylethyl acetate production: current state and perspectives. Applied Microbiology and Biotechnology, 102(23), 9991-10004. Martínez-García, R., Mauricio, J. C., García-Martínez, T., Peinado, R. A., & Moreno, J. (2021a). Towards a better understanding of the evolution of odour-active compounds and the aroma perception of sparkling wines during ageing. Food Chemistry, 357, 129784. Martínez-García, R., Moreno, J., Bellincontro, A., Centioni, L., Puig-Pujol, A., Peinado, R. A., Mauricio, J. C., & García-Martínez, T. (2021b). Using an electronic nose and volatilome analysis to differentiate sparkling wines obtained under different conditions of temperature, ageing time and yeast formats. Food Chemistry, 334, 127574. Martínez-Gil, A., Alamo-Sanza, D., Sánchez-Gómez, R., & Nevares, I. (2018). Different woods in cooperage for oenology: a review. Beverages, 4(4), 94. Martínez-Gil, A. M., del Alamo-Sanza, M., del Barrio-Galán, R., & Nevares, I. (2022). Alternative woods in oenology: Volatile compounds characterisation of woods with respect to traditional oak and effect on aroma in wine, a review. Applied Sciences, 12(4), 2101. Martínez-Moreno, A., Pérez-Álvarez, E. P., López-Urrea, R., Paladines-Quezada, D. F., Moreno-Olivares, J. D., Intrigliolo, D. S., & Gil-Muñoz, R. (2021). Effects of deficit irrigation with saline water on wine color and polyphenolic composition of Vitis vinifera L. cv. Monastrell. Scientia Horticulturae, 283, 110085. Mas, A., & Portillo, M. C. (2022). Strategies for microbiological control of the alcoholic fermentation in wines by exploiting the microbial terroir complexity: a mini-review. International Journal of Food Microbiology, 109592. Mateus, D., Sousa, S., Coimbra, C., S Rogerson, F., & Simões, J. (2020). Identification and characterization of non-Saccharomyces species isolated from port wine spontaneous fermentations. Foods, 9(2), 120. Mato, I., Suárez-Luque, S., & Huidobro, J. F. (2005). A review of the analytical methods to determine organic acids in grape juices and wines. Food Research International, 38(10), 1175-1188. Matraxia, M., Alfonzo, A., Prestianni, R., Francesca, N., Gaglio, R., Todaro, A., Alfeo, V., Perretti, G., Columba, P., & Settanni, L. (2021). Non-conventional yeasts from fermented honey by-products: Focus on Hanseniaspora uvarum strains for craft beer production. Food Microbiology, 99, 103806. Maturano, Y. P., Assof, M., Fabani, M. P., Nally, M. C., Jofré, V., Assaf, L. A. R., Toro, M. E., De Figueroa, L. I. C., & Vazquez, F. (2015). Enzymatic activities produced by mixed Saccharomyces and non-Saccharomyces cultures: relationship with wine volatile composition. Antonie Van Leeuwenhoek, 108(5), 1239-1256. May, A., Narayanan, S., Alcock, J., Varsani, A., Maley, C., & Aktipis, A. (2019). Kombucha: a novel model system for cooperation and conflict in a complex multi-species microbial ecosystem. PeerJ, 7, e7565. McCarthy, G. C., Morgan, S. C., Martiniuk, J. T., Newman, B. L., McCann, S. E., Measday, V., & Durall, D. M. (2021). An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Chardonnay fermentations at a Canadian winery. PloS one, 16(2), e0225615. Mehta, D. V., Curtis, S. J., Rudolph, A. B., Mary, C. S., Goodrich, R., Schneider, K. R., & MacIntosh, A. J. (2020). A mini review: The history of yeast flocculation with an emphasis on measurement techniques. Journal of the American Society of Brewing Chemists, 1-7. Mele, M. A., Kang, H. M., Lee, Y. T., & Islam, M. Z. (2020). Grape terpenoids: flavor importance, genetic regulation, and future potential. Critical Reviews in Food Science and Nutrition, 1-19. Mendes Ferreira, A., & Mendes-Faia, A. (2020). The role of yeasts and lactic acid bacteria on the metabolism of organic acids during winemaking. Foods, 9(9), 1231. Merino, G., Marín-Arroyo, M. R., Beriain, M. J., & Ibañez, F. C. (2021). Dishes adapted to dysphagia: Sensory characteristics and their relationship to hedonic acceptance. Foods, 10(2), 480. Mestre, M. V., Maturano, Y. P., Gallardo, C., Combina, M., Mercado, L., Toro, M. E., Carrau, F., Vazquez, F., & Dellacassa, E. (2019). Impact on sensory and aromatic profile of low ethanol Malbec wines fermented by sequential culture of Hanseniaspora uvarum and Saccharomyces cerevisiae native yeasts. Fermentation, 5(3), 65. Milheiro, J., Cosme, F., Filipe-Ribeiro, L., & Nunes, F. M. (2020). Port wine: production and ageing. In Chemistry and Biochemistry of Winemaking, Wine Stabilization and Aging: IntechOpen. Mir, R., Jallu, S., & Singh, T. (2015). The shikimate pathway: review of amino acid sequence, function and three-dimensional structures of the enzymes. Critical Reviews in Microbiology, 41(2), 172-189. Mitchell, D. P. (2018). Factors affecting port wine colour stability. Cape Peninsula University of Technology, Mitsui, R., Yamada, R., Matsumoto, T., & Ogino, H. (2022). Bioengineering for the industrial production of 2, 3-butanediol by the yeast, Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 38(3), 1-12. Montoya, A. M., Luna-Rodríguez, C. E., Bonifaz, A., Treviño-Rangel, R. d. J., Rojas, O. C., & González, G. M. (2021). Physiological characterization and molecular identification of some rare yeast species causing onychomycosis. Journal of Medical Mycology, 31(2), 101121. Morata, A., Escott, C., Bañuelos, M. A., Loira, I., del Fresno, J. M., González, C., & Suárez-Lepe, J. A. (2020). Contribution of non-Saccharomyces yeasts to wine freshness. a review. Biomolecules, 10(1), 34. Morata, A., Loira, I., González, C., Bañuelos, M. A., Cuerda, R., Heras, J. M., Vaquero, C., & Suárez-Lepe, J. A. (2022). Biological acidification by Lachancea thermotolerans. White Wine Technology. 131-142. Moreira, N., Mendes, F., de Pinho, P. G., Hogg, T., & Vasconcelos, I. (2008). Heavy sulphur compounds, higher alcohols and esters production profile of Hanseniaspora uvarum and Hanseniaspora guilliermondii grown as pure and mixed cultures in grape must. International Journal of Food Microbiology, 124(3), 231-238. Mozūraitis, R., Apšegaitė, V., Radžiutė, S., Aleknavičius, D., Būdienė, J., Stanevičienė, R., Blažytė-Čereškienė, L., Servienė, E., & Būda, V. (2022). Volatiles produced by yeasts related to Prunus avium and P. cerasus fruits and their potentials to modulate the behaviour of the pest Rhagoletis cerasi fruit flies. Journal of Fungi, 8(2), 95. Muñoz-González, C., Pérez-Jiménez, M., & Pozo-Bayón, M. Á. (2020). Oral persistence of esters is affected by wine matrix composition. Food Research International, 135, 109286. Murata, M., Nitiyon, S., Lertwattanasakul, N., Sootsuwan, K., Kosaka, T., Thanonkeo, P., Limtong, S., & Yamada, M. (2015). High-temperature fermentation technology for low-cost bioethanol. Journal of the Japan Institute of Energy, 94(10), 1154-1162. Nanni, A., Parisi, M., & Colonna, M. (2021). Wine by-products as raw materials for the production of biopolymers and of natural reinforcing fillers: A critical review. Polymers, 13(3), 381. Natolino, A., & Celotti, E. (2022). Ultrasound treatment of red wine: Effect on polyphenols, mathematical modeling, and scale-up considerations. LWT-Food Science and Technology, 154, 112843. Navarrete, C., Frost, A. T., Ramos‐Moreno, L., Krum, M. R., & Martínez, J. L. (2021). A physiological characterization in controlled bioreactors reveals a novel survival strategy for Debaryomyces hansenii at high salinity. Yeast, 38(5), 302-315. Nimmanwudipong, T., Runnebaum, R. C., Ebeler, S. E., Block, D. E., & Gates, B. C. (2012). Upgrading of lignin-derived compounds: reactions of eugenol catalyzed by HY zeolite and by Pt/γ-Al2O3. Catalysis Letters, 142(2), 151-160. Nishida, M., Lestringant, P., Cantu, A., & Heymann, H. (2021). Comparing classical descriptive analysis with modified descriptive analysis, modified rate‐all‐that‐apply, and modified check‐all‐that‐apply. Journal of Sensory Studies, 36(5), e12684. Nissen, P., Nielsen, D., & Arneborg, N. (2004). The relative glucose uptake abilities of non-Saccharomyces yeasts play a role in their coexistence with Saccharomyces cerevisiae in mixed cultures. Applied Microbiology and Biotechnology, 64(4), 543-550. Nitiyon, S., Keo-Oudone, C., Murata, M., Lertwattanasakul, N., Limtong, S., Kosaka, T., & Yamada, M. (2016). Efficient conversion of xylose to ethanol by stress-tolerant Kluyveromyces marxianus BUNL-21. Springerplus, 5(1), 1-12. Nwaefuna, A. E., Rumbold, K., Boekhout, T., & Zhou, N. (2021). Bioethanolic yeasts from dung beetles: Tapping the potential of extremophilic yeasts for improvement of lignocellulolytic feedstock fermentation. Biotechnology for Biofuels, 14(1), 1-10. Ogata, T., Ohtake, A., Takeuchi, S., Tabuchi, M., & Nakamura, K. (2020). Flocculation type and the Lg-FLO1 gene of bottom-fermenting yeast are derived from top-fermenting yeast. Journal of the American Society of Brewing Chemists, 79(3), 306-313. Ogawa, M., Moreno-García, J., Joseph, L., Mauricio, J. C., Moreno, J., & García-Martínez, T. (2021). Metabolic changes by wine flor-yeasts with gluconic acid as the sole carbon source. Metabolites, 11(3), 150. Oh, H., & Kim, M. K. (2021). Isolation of three unrecorded yeasts from the guts of earthworms collected from Korea. The Korean Journal of Mycology, 49, 546. Osete-Alcaraz, A., Gómez-Plaza, E., Pérez-Porras, P., & Bautista-Ortín, A. B. (2022). Revisiting the use of pectinases in enology: A role beyond facilitating phenolic grape extraction. Food Chemistry, 372, 131282. Pérez-Porras, P., Bautista-Ortín, A. B., Jurado, R., & Gómez-Plaza, E. (2022). Combining high-power ultrasound and enological enzymes during winemaking to improve the chromatic characteristics of red wine. LWT-Food Science and Technology, 156, 113032. Pérez, D., Denat, M., Heras, J. M., Guillamón, J. M., Ferreira, V., & Querol, A. (2022). Effect of non-wine Saccharomyces yeasts and bottle aging on the release and generation of aromas in semi-synthetic Tempranillo wines. International Journal of Food Microbiology, 109554. Padilla, B., Gil, J. V., & Manzanares, P. (2016). Past and future of non-Saccharomyces yeasts: From spoilage microorganisms to biotechnological tools for improving wine aroma complexity. Frontiers in Microbiology, 7, 411. Pallmann, C. L., Brown, J. A., Olineka, T. L., Cocolin, L., Mills, D. A., & Bisson, L. F. (2001). Use of WL medium to profile native flora fermentations. American Journal of Enology and Viticulture, 52(3), 198-203. Parasar, P., & Singh, V. K. (2022). Microscopic tools for cell imaging. Miniaturized Analytical Devices: Materials and Technology, 105-119. Paredes-Ortíz, A., Olvera-Martínez, T., Páez-Lerma, J., Rojas-Contreras, J., Moreno-Jiménez, M., Aguilar, C., & Soto-Cruz, N. (2022). Isoamyl acetate production during continuous culture of Pichia fermentans. Revista Mexicana De Ingeniería Química, 21(1), Bio2654-Bio2654. Park, Y., Maeng, S., Oh, J., Sung, G. H., & Srinivasan, S. (2021). Mrakia terrae sp. nov. and Mrakia soli sp. nov., two novel Basidiomycetous yeast species isolated from soil in Korea. Mycobiology, 49(5), 469-475. Paschen, U., Kerruish, D., & White, J. (2021). Great wine from the great white north? Producer’s product positioning and marketing mix for Canadian icewine. Journal of Wine Research, 32(1), 55-66. Patel, A. K., Saini, J. K., & Singhania, R. R. (2022). Development of multiple inhibitor tolerant yeast via adaptive laboratory evolution for sustainable bioethanol production. Bioresource Technology, 344, 126247. Pavez, C., González-Muñoz, B., O'Brien, J. A., Laurie, V. F., Osorio, F., Núñez, E., Vega, R. E., Bordeu, E., & Brossard, N. (2022). Red wine astringency: Correlations between chemical and sensory features. LWT-Food Science and Technology, 154, 112656. Pazouki, L., & Niinemets, Ü. (2016). Multi-substrate terpene synthases: their occurrence and physiological significance. Frontiers in Plant Science, 7, 1019. Pearson, W., Schmidtke, L., Francis, I. L., Li, S., Hall, A., Carr, B. T., & Blackman, J. (2020) Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements. Xiiith International Terroir Congress. Peinado, R. A., Mauricio, J. C., & Moreno, J. (2006). Aromatic series in sherry wines with gluconic acid subjected to different biological aging conditions by Saccharomyces cerevisiae var. capensis. Food Chemistry, 94(2), 232-239. Pereira, V., Pereira, A. C., & Marques, J. C. (2019). Emerging trends in fortified wines: a scientific perspective. Alcoholic Beverages. 419-470. Peres, S., Giraud-Heraud, E., Masure, A.-S., & Tempere, S. (2020). Rose wine market: anything but colour? Foods, 9(12), 1850. Perestrelo, R., Silva, C., Gonçalves, C., Castillo, M., & Câmara, J. S. (2020). An approach of the madeira wine chemistry. Beverages, 6(1), 12. Perpetuini, G., Tittarelli, F., Battistelli, N., Suzzi, G., & Tofalo, R. (2020). Contribution of Pichia manshurica strains to aroma profile of organic wines. European Food Research and Technology, 246(7), 1405-1417. Petkova, M., Petrova, S., Spasova-Apostolova, V., & Naydenov, M. (2022). Tobacco plant growth-promoting and antifungal activities of three endophytic yeast strains. Plants, 11(6), 751. Phan, Q., DuBois, A., Osborne, J., & Tomasino, E. (2022). Effects of yeast product addition and fermentation temperature on lipid composition, taste and mouthfeel characteristics of Pinot Noir wine. Horticulturae, 8(1), 52. Philipp, C., Bagheri, B., Horacek, M., Eder, P., Bauer, F. F., & Setati, M. E. (2021). Inoculation of grape musts with single strains of Saccharomyces cerevisiae yeast reduces the diversity of chemical profiles of wines. PloS one, 16(7), e0254919. Pietrafesa, A., Capece, A., Pietrafesa, R., Bely, M., & Romano, P. (2020). Saccharomyces cerevisiae and Hanseniaspora uvarum mixed starter cultures: influence of microbial/physical interactions on wine characteristics. Yeast, 37(11), 609-621. Pina, C., Santos, C., Couto, J. A., & Hogg, T. (2004). Ethanol tolerance of five non-Saccharomyces wine yeasts in comparison with a strain of Saccharomyces cerevisiae—influence of different culture conditions. Food Microbiology, 21(4), 439-447. Pinto, F. O., Lopes, T., Vieira, A. M., Oliveira, R. O., Gomes, F. F., Fabricio, M. F., Aybu, M. A. Z., Mendes, S. D. C., Pagani, D. M., & Valente, P. (2022). Isolation, selection and characterization of wild yeasts with potential for brewing. Journal of the American Society of Brewing Chemists, 1-12. Pittari, E., Moio, L., & Piombino, P. (2021). Interactions between polyphenols and volatile compounds in wine: A literature review on physicochemical and sensory insights. Applied Sciences, 11(3), 1157. Plata, A., Motoki, K., Spence, C., & Velasco, C. (2022). Trends in alcohol consumption in relation to the COVID-19 pandemic: A cross-country analysis. International Journal of Gastronomy and Food Science, 27, 100397. Pollet, J., Chen, W. H., Versteeg, L., Keegan, B., Zhan, B., Wei, J., Liu, Z., Lee, J., Kundu, R., & Adhikari, R. (2021). SARS‑CoV-2 RBD219-N1C1: A yeast-expressed SARS-CoV-2 recombinant receptor-binding domain candidate vaccine stimulates virus neutralizing antibodies and T-cell immunity in mice. Human Vaccines & Immunotherapeutics, 17(8), 2356-2366. Ponomarova, O., Gabrielli, N., Sévin, D. C., Mülleder, M., Zirngibl, K., Bulyha, K., Andrejev, S., Kafkia, E., Typas, A., & Sauer, U. (2017). Yeast creates a niche for symbiotic lactic acid bacteria through nitrogen overflow. Cell Systems, 5(4), 345-357. e346. Prakash, I., Kumar, P., Om, H., Basavaraj, K., & Murthy, P. S. (2022). Metabolomics and volatile fingerprint of yeast fermented robusta coffee: A value added coffee. LWT-Food Science and Technology, 154, 112717. Prata-Sena, M., Castro-Carvalho, B. M., Nunes, S., Amaral, B., & Silva, P. (2018). The terroir of Port wine: Two hundred and sixty years of history. Food Chemistry, 257, 388-398. Previtali, P., Dokoozlian, N. K., Pan, B. S., Wilkinson, K. L., & Ford, C. M. (2022). The effect of ripening rates on the composition of Cabernet Sauvignon and Riesling wines: Further insights into the sugar/flavor nexus. Food Chemistry, 373, 131406. Priyanka, J., Rajalakshmi, S., Kumar, P. S., Krishnaswamy, V. G., Al Farraj, D. A., Elshikh, M. S., & Gawwad, M. R. A. (2022). Bioremediation of soil contaminated with toxic mixed reactive azo dyes by co-cultured cells of Enterobacter cloacae and Bacillus subtilis. Environmental Research, 204, 112136. Prokes, K., Baron, M., Mlcek, J., Jurikova, T., Adamkova, A., Ercisli, S., & Sochor, J. (2022). The influence of traditional and immobilized yeast on the amino-acid content of sparkling wine. Fermentation, 8(1), 36. Prusova, B., Humaj, J., Sochor, J., & Baron, M. (2022). Formation, losses, preservation and recovery of aroma compounds in the winemaking process. Fermentation, 8(3), 93. Qian, X., Jia, F., Cai, J., Shi, Y., Duan, C., & Lan, Y. (2022). Characterization and evolution of volatile compounds of Cabernet Sauvignon wines from two different clones during oak barrel aging. Foods, 11(1), 74. Rainieri, S., & Pretorius, I. (2000). Selection and improvement of wine yeasts. Annals of Microbiology, 50(1), 15-32. Randez‐Gil, F., Prieto, J. A., Rodríguez‐Puchades, A., Casas, J., Sentandreu, V., & Estruch, F. (2020). Myriocin‐induced adaptive laboratory evolution of an industrial strain of Saccharomyces cerevisiae reveals its potential to remodel lipid composition and heat tolerance. Microbial Biotechnology, 13(4), 1066-1081. Rapp, A., & Mandery, H. (1986). Wine aroma. Experientia, 42(8), 873-884. Reynolds, A. G. (2022). Viticultural and vineyard management practices and their effects on grape and wine quality. Managing Wine Quality. 443-539. Rihak, Z., Prusova, B., Kumsta, M., & Baron, M. (2022). Effect of must hyperoxygenation on sensory expression and chemical composition of the resulting wines. Molecules, 27(1), 235. Rodríguez, G. M., Sibaja, J. C., Espitia, P. J., & Otoni, C. G. (2020). Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocolloids, 103, 105630. Rojas, V., Gil, J. V., Piñaga, F., & Manzanares, P. (2003). Acetate ester formation in wine by mixed cultures in laboratory fermentations. International Journal of Food Microbiology, 86(1-2), 181-188. Romo-Sánchez, S., Arévalo-Villena, M., Romero, E. G., Ramirez, H. L., & Pérez, A. B. (2014). Immobilization of β-glucosidase and its application for enhancement of aroma precursors in muscat wine. Food and Bioprocess Technology, 7(5), 1381-1392. Rossouw, D., & Bauer, F. F. (2016). Exploring the phenotypic space of non-Saccharomyces wine yeast biodiversity. Food Microbiology, 55, 32-46. Saerens, S., & Swiegers, J. H. (2016). Production of low-alcohol or alcohol-free beer with Pichia kluyveri yeast strains. Google Patents. Sainz, F., Pardo, J., Ruiz, A., Expósito, D., Armero, R., Querol, A., & Guillamón, J. M. (2022). Use of non-conventional yeasts to increase total acidity in the Cava base wines. LWT-Food Science and Technology, 158, 113183. Salazar, M. M. M., Álvarez, O. L. M., Castañeda, M. P. A., & Medina, P. X. L. (2022). Bioprospecting of indigenous yeasts involved in cocoa fermentation using sensory and chemical strategies for selecting a starter inoculum. Food Microbiology, 101, 103896. Saliba, A. J., Ovington, L. A., & Moran, C. C. (2013). Consumer demand for low-alcohol wine in an Australian sample. International Journal of Wine Research, 5, 1-8. Salma, A., Abdallah, R., Fourcade, F., Amrane, A., & Djelal, H. (2021). A new approach to produce succinic acid through a co-culture system. Applied Biochemistry and Biotechnology, 193(9), 2872-2892. Sam, F. E., Ma, T.-Z., Salifu, R., Wang, J., Jiang, Y. M., Zhang, B., & Han, S. Y. (2021). Techniques for dealcoholization of wines: Their impact on wine phenolic composition, volatile composition and sensory characteristics. Foods, 10(10), 2498. Samoticha, J., Wojdyło, A., Chmielewska, J., & Nofer, J. (2019). Effect of different yeast strains and temperature of fermentation on basic enological parameters, polyphenols and volatile compounds of aurore white wine. Foods, 8(12), 599. Sancho-Galán, P., Amores-Arrocha, A., Palacios, V., & Jiménez-Cantizano, A. (2021). Effect of grape over-ripening and its skin presence on white wine alcoholic fermentation in a warm climate zone. Foods, 10(7), 1583. Sartor, S., Burin, V. M., Caliari, V., & Bordignon-Luiz, M. T. (2021). Profiling of free amino acids in sparkling wines during over-lees aging and evaluation of sensory properties. LWT-Food Science and Technology, 140, 110847. Satchanska, G. (2022). Antibacterial Activity of Plant Polyphenols. 1-14. Sawyer, S., Longo, R., Solomon, M., Nicolotti, L., Westmore, H., Merry, A., Gnoinski, G., Yila, A., Dambergs, R., & Kerslake, F. (2022). Autolysis and the duration of ageing on lees independently influence the aroma composition of traditional method sparkling wine. Australian Journal of Grape and Wine Research, 28(1), 146-159. Schiano, A., Harwood, W., & Drake, M. (2017). A 100-year review: sensory analysis of milk. Journal of Dairy Science, 100(12), 9966-9986. Schmit, T. M., Rickard, B. J., & Taber, J. (2013). Consumer valuation of environmentally friendly production practices in wines, considering asymmetric information and sensory effects. Journal of Agricultural Economics, 64(2), 483-504. Seo, H. J., Yang, S. J., Song, J. H., Ma, K. B., Chen, I. Z., & Roan, S. F. (2020). Current status and prospects of small fruit production in Taiwan. 한국국제농업개발학회지, 32(1), 31-37. Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. Sharma, S., Jha, P. K., & Panwar, A. (2021). Production of bioethanol from wheat straw via optimization of co-culture conditions of Bacillus licheniformis and Saccharomyces cerevisiae. Discover Energy, 1(1), 1-8. Shi, X., Liu, Y., Ma, Q., Wang, J., Luo, J., Suo, R., & Sun, J. (2022). Effects of low temperature on the dynamics of volatile compounds and their correlation with the microbial succession during the fermentation of Longyan wine. LWT-Food Science and Technology, 154, 112661. Siddik, M. A., Foysal, M. J., Fotedar, R., Francis, D. S., & Gupta, S. K. (2022). Probiotic yeast Saccharomyces cerevisiae coupled with Lactobacillus casei modulates physiological performance and promotes gut microbiota in juvenile barramundi, Lates calcarifer. Aquaculture, 546, 737346. Sidel, J. L., Bleibaum, R. N., & Tao, K. C. (2018). Quantitative descriptive analysis. Descriptive analysis in sensory evaluation, 287. Siebert, T. (2018). Wine grapes: overview of cultivars and products. FarmBiz, 4(8), 52-55. Simões, S., Santos, R., Bento‐Silva, A., Santos, M. V., Mota, M., Duarte, N., Sousa, I., Raymundo, A., & Prista, C. (2022). Improving nutritional quality of unripe tomato through fermentation by a consortium of yeast and lactic acid bacteria. Journal of the Science of Food and Agriculture, 102(4), 1422-1429. Singh, V., Haque, S., Niwas, R., Srivastava, A., Pasupuleti, M., & Tripathi, C. (2017). Strategies for fermentation medium optimization: an in-depth review. Frontiers in Microbiology, 7, 2087. Sipiczki, M. (2022a). Taxonomic revision of the pulcherrima clade of Metschnikowia (fungi): merger of species. Taxonomy, 2(1), 107-123. Sipiczki, M. (2022b). Wine Yeasts 1.0. (Vol. 10, pp. 26): Multidisciplinary Digital Publishing Institute. Soares‐da‐Silva, F. A., Campos, F. M., Ferreira, M. L., Ribeiro, N., Amaral, B., Simões, T., & Silva, C. L. (2019). Colour profile analysis of Port wines by various instrumental and visual methods. Journal of the Science of Food and Agriculture, 99(7), 3563-3571. Song, Y., Mobley, J. K., Motagamwala, A. H., Isaacs, M., Dumesic, J. A., Ralph, J., Lee, A. F., Wilson, K., & Crocker, M. (2018). Gold-catalyzed conversion of lignin to low molecular weight aromatics. Chemical Science, 9(42), 8127-8133. Šorgić, S., Sredović Ignjatović, I., Antić, M., Šaćirović, S., Pezo, L., Čejić, V., & Đurović, S. (2022). Monitoring of the wines’ quality by gas chromatography: HSS-GC/FID method development, validation, verification, for analysis of volatile compounds. Fermentation, 8(2), 38. Soto, B. (2019). Fermentation Processes: Scientific e-Resources. Spitaler, U., Cossu, C. S., Delle Donne, L., Bianchi, F., Rehermann, G., Eisenstecken, D., Castellan, I., Dumenil, C., Angeli, S., & Robatscher, P. (2022). Field and greenhouse application of an attract‐and‐kill formulation based on the yeast Hanseniaspora uvarum and the insecticide spinosad to control Drosophila suzukii in grapes. Pest Management Science, 78(3), 1287-1295. Sridhar, K., & Charles, A. L. (2019). Mathematical modeling and effect of drying temperature on physicochemical properties of new commercial grape “Kyoho” seeds. Journal of Food Process Engineering, 43(3), e13203. Sridhar, K., & Charles, A. L. (2021). Multivariate analysis of variance: An advanced chemometric approach to differentiate dose‐dependent antioxidant activities of grape (Vitis labruscana) skin extracts. Journal of Food Processing and Preservation, 45(5), e15447. Stój, A., Płotka-Wasylka, J., Simeonov, V., & Kapłan, M. (2022). The content of biogenic amines in Rondo and Zweigelt wines and correlations between selected wine parameters. Food Chemistry, 371, 131172. Stegăruș, D. I., Călugăr, A., Tanase, C., Muscă, A., Botoran, O. R., Manolache, M., Babeș, A. C., Bunea, C., Gál, E., & Bunea, A. (2021). Influence of oak chips and oak barrel ageing on volatile profile in Chardonnay wine of Romania. Applied Sciences, 11(8), 3691. Stepniowska, A., Czech, A., Malik, A., Chalabis-Mazurek, A., & Ognik, K. (2016). The influence of winemaking on the content of natural antioxidants and mineral elements in wines made from berry fruits. Journal of Elementology, 21(3). Strub, L., & Loose, S. M. (2021). The cost disadvantage of steep slope viticulture and strategies for its preservation. Oeno One, 55(1), 49-68. Styger, G., Prior, B., & Bauer, F. F. (2011). Wine flavor and aroma. Journal of Industrial Microbiology & Biotechnology, 38(9), 1145. Su, Y., Macías, L. G., Heras, J. M., Querol, A., & Guillamón, J. M. (2021). Phenotypic and genomic differences among S. cerevisiae strains in nitrogen requirements during wine fermentations. Food Microbiology, 96, 103685. Sumby, K. M., Bartle, L., Grbin, P. R., & Jiranek, V. (2019). Measures to improve wine malolactic fermentation. Applied Microbiology and Biotechnology, 103(5), 2033-2051. Sun, N., Gao, Z., Li, S., Chen, X., & Guo, J. (2022). Assessment of chemical constitution and aroma properties of kiwi wines obtained from pure and mixed fermentation with Wickerhamomyces anomalus and Saccharomyces cerevisiae. Journal of the Science of Food and Agriculture, 102(1), 175-184. Sun, Z., Liu, L., Wang, Y., Wang, X., & Xiao, D. (2021). Higher alcohols metabolism by Saccharomyces cerevisiae: a mini review. Chinese Journal of Biotechnology, 37(2), 429-447. Suran, J. (2022). Beehives as a natural source of novel antimicrobials. Promising Antimicrobials from Natural Products. 373-395. Suryani, A. E., Anggraeni, A. S., Istiqomah, L., Damayanti, E., & Karimy, M. F. (2021). Isolation and identification of phytate-degrading yeast from traditional fermented food. Biodiversitas Journal of Biological Diversity, 22(2). Sutani, A., Ueno, M., Nakagawa, S., & Sawayama, S. (2015). Melon aroma-producing yeast isolated from coastal marine sediment in Maizuru Bay, Japan. Fisheries Science, 81(5), 929-936. Suto, M., & Kawashima, H. (2022). Discrimination for sake brewing methods by compound specific isotope analysis and formation mechanism of organic acids in sake. Food Chemistry, 381, 132295. Swiegers, J., Bartowsky, E., Henschke, P., & Pretorius, I. (2005). Yeast and bacterial modulation of wine aroma and flavour. Australian Journal of Grape and Wine Research, 11(2), 139-173. Szotkowski, M., Holub, J., Šimanský, S., Hubačová, K., Sikorová, P., Mariničová, V., Němcová, A., & Márová, I. (2021). Bioreactor co-cultivation of high lipid and carotenoid producing yeast Rhodotorula kratochvilovae and several microalgae under stress. Microorganisms, 9(6), 1160. Tafel, M., & Szolnoki, G. (2020). Estimating the economic impact of tourism in German wine regions. International Journal of Tourism Research, 22(6), 788-799. Tan, Y., & Siebert, K. J. (2004). Quantitative structure− activity relationship modeling of alcohol, ester, aldehyde, and ketone flavor thresholds in beer from molecular features. Journal of Agricultural and Food Chemistry, 52(10), 3057-3064. Tang, K., Tian, X., Ma, Y., Sun, Y., Qi, X., Miu, C., & Xu, Y. (2020). Aroma characteristics of Cabernet Sauvignon wines from Loess Plateau in China by QDA®, Napping® and GC–O analysis. European Food Research and Technology, 246(4), 821-832. Tarasov, A., Garzelli, F., Schuessler, C., Fritsch, S., Loisel, C., Pons, A., Patz, C. D., Rauhut, D., & Jung, R. (2021). Wine storage at cellar vs room conditions: Changes in the aroma composition of Riesling wine. Molecules, 26(20), 6256. Teodosiu, C., Gabur, I., Cotea, V. V., Peinado, R. A., & López de Lerma, N. (2019). Evaluation of aroma compounds in the process of wine ageing with oak chips. Foods, 8(12), 662. Terryana, R. T., Ilmiyah, N., Setyawati, I., Haryati, T., Mulya, K., Riyanti, E. I., Sastro, Y., & Lestari, P. (2022). Morphological, physiological, and molecular identification and characterization of yeast isolated from Indonesian fruits and woods. AIP Conference Proceedings (Vol. 2462, No. 1, p. 060004). AIP Publishing LLC. Testa, B., Coppola, F., Lombardi, S. J., Iorizzo, M., Letizia, F., Di Renzo, M., Succi, M., & Tremonte, P. (2021). Influence of Hanseniasporauvarum AS27 on chemical and sensorial characteristics of Aglianico wine. Processes, 9(2), 326. Testa, B., Lombardi, S. J., Iorizzo, M., Letizia, F., Di Martino, C., Di Renzo, M., Strollo, D., Tremonte, P., Pannella, G., & Ianiro, M. (2020). Use of strain Hanseniaspora guilliermondii BF1 for winemaking process of white grapes Vitis vinifera cv Fiano. European Food Research and Technology, 246(3), 549-561. Tian, H., Jing, Y., Yu, H., Huang, J., Yuan, H., Lou, X., Wang, B., Xu, Z., & Chen, C. (2022). Effect of alsD deletion and overexpression of nox and alsS on diacetyl and acetoin production by Lacticaseibacillus casei during milk fermentation. Journal of Dairy Science, 105(4), 2868-2879. Tian, M. B., Liu, Y., Lu, H. C., Hu, L., Wang, Y., Cheng, C. F., Chen, W., He, F., Duan, C. Q., & Wang, J. (2023). Volatomics of ‘Cabernet Sauvignon’grapes and wines under the fan training system revealed the nexus of microclimate and volatile compounds. Food Chemistry, 403, 134421. Tomasino, E., & Bolman, S. (2021). The potential effect of β-ionone and β-damascenone on sensory perception of Pinot Noir wine aroma. Molecules, 26(5), 1288. Tomičić, R., Tomičić, Z., & Raspor, P. (2022). Influence of culture conditions on co-aggregation of probiotic yeast Saccharomyces boulardii with Candida spp. and their auto-aggregation. Folia Microbiologica, 67(3), 507-515. Tong, W., Sun, B., Ling, M., Zhang, X., Yang, W., Shi, Y., Pan, Q., Duan, C., & Lan, Y. (2023). Influence of modified carbonic maceration technique on the chemical and sensory characteristics of Cabernet Sauvignon wines. Food Chemistry, 403, 134341. Topić Božič, J., Butinar, L., Antalick, G., Sternad Lemut, M., Martelanc, M., Albreht, A., Korte, D., & Mozetič Vodopivec, B. (2022). The influence of selected indigenous yeasts on Pinot Noir wine colour properties. Journal of the Science of Food and Agriculture, 102(2), 664-672. Torija, M. J., Mas, A., Sengun, I. Y., & Beltran, G. (2021). Wine yeast: physiology and growth factors. Winemaking: Basics and Applied Aspects, 276. Torres-Guardado, R., Esteve-Zarzoso, B., Reguant, C., & Bordons, A. (2021). Microbial interactions in alcoholic beverages. International Microbiology, 25(1), 1-15. Tronchoni, J., Gonzalez, R., Guindal, A. M., Calleja, E., & Morales, P. (2022). Exploring the suitability of Saccharomyces cerevisiae strains for winemaking under aerobic conditions. Food Microbiology, 101, 103893. Tropea, A., Ferracane, A., Albergamo, A., Potortì, A. G., Lo Turco, V., & Di Bella, G. (2022). Single cell protein production through multi food-waste substrate fermentation. Fermentation, 8(3), 91. Tufariello, M., Chiriatti, M. A., Grieco, F., Perrotta, C., Capone, S., Rampino, P., Tristezza, M., & Mita, G. (2014). Influence of autochthonous Saccharomyces cerevisiae strains on volatile profile of Negroamaro wines. LWT-Food Science and Technology, 58(1), 35-48. Tufariello, M., Fragasso, M., Pico, J., Panighel, A., Castellarin, S. D., Flamini, R., & Grieco, F. (2021). Influence of non-Saccharomyces on wine chemistry: A focus on aroma-related compounds. Molecules, 26(3), 644. Uzkuç, N. M. Ç., Bayhan, A., & Toklucu, A. K. (2022). Phenolics and color components of young Cabernet Sauvignon wines: effect of spontaneous fermentation and bottle storage. European Food Research and Technology, 248(2), 393-401. Valcárcel-Muñoz, M. J., Guerrero-Chanivet, M., García-Moreno, M. V., Rodríguez-Dodero, M. C., & Guillén-Sánchez, D. A. (2021). Comparative evaluation of brandy de jerez aged in American oak barrels with different times of use. Foods, 10(2), 288. Valera, M. J., Olivera, V., Boido, E., Dellacassa, E., & Carrau, F. (2021). Wine aroma characterization of the two main fermentation yeast species of the apiculate genus Hanseniaspora. Fermentation, 7(3), 162. Valeri, V., Nino, V., & Irma, C. (2021). Production of fortified wine in a family cellar. " Intercultural Dialogues" Transactions, 6. van Aalst, A. C., de Valk, S. C., van Gulik, W. M., Jansen, M. L., Pronk, J. T., & Mans, R. (2022). Pathway engineering strategies for improved product yield in yeast-based industrial ethanol production. Synthetic and Systems Biotechnology, 7(1), 554-566. Van Leeuwen, C. (2022). Terroir: The effect of the physical environment on vine growth, grape ripening, and wine sensory attributes. Managing Wine Quality. 341-393. Vejarano, R. (2020). Non-Saccharomyces in winemaking: Source of mannoproteins, nitrogen, enzymes, and antimicrobial compounds. Fermentation, 6(3), 76. Velez-Erazo, E. M., Saturno, R. P., Marson, G. V., & Hubinger, M. D. (2021). Spent brewer’s yeast proteins and cell debris as innovative emulsifiers and carrier materials for edible oil microencapsulation. Food Research International, 140, 109853. Vendramin, V., Spinato, G., & Vincenzi, S. (2021). Shellfish chitosan potential in wine clarification. Applied Sciences, 11(10), 4417. Verghese, J., Abrams, J., Wang, Y., & Morano, K. A. (2012). Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiology and Molecular Biology Reviews, 76(2), 115-158. Viana, F., Gil, J. V., Genovés, S., Vallés, S., & Manzanares, P. (2008). Rational selection of non-Saccharomyces wine yeasts for mixed starters based on ester formation and enological traits. Food Microbiology, 25(6), 778-785. Vicente, J., Calderón, F., Santos, A., Marquina, D., & Benito, S. (2021). High potential of Pichia kluyveri and other Pichia species in wine technology. International Journal of Molecular Sciences, 22(3), 1196. Vidal, L., Ares, G., Hedderley, D. I., Meyners, M., & Jaeger, S. R. (2018). Comparison of rate-all-that-apply (RATA) and check-all-that-apply (CATA) questions across seven consumer studies. Food Quality and Preference, 67, 49-58. Vilela, A. (2019). Use of nonconventional yeasts for modulating wine acidity. Fermentation, 5(1), 27. Villalba, M. L., Mazzucco, M. B., Lopes, C. A., Ganga, M. A., & Sangorrín, M. P. (2020). Purification and characterization of Saccharomyces eubayanus killer toxin: Biocontrol effectiveness against wine spoilage yeasts. International Journal of Food Microbiology, 331, 108714. Vogt, T. (2010). Phenylpropanoid biosynthesis. Molecular Plant, 3(1), 2-20. Vranová, E., Coman, D., & Gruissem, W. (2013). Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annual Review of Plant Biology, 64, 665-700. Wang, C., Sun, J., Lassabliere, B., Yu, B., & Liu, S. Q. (2020). Coffee flavour modification through controlled fermentations of green coffee beans by Saccharomyces cerevisiae and Pichia kluyveri: Part I. Effects from individual yeasts. Food Research International, 136, 109588. Wang, C., Zhang, W., Tian, R., Zhang, J., Zhang, L., Deng, Z., Lv, X., Li, J., Liu, L., Du, G., & Liu, Y. (2022). Model‐driven design of synthetic N‐terminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnology Journal, 17(5), 2100655. Wang, H., Ni, Z. J., Ma, W. P., Song, C. B., Zhang, J. G., Thakur, K., & Wei, Z. J. (2019). Effect of sodium sulfite, tartaric acid, tannin, and glucose on rheological properties, release of aroma compounds, and color characteristics of red wine. Food Science and Biotechnology, 28(2), 395-403. Wang, H. T., Yang, J. t., Chen, K. I., Wang, T. Y., Lu, T. J., & Cheng, K. C. (2019). Hydrolyzation of mogrosides: Immobilized β‐glucosidase for mogrosides deglycosylation from Lo Han Kuo. Food Science & Nutrition, 7(2), 834-843. Wang, P., Ge, M., Yu, A., Song, W., Fang, J., & Leng, X. (2022). Effects of ethylene on berry ripening and anthocyanin accumulation of ‘Fujiminori’grape in protected cultivation. Journal of the Science of Food and Agriculture, 102(3), 1124-1136. Wang, Q. J., Niaura, T., & Kantono, K. (2021). How does wine ageing influence perceived complexity? Temporal-Choose-All-That-Apply (TCATA) reveals temporal drivers of complexity in experts and novices. Food Quality and Preference, 92, 104230. Wang, X., Wang, X., Zhu, Y., Ren, M., & Tian, C. (2018). Influence of acetaldehyde induction on monomeric and polymeric polyphenols in wine using the polyphenol/protein-binding model. South African Journal of Enology and Viticulture, 39(1), 149-156. Wang, X., Wang, Z., & Feng, T. (2022). Screening of yeast in various vineyard soil and study on its flavor compounds from brewing grape wine. Molecules, 27(2), 512. Wang, Y. P., Liu, L., Wang, X. S., Hong, K. Q., Zhang, L. H., Sun, Z. G., & Xiao, D. G. (2021). GAT1 Gene, the GATA transcription activator, regulates the production of higher alcohol during wheat beer fermentation by Saccharomyces cerevisiae. Bioengineering, 8(5), 61. Wang, Y., He, L., Pan, Q., Duan, C., & Wang, J. (2018). Effects of basal defoliation on wine aromas: a meta-analysis. Molecules, 23(4), 779. Watanabe-Saito, F., Nakagawa, Y., Kishimoto, M., Hisamoto, M., & Okuda, T. (2021). Influence of wine components on pellicle formation by pellicle-forming yeasts. Oeno One, 55(3), 363-375. Watanabe, D., & Hashimoto, W. (2021). Accelerated alcoholic fermentation of intact grapes by Saccharomyces cerevisiae in symbiosis with microbial community inhabiting grape-skin. Research Square. Watcharawipas, A., Mat Nanyan, N. S. B., & Astuti, R. I. (2022). Waste to wealth: The importance of yeasts in sustainable bioethanol production from lignocellulosic biomass. Waste Management, Processing and Valorisation. 265-283. Wei, J., Zhang, Y., Zhang, X., Guo, H., Yuan, Y., & Yue, T. (2022). Multi-omics discovery of aroma-active compound formation by Pichia kluyveri during cider production. LWT-Food Science and Technology, 159, 113233. Whitener, M. B., Stanstrup, J., Carlin, S., Divol, B., Du Toit, M., & Vrhovsek, U. (2017). Effect of non‐Saccharomyces yeasts on the volatile chemical profile of Shiraz wine. Australian Journal of Grape and Wine Research, 23(2), 179-192. Wichchukit, S., & O'Mahony, M. (2015). The 9‐point hedonic scale and hedonic ranking in food science: some reappraisals and alternatives. Journal of the Science of Food and Agriculture, 95(11), 2167-2178. Wiebe, M. G., Rintala, E., Tamminen, A., Simolin, H., Salusjärvi, L., Toivari, M., Kokkonen, J. T., Kiuru, J., Ketola, R. A., & Jouhten, P. (2008). Central carbon metabolism of Saccharomyces cerevisiae in anaerobic, oxygen-limited and fully aerobic steady-state conditions and following a shift to anaerobic conditions. FEMS Yeast Research, 8(1), 140-154. Williams, C., & Buica, A. (2020). Comparison of an offline SPE–GC–MS and online HS–SPME–GC–MS method for the analysis of volatile terpenoids in wine. Molecules, 25(3), 657. Williams, L. E., Dokoozlian, N. K., & Wample, R. (2018). Grape. Handbook of Environmental Physiology of Fruit Crops. 85-133. Wojdyło, A., Samoticha, J., & Chmielewska, J. (2020). The influence of different strains of Oenococcus oeni malolactic bacteria on profile of organic acids and phenolic compounds of red wine cultivars Rondo and Regent growing in a cold region. Journal of Food Science, 85(4), 1070-1081. Wollan, D. (2022). Membrane and other techniques for the management of wine composition. Managing Wine Quality. 183-212. Wu, W. H., Hung, W. C., Lo, K. Y., Chen, Y. H., Wan, H. P., & Cheng, K. C. (2016). Bioethanol production from taro waste using thermo-tolerant yeast Kluyveromyces marxianus K21. Bioresource technology, 201, 27-32. Xia, N., Cheng, H., Yao, X., Pan, Q., Meng, N., & Yu, Q. (2022). Effect of cold stabilization duration on organic acids and aroma compounds during Vitis vinifera L. cv. Riesling wine bottle storage. Foods, 11(9), 1179. Xiao, W., Sun, Z., Yan, X., Gao, X., Lv, Q., & Wei, Y. (2021). Differences in olfactory habituation between orthonasal and retronasal pathways. The Journal of Physiological Sciences, 71(1), 1-8. Xiao, Y., Wang, Z., Sun, W., Luan, Y., Piao, M., & Deng, Y. (2022). Characterization and formation mechanisms of viable, but putatively non-culturable brewer's yeast induced by isomerized hop extract. LWT-Food Science and Technology, 155, 112974. Xiaodong, Z., Jie, Z., & Ke, L. (2015). Design and implementation of control system for beer fermentation process based on SIMATIC PLC. The 27th Chinese Control and Decision Conference (2015 CCDC). 5653-5656. Xin, Y., Yang, M., Yin, H., & Yang, J. (2020). Improvement of ethanol tolerance by inactive protoplast fusion in Saccharomyces cerevisiae. BioMed Research International, 2020. Xu, A., Xiao, Y., He, Z., Liu, J., Wang, Y., Gao, B., Chang, J., & Zhu, D. (2022). Use of non-Saccharomyces yeast co-fermentation with Saccharomyces cerevisiae to improve the polyphenol and volatile aroma compound contents in Nanfeng tangerine wines. Journal of Fungi, 8(2), 128. Xu, M., Sun, J., Yao, K., Cai, Q., Shen, J., Tian, Y., & Zhou, X. (2022). Developing deep learning based regression approaches for prediction of firmness and pH in Kyoho grape using Vis/NIR hyperspectral imaging. Infrared Physics & Technology, 120, 104003. Xu, X. Y., Shen, X. T., Yuan, X. J., Zhou, Y. M., Fan, H., Zhu, L. P., Du, F. Y., Sadilek, M., Yang, J., & Qiao, B. (2018). Metabolomics investigation of an association of induced features and corresponding fungus during the co-culture of Trametes versicolor and Ganoderma applanatum. Frontiers in Microbiology, 8, 2647. Yan, G., Zhang, B., Joseph, L., & Waterhouse, A. L. (2020). Effects of initial oxygenation on chemical and aromatic composition of wine in mixed starters of Hanseniaspora vineae and Saccharomyces cerevisiae. Food Microbiology, 90, 103460. Yang, T., Rao, Z., Zhang, X., Xu, M., Xu, Z., & Yang, S. T. (2017). Metabolic engineering strategies for acetoin and 2, 3-butanediol production: advances and prospects. Critical Reviews in Biotechnology, 37(8), 990-1005. Yang, T., Wang, C., Li, C., Sun, R., & Yang, M. (2023). Antagonistic effects of volatile organic compounds of Saccharomyces cerevisiae NJ-1 on the growth and toxicity of Aspergillus flavus. Biological Control, 177, 105093. Yang, X., Zhao, F., Yang, L., Li, J., & Zhu, X. (2022). Enhancement of the aroma in low-alcohol apple-blended pear wine mixed fermented with Saccharomyces cerevisiae and non-Saccharomyces yeasts. LWT-Food Science and Technology, 155, 112994. Yao, Y., Chen, K., Yang, X., Li, J., & Li, X. (2021). Comparative study of the key aromatic compounds of Cabernet Sauvignon wine from the Xinjiang region of China. Journal of Food Science and Technology, 58(6), 2109-2120. Yıldırım, H. K., & Darıcı, B. (2020). Alternative methods of sulfur dioxide used in wine production. Journal of Microbiology, Biotechnology & Food Sciences, 9(4). Yu, K. Y., & Schuckert, M. (2021). Wine consumption behavior between Western and Mainland Chinese Consumer. Territoires du vin(13). Zamora, F. (2022). Barrel aging of white wines. White Wine Technology, 269-279. Zapparoli, G., Lorenzini, M., Tosi, E., Azzolini, M., Slaghenaufi, D., Ugliano, M., & Simonato, B. (2018). Changes in chemical and sensory properties of Amarone wine produced by Penicillium infected grapes. Food Chemistry, 263, 42-50. Zara, G., Budroni, M., Mannazzu, I., Fancello, F., & Zara, S. (2020). Yeast biofilm in food realms: occurrence and control. World Journal of Microbiology and Biotechnology, 36(9), 1-10. Zhang, B., Shi, X., Zhang, Y., Wang, Q., Zhou, P. P., Li, Y. K., & Tao, Y. S. (2022). The implication of phenolic acid matrix effect on the volatility of ethyl acetate in alcohol-free wine model: Investigations with experimental and theoretical methods. Food Chemistry, 378, 132114. Zhang, B., Xu, D., Duan, C., & Yan, G. (2020). Synergistic effect enhances 2-phenylethyl acetate production in the mixed fermentation of Hanseniaspora vineae and Saccharomyces cerevisiae. Process Biochemistry, 90, 44-49. Zhang, J., Wang, T., Zhao, N., Xu, J., Qi, Y., Wei, X., & Fan, M. (2021). Performance of a novel β-glucosidase BGL0224 for aroma enhancement of Cabernet Sauvignon wines. LWT-Food Science and Technology, 144, 111244. Zhang, M., Zhong, T., Heygi, F., Wang, Z., & Du, M. (2022). Effects of inoculation protocols on aroma profiles and quality of plum wine in mixed culture fermentation of Metschnikowia pulcherrima with Saccharomyces cerevisiae. LWT-Food Science and Technology, 161, 113338. Zhang, X. K., Lan, Y. B., Zhu, B. Q., Xiang, X. F., Duan, C. Q., & Shi, Y. (2018). Changes in monosaccharides, organic acids and amino acids during Cabernet Sauvignon wine ageing based on a simultaneous analysis using gas chromatography–mass spectrometry. Journal of the Science of Food and Agriculture, 98(1), 104-112. Zhang, Y., Cortez, J. D., Hammer, S. K., Carrasco-López, C., García Echauri, S. Á., Wiggins, J. B., Wang, W., & Avalos, J. L. (2022). Biosensor for branched-chain amino acid metabolism in yeast and applications in isobutanol and isopentanol production. Nature Communications, 13(1), 1-14. Zhang, Y., Min, Z., Qin, Y., Ye, D. Q., Song, Y. Y., & Liu, Y. L. (2019). Efficient display of Aspergillus niger β-glucosidase on Saccharomyces cerevisiae cell wall for aroma enhancement in wine. Journal of Agricultural and Food Chemistry, 67(18), 5169-5176. Zhao, Y., Zhang, Y., Nielsen, J., & Liu, Z. (2021). Production of β‐carotene in Saccharomyces cerevisiae through altering yeast lipid metabolism. Biotechnology and Bioengineering, 118(5), 2043-2052. Zhong, W., Chen, T., Yang, H., & Li, E. (2020). Isolation and selection of non-Saccharomyces yeasts being capable of degrading citric acid and evaluation its effect on kiwifruit wine fermentation. Fermentation, 6(1), 25. Zhou, M., Bu, T., Zheng, J., Liu, L., Yu, S., Li, S., & Wu, J. (2021). Peptides in brewed wines: formation, structure, and function. Journal of Agricultural and Food Chemistry, 69(9), 2647-2657. Zhu, J., Chen, F., Wang, L., Niu, Y., & Xiao, Z. (2017). Evaluation of the synergism among volatile compounds in Oolong tea infusion by odour threshold with sensory analysis and E-nose. Food Chemistry, 221, 1484-1490. Zhu, X., Yang, X., Mao, Y., Zhao, D., & Li, Y. (2021). Influence of Saccharomyces cerevisiae autochthonous MQ3 strain on terpenes during the alcoholic fermentation of Chardonnay dry white wine. Australian Journal of Grape and Wine Research, 28(1), 41-49. Zilelidou, E. A., & Nisiotou, A. (2021). Understanding wine through yeast interactions. Microorganisms, 9(8), 1620. Znaien, N. (2021). Rod Phillips, French wine. A history. Crescentis: Revue internationale d'histoire de la vigne et du vin(4). Zou, X., Wei, Y., Jiang, S., Xu, F., Wang, H., Zhan, P., & Shao, X. (2022). ROS stress and cell membrane disruption are the main antifungal mechanisms of 2-phenylethanol against Botrytis cinerea. Journal of Agricultural and Food Chemistry, 70(45), 14468-14479. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89185 | - |
dc.description.abstract | 摘要
葡萄種植與釀酒文化在許多國家具有重要的經濟與歷史地位。臺灣是地理獨立的區域,獨特且多元的微生物菌相為酒類釀造提供了良好的基礎。本土菌株的篩選與高品質的葡萄適合進行臺灣在地葡萄酒的研發。本研究的目的為利用臺灣盛產的巨峰葡萄與在地微生物進行酒類釀造。研究方向分為三個階段:(1) 從臺灣篩選酵母菌並探討其釀酒特性與香氣圖譜 (2) 藉由菌株共培養接種策略改善酒類香氣 (3) 使用加烈與熟成技術增進酒類品質。 從臺灣水果中鑑定並篩選出 4 株具有釀酒潛力的菌株,Saccharomyces cerevisiae Gr112、Pichia kluyveri Pe114、Hanseniaspora uvarum Pi235 和Hanseniaspora guilliermondii Ki135。S. cerevisiae Gr112具有優秀的乙醇轉換率與B-葡萄糖苷酶活性,P. kluyveri Pe114 具有良好的二氧化硫耐受性,而所有non-Saccharomyces 酵母菌皆顯示了出色的酯類生產能力。在香氣圖譜分析中,由於 H. uvarum Pi235 和 H. guilliermondii Ki135具有相似的圖譜,釀酒實驗只採用 H. uvarum Pi235 進行。 共培養研究中,使用多種菌株接種策略,包括兩株菌與三株菌的同時接種與順序接種。在巨峰酒的儀器分析與品評結果中,適當的共培養策略可以改善 non-Saccharomyces 酵母菌發酵造成的負面異味與 S. cerevisiae Gr112 生產過量的高級醇,同時提升酒中花香、紅色果香與熱帶果香,使風味層次更加豐富並提升酒類整體品質。 在巨峰加烈酒與熟成實驗中,使用共培養發酵策略,結合加烈技術與90天的橡木熟成。共培養技術為巨峰加烈酒提供了豐富的酯類與萜烯類香氣化合物,使其具有令人愉悅的熱帶水果香氣與花香。加烈與熟成技術突顯巨峰酒的莓果香氣與木質香氣。這些製程都提升了巨峰加烈酒的品質,並在品評結果中獲得了臺灣消費者的青睞。 以上研究說明了臺灣巨峰葡萄與本土酵母菌株具有優秀臺灣風土酒類釀造的潛力,經由菌株篩選、共培養、加烈與熟成技術,使巨峰加烈酒具有突出的風土特徵。總結來說,種菌研發與發酵產品應用的可能性不容小覷,具臺灣風土特徵的發酵產品更是未來趨勢。 | zh_TW |
dc.description.abstract | ABSTRACT
Viticulture and oenology play important economic and historical roles in various regions around the world. In Taiwan, the geographically independent region combined with diverse microorganisms create a good foundation for winemaking. Consequently, it is plausible to produce unique Taiwanese terroir wines with the local microorganisms and high-quality grapes. The purpose of this study is to employ local yeast strains and Kyoho grapes for wine research. This investigation can be divided into 3 stages: First, yeast strains from the natural environment of Taiwan are screened to determine oenological characteristics as well as aroma profile. Second, wine aroma profile is improved through the yeast strains inoculation strategy. Third, wine quality is enhanced through fortification and ageing technology. In the yeast screening process, four yeast strains with winemaking potential were identified and screened from fruits. They were Saccharomyces cerevisiae Gr112, Pichia kluyveri Pe114, Hanseniaspora uvarum Pi235, and Hanseniaspora guilliermondii Ki135. While S. cerevisiae Gr112 had high ethanol conversion rate and B-glucosidase activity, P. kluyveri Pe114 had good sulfur dioxide tolerance; all non-Saccharomyces yeasts showed excellent ester production ability. In the aroma profile analysis result, only H. uvarum Pi235 was chosen in subsequent winemaking experiments because H. uvarum Pi235 and H. guilliermondii Ki135 shared similar profiles. During the co-cultivation study, a variety of yeast strain inoculation strategies were carried out, including simultaneous inoculation and sequential inoculation of two strains and three strains. In sensory evaluation and instrumental analysis results, an appropriate inoculation strategy could remove solvent and undesirable off-odor caused by non-Saccharomyces yeast fermentation, as well as reduce the excessive production of higher alcohol by S. cerevisiae. Furthermore, the technique also enhanced the floral, red fruity, and tropical fruity aromas, which improved the flavor and overall quality of wine. In Kyoho fortified wine making experiment, co-cultivation fermentation was implemented with fortification and 90-day oak ageing. The co-cultivation strategy provides abundant ester and terpene volatile aroma compounds for Kyoho fortified wine which creates pleasant tropical fruity and floral aromas. Additionally, fortification and aging techniques highlight the berry and woody aromas of Kyoho fortified wine. These processes can improve complexity and quality of the fortified wine which contribute to positive evaluation results from Taiwanese consumers. These research investigations indicate that Taiwanese Kyoho grapes and native yeast strains possess excellent potentials to produce Taiwanese terroir wines. Through yeast strains screening, co-cultivation, fortification, and ageing techniques, Kyoho fortified wines have outstanding terroir characteristics. In conclusion, the fermentation technology and research of microorganisms are highly applicable, and the strategies can be utilized to ferment other products. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2023-08-30T16:14:19Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2023-08-30T16:14:19Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | TABLE of CONTENTS Page
致謝 ii 摘要 iv ABSTRACT v LIST of FIGURES xii LIST of TABLES xiv CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 2 2.1 Definition and classification of alcoholic beverage 2 2.1.1 Taiwanese legislation on alcoholic beverages 2 2.1.2 Winemaking process 3 2.2 Hygiene standards of alcohol products 5 2.3 The market size of alcoholic beverages 7 2.4 Grape wines 9 2.4.1 Grapes 9 2.4.2 Terroir 10 2.4.3 Well-known wine grape varieties 11 2.4.4 Taiwanese grape varieties 15 2.4.5 The history of grape wine 18 2.5 The classification of grape wine 20 2.5.1 Appearance 20 2.5.2 Effervescence 21 2.5.3 Grape harvesting time 21 2.5.4 Winemaking process 23 2.6 Winemaking process 28 2.6.1 Red wine 28 2.6.2 Port wine making process 32 2.7 Wine aromas 35 2.7.1 Primary aroma 36 2.7.2 Secondary aroma 40 2.7.3 Tertiary aromas 51 2.8 Non-volatile compounds in wine 55 2.8.1 Polyphenols 55 2.8.2 Organic acids 55 2.8.3 Nitrogen compounds 58 2.8.4 Glycerol 59 2.9 Yeast 64 2.9.1 Yeast in the natural environment 64 2.9.2 Application of yeast 65 2.9.3 Yeast in the winemaking industry 70 2.9.4 Non-Saccharomyces yeast 71 2.9.5 Identification of yeast 74 2.10 Important fermentation factors 76 2.10.1 Temperature 76 2.10.2 Oxygen 76 2.10.3 Carbon source 77 2.10.4 Nitrogen source 77 2.10.5 Starter inoculation 78 2.11 Enological characteristics 78 2.11.1 Temperature tolerance 78 2.11.2 Ethanol tolerance 79 2.11.3 Sulfur dioxide tolerance 79 2.11.4 Attenuation level 80 2.11.5 Flocculation level 80 2.11.6 B-glucosidase activity 80 2.12 Co-culture 81 2.13 Sensory evaluation 84 2.13.1 Nine-point hedonic scale method 84 2.13.2 Quantitative descriptive analysis 85 2.13.3 Check all that apply method 85 CHAPTER 3. ISOLATION, IDENTIFICATION, AND SCREENING OF YEAST STRAINS, AND THE ENOLOGICAL CHARACTERISTIC COMPARISON 86 3.1 Abstract 86 3.2 Introduction 87 3.3 Materials and methods 89 3.3.1 Isolation, purification, and screening of yeasts 89 3.3.2 Strain identification 89 3.3.3 Environment tolerance analysis 99 3.3.4 Attenuation analysis 99 3.3.5 Flocculation trials 99 3.3.6 Grapes and vinification 100 3.3.7 B-D-Glucosidase activity assays 100 3.3.8 Analytical determinations 101 3.3.9 Volatile compounds analysis 101 3.3.10 Statistical analysis 102 3.4 Results and discussion 102 3.4.1 Strain identification and selection 102 3.4.2 Physiological and biochemical characteristics of yeast strains 105 3.4.3 Environment tolerance 111 3.4.4 Enological characteristics 115 3.4.5 Yeast population and analytical determinations in fermentation 118 3.4.6 Volatile compounds analysis 121 3.4.7 Correlation of volatile compounds with yeast strains 126 3.5 Conclusion 130 CHAPTER 4. SEQUENTIAL CULTURE WITH Hanseniaspora uvarum, Pichia kluyveri AND Saccharomyces cerevisiae TO IMPROVE THE QUALITY OF KYOHO WINE 131 4.1 Abstract 131 4.2 Introduction 132 4.3 Materials and methods 134 4.3.1 Yeast strains 134 4.3.2 Inoculation strategy and winemaking 134 4.3.3 Determination of yeast population 135 4.3.4 Basic oenological parameters analysis 138 4.3.5 Volatile compounds analysis 138 4.3.6 Sensory evaluation analysis 139 4.3.7 Statistical analysis 140 4.4 Results and discussion 142 4.4.1 Yeast population kinetics 142 4.4.2 Fermentation kinetics 144 4.4.3 Effect of organic acids and their syntheses in mixed cultures 148 4.4. Effect of volatile compounds in mixed cultures 150 4.4.5 Correlation of volatile compounds with different inoculation treatments 155 4.4.6 Effect of mixed cultures treatments on the sensory profile of wines 159 4.5 Conclusion 163 CHAPTER 5. APPLICATION OF AROMA-PRODUCING YEASTS AND AGEING TECHNOLOGY IN KYOHO FORTIFIED WINE 164 5.1 Abstract 164 5.2 Introduction 165 5.3 Materials and methods 166 5.3.1 Yeast strains and seed culture 166 5.3.2 Vinification and fortification 167 5.3.3 Oak wood and ageing 168 5.3.4 Color changes during ageing 170 5.3.5 Analytical determinations 170 5.3.6 Quantification of major volatile compounds 171 5.3.7 Sensory analysis 172 5.3.8 Statistical analysis 173 5.4 Results and discussion 173 5.4.1 Color changes 173 5.4.2 Enological parameters and organic acids analysis 179 5.4.3 Volatile components analysis 186 5.4.4 Sensory evaluation analysis 202 5.5 Conclusion 212 CHAPTER 6. CONCLUSION and FUTURE PRESPECTIVE 213 REFERENCES 216 LIST of FIGURES Figure 2. 1 The market size of alcoholic beverages in Taiwan. 8 Figure 2. 2 The worldwide wine regions. 10 Figure 2. 3 The countries where grape varieties are grown. 14 Figure 2. 4 The regions of New World and Old World wines. 19 Figure 2. 5 The red wine making process. 30 Figure 2. 6 The schematic diagram of alcoholic fermentation. 31 Figure 2. 7 The schematic diagram of malolactic fermentation. 31 Figure 2. 8 The simplified flow chart of Port wine making. 34 Figure 2. 9 The olfactory functions. 36 Figure 2. 10 The lipoxygenase/hydroperoxide lyase (LOX-HPL) pathway. 38 Figure 2. 11 The methylerythritol 4-phosphate (MEP) and mevalonic acid (MVA) metabolic pathway. 39 Figure 2. 12 The shikimate pathway. 45 Figure 2. 13 The Ehrlich pathway. 46 Figure 2. 14 Fatty acid synthesis pathway. 47 Figure 2. 15 The schematic diagram of ester formation. 48 Figure 2. 16 The release of terpene compounds. 48 Figure 2. 17 The schematic diagram of citric acid degradation pathway. 50 Figure 2. 18 The schematic diagram of oak wood extraction compounds. 53 Figure 2. 19 The schematic diagram of oxidation and esterification. 54 Figure 2. 20 The shikimate phenylpropanoid pathway. 60 Figure 2. 21 The Asc C4/C5 and the Smirnoff-Wheeler pathways. 61 Figure 2. 22 The tricarboxylic acid cycle. 62 Figure 2. 23 The synthesis of pyruvic acid. 63 Figure 2. 24 D1/D2 and ITS1-5.8S-ITS2 regions in a ribosomal RNA. 75 Figure 3. 1 Dalmau plate method. 97 Figure 3. 2 The ethyl acetate production of yeast strains. 103 Figure 3. 3 The appearance of yeast strains. 110 Figure 3. 4 The environment tolerance analysis of the yeast strains. 114 Figure 3. 5 The enological characteristics of the yeast strains. 117 Figure 3. 6 The basic analysis during fermentation. 120 Figure 3. 7 The principal component analysis of aroma compounds. 129 Figure 4. 1 Explanation of codes used for the yeast starter combinations. 136 Figure 4. 2 Physical characteristics of the yeast strains on Wallerstein nutrient agar. 137 Figure 4. 3 The yeast population during the fermentation process. 143 Figure 4. 4 The levels of sugar, ethanol, and glycerol in fermentation. 146 Figure 4. 5 The principal component analysis of volatile compounds. 157 Figure 4. 6 The average silhouette width method (A) and the Manhattan distance cluster dendrogram (B). 158 Figure 4. 7 The spider web plots of the quantitative descriptive analysis. 161 Figure 4. 8 The correlation of aroma compounds with odor description. 162 Figure 5. 1 The selection frequencies of sensory attributes. 208 Figure 5. 2 Correspondence analysis of the 6 wine samples. 209 Figure 5. 3 The principal component analysis of volatile compounds and odor attributes. 211 LIST of TABLES Table 2.1 The classification of alcoholic beverages. 4 Table 2. 2 The cultivation area of grape varieties in the world. 13 Table 2. 3 The vineyard of grape varieties in Taiwan. 16 Table 2. 4 The classification of grape wine. 25 Table 2. 5 Various disciplines in yeast biotechnology. 68 Table 2. 6 The characteristics of non-Saccharomyces yeast strains in winemaking. 73 Table 2. 7 The applications of co-culture. 83 Table 3. 1 Yeast extract peptone dextrose (YPD) medium. 93 Table 3. 2 Carbohydrates fermentation medium. 93 Table 3. 3 Yeast nitrogen base without amino acids and ammonium sulfate. 94 Table 3. 4 Carbon compounds assimilation plate. 95 Table 3. 5 Nitrogen compounds assimilation plate. 95 Table 3. 6 High osmotic pressure medium. 96 Table 3. 7 Glucose peptone yeast extract agar (GPYA). 97 Table 3. 8 Potato dextrose agar (PDA). 97 Table 3. 9 Malt extract agar (5%). 98 Table 3. 10 Acetate agar. 98 Table 3. 11 Twenty-three yeast strains purified from fruits and identified result. 104 Table 3. 12 The result of physiological and biochemical characteristics. 107 Table 3. 13 The aroma compounds analysis in 7-day fermented wine samples. 124 Table 4. 1 The flavor lexicon employed in quantitative descriptive analysis. 141 Table 4. 2 The levels of ethanol, glycerol, and organic acids in wines. 149 Table 4. 3 The level of volatile compounds in wines. 153 Table 5. 1 The information of neutral grape spirit and basic wine in fortification process. 169 Table 5. 2 Results of CIELab parameters measurements during the ageing of wine samples. 176 Table 5. 3 Results of CIELab parameter measurements of wine samples. 178 Table 5. 4 Results of enological parameters and organic acids measurements during the ageing of wine samples. 182 Table 5. 5 Results of enological parameters and organic acids measurements of wine samples. 185 Table 5. 6 Results of volatile compounds analysis during the ageing of wine samples. 191 Table 5. 7 Results of volatile compounds analysis in wine samples. 200 Table 5. 8 Mean scores for attributes of the six wine samples used in the study based on a 9-point hedonic scale. 210 | - |
dc.language.iso | en | - |
dc.title | 酵母菌共發酵於巨峰葡萄酒類釀造之研究 | zh_TW |
dc.title | Co-culture Fermentation in Kyoho Wine Making | en |
dc.type | Thesis | - |
dc.date.schoolyear | 111-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 王進崑;吳明昌;吳瑞碧;林欣平;陳千浩;陳雪娥;羅翊禎 | zh_TW |
dc.contributor.oralexamcommittee | Chin-Kun Wang;Ming-Chang Wu;Swi-Bea Wu;Shin-Ping Lin;Chien-Hao Chen;Hsueh-Err Chen;Yi-Chen Lo | en |
dc.subject.keyword | 釀酒,巨峰,酵母菌,共培養,加烈,熟成, | zh_TW |
dc.subject.keyword | oenology,terroir,Kyoho,yeast,fortification,ageing,co-culture, | en |
dc.relation.page | 266 | - |
dc.identifier.doi | 10.6342/NTU202301529 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2023-07-14 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 生物科技研究所 | - |
顯示於系所單位: | 生物科技研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-111-2.pdf 目前未授權公開取用 | 7.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。